地球科学进展 ›› 2008, Vol. 23 ›› Issue (8): 866 -873. doi: 10.11867/j.issn.1001-8166.2008.08.0866

全球变化研究 上一篇    下一篇

生物挥发性有机物研究进展
石明洁1,2,延晓冬1*,贾根锁1
  
  1. 1.中国科学院大气物理研究所,东亚区域气候—环境重点实验室,北京 100029;2.中国科学院研究生院,北京 100049
  • 收稿日期:2008-01-09 修回日期:2008-05-21 出版日期:2008-08-10
  • 通讯作者: 延晓冬(1962-),男,陕西绥德人,研究员,博士,主要从事系统生态学、森林生态学和全球变化研究. E-mail:yxd@tea.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“北方干旱化与人类适应”(编号:2006CB400500);国家自然科学基金项目“基于个体的陆面动态植被模式”(编号:40675048)资助.

Advances in the Study of Researching Biogenic Volatile Organic Compounds Emissions

Shi Mingjie 1,2,Yan Xiaodong 1,Jia Gensuo 1   

  1. 1.Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;2.Graduate University of Chinese Academy of Sciences, Beijing 100049
  • Received:2008-01-09 Revised:2008-05-21 Online:2008-08-10 Published:2008-08-10

生物挥发性有机物(BVOCs)作为大气中的一种痕量气体,积极参与着大气中各类化学反应。植物BVOCs排放的影响机制,以及BVOCs与大气其他化学成分之间的反馈作用是目前全球变化研究的热点内容之一。描述了BVOCs的排放机理及其排放控制因子;综述了近年来BVOCs地表观测试验和计算方法的研究进展以及植被BVOCs排放的模拟研究现状,并对BVOCs研究的不足和发展趋势作了进一步讨论。

Biogenic volatile organic compounds (BVOCs), as trace gases, are always involved into a variety of chemical reactions in the atmosphere. Researches on BVOCs emission mechanism and the feedbacks between BVOCs and other atmospheric elements have been emphasized by recent global change studies. This paper summarizes the emission mechanism and of BVOCs emission, and summarized the advance in local observation and calculation methods of BVOCs emission; meanwhile updated simulation methods of BVOCs emission have been reported. At the same time, the shortage of this research and the trend of the research of BVOCs are discussed.

中图分类号: 

[1] Guenther AHewitt C NErickson D. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research1995100:8 873-8 892.

[2] Wang Z HBai Y HZhang S Y. A biogenic volatile organic compounds emission inventory for Beijing [J]. Atmospheric Environment200337:3 771-3 782.

[3] Fehsenfeld FCalvert JFall Ret al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry [J]. Global Biogeochemical Cyclies19926:389-430.

[4] Claeys MGraham BVas Get al. Formation of secondary organic aerosols through photooxidation of isoprene [J]. Science2004303: 1 173-1 176.

[5] Kavouras I GMihalopoulos NStephanou E G. Formation of atmospheric particles from organic acids produced by forests [J]. Nature1998395: 683-686.

[6] Andreaevc M OCrutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry [J]. Science1997276: 1 052-1 058.

[7] Naik VDelire CWuebbles D J. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2[J]. Journal of Geophys Research2004109D06301),doi: 10.1029/2003JD004236.

[8] Wiedinmyer CFriedfeld SBaugh Wet al. Measurement and analysis of atmospheric concentration of isoprene and its reaction products in central Texas [J]. Atmospheric Environment200135: 1 001-1 013.

[9] Wiedinmyer CGuenther AEstes Met al. A land use database and examples of biogenic isoprene emissions estimates for the state of TexasUSA [J]. Atmospheric Environment200135:6 465-6 477.

[10] Guenther A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems [J]. Chemosphere200249:837-844. 

[11] Yan YanWang ZhihuiBai Yuhua. Establishment of vegetation VOC emission inventory in China [J]. China Environment Science2005251):110-114.[闫雁,王志辉,白郁华,等.中国植被VOC排放清单的建立 [J]. 中国环境科学,2005251):110-114.]

[12] Wang ZhiuiBai YuhuaWang Xuesonget al. Investigation of the mechanisms of soprene and monoterpene emissions from hevea brasiliensis in Xishuangbanna [J]. Acta Scientiarum Naturalium Universitatis Pekinensis2003394):512-516. [王志辉,白郁华,王雪松,等.西双版纳地区三叶橡胶树异戊二烯和单萜烯排放机理初步研究 [J]. 北京大学学报:自然科学版,2003394):512-516.]

[13] Jitlatta TangpakdeeYasuyuki TanakaKyozo Oguraet al. Isopentenyl diphosphate isomerase and prenyl tansferase activities in bottom fraction C-Serum from hevea Brasiliensis [J]. Phytochemistry1999452: 261-267.

[14] Wildermuth M CFall R. Light-dependent isoprene emission. Characterization of a thylakoid-bound isoprene snthase in Salix Discolor [J]. Plant Physiology1996112:171-182.

[15] Monson RLerdau MSharkey Tet al. Biological aspects of constructing biological hydrocarbon inventories [J]. Atmospheric Environment199529:2 989-3 002.

[16] Guenther AKarl THarley Pet al. Estimates of global terrestrial isoprene emissions using MEGANModel of Emissions of Gases and Aerosols from Nature[J]. Atmospheric Chemistry and Physics20066:3 181-3 210.

[17] Martin P HGuenther A B. Insights into the dynamics of forest succession and non-methane hydrocarbon trace gas emissions [J]. Journal of Biogeography199522: 493-499.

[18] Isidorov V. Organic Chemistry of the Earth's Atmosphere [M]. Berlin:Springer-Verlag1990.

[19] Went F W. Blue hazes in the atmosphere [J]. Nature19601874 738: 641-643.

[20] Rasmussen RWent F. Volatile organic material of plant origin in the atmosphere [J]. Proceedicgs of the Natlional Academy of Sciences of the United States of America196553: 215-220.

[21] Sanadze G. The nature of gaseous substances emitted by leaves of Robinia pseudoacacia [J]. Soobshcheniya Akademi Nauk GruzinskojSSR195727: 747-750. 

[22] Guenther AZimmerman P RWildermuth M. Natural volatile organic compound emission rate estimates for US woodland landscapes [J]. Atmospheric Environment1994286: 1 197-1 210.

[23] Wiedinmyer CGuenther AHarley Pet al. Global organic emissions from vegetation [C]Granier Ced. Emissions of Atmospheric Trace Compounds.Dordrecht: Kluwer Publishing Co.The Netherlands2004.

[24] Guenther AGreenberg JHarley Pet al. Leafbranchstand and landscape scale measurements of volatile organic compound fluxes from US woodlands [J]. Tree Physiology1996161/2: 17-24.

[25] Greenberg J PGuenther AZimmerman Pet al. Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer [J]. Atmospheric Environment1999336: 855-867.

[26] Guenther AMonson RFall R. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development [J]. Journal of Geophysical Research199196:10 799-10 808.

[27] Guenther A BZimmerman P RHarley P Cet al. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses [J]. Journal of Geophysical Research199398D7: 12 609-12 617.

[28] Geron C DGuenther A BPierce T E. An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States [J]. Journal of Geophysical Research199499D6: 12 773-12 791.

[29] Guenther ABaugh BBrasseur Get al. Isoprene emission estimates and uncertainties for the central African EXPRESSO study domain [J]. Journal of Geophysical Research1999104D23: 30 625-30 639.

[30] Harley PGuenther AZimmerman P. Effect of lighttemperature and canopy position on net photosynthesis and isoprene emission from leaves of sweet gumLiquidambar styraciflua L.[J]. Tree Physiology199616: 25-32.

[31] Harley PGuenther AZimmerman P. Environmental controls over isoprene emission from sun and shade leaves in a mature white oak canopy [J]. Tree Physiology199717: 705-714.

[32] Sharkey T. Weather effects on isoprene emission capacity and applications in emission algorithms [J]. Ecological Applications199994:1 132-1 137.

[33] Guenther A. Seasonal and spatial variations in natural volatile organic compound emissions [J]. Ecological Applications19977: 34-45.

[34] Petron GHarley PGreenberg Jet al. Seasonal temperature variations influence isoprene emission [J]. Geophysical Research Letters2001289: 1 707-1 710.

[35] Monson RHarley PLitvak Met al. Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves [J]. Oecologia199499:260-270.

[36] Sharkey T DSingsaas E LLerdau M Tet al. Weather effects on isoprene emission capacity and applications in emissions algorithms [J]. Ecological Applications20009: 1 132-1 137.

[37] Geron CGuenther ASharkey Tet al. Temporal variability in basal isoprene emission factor [J]. Tree Physiology20002012: 799-805.

[38] Hanson D TSharkey T D. Rate of acclimation of the capacity for isoprene emission in response to light and temperature [J]. PlantCell & Environment2001249: 937-946.

[39] Rosenstiel T NPotosnak M JGriffin K Let al. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem [J]. Nature2003421: 256-259. 

[40] Velikova VPinelli PPasqualini Set al. Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone [J]. New Phytologist20051662: 419-426.

[41] Levis SWiedinmyer CBonan G Bet al. Simulating biogenic volatile organic compound emissions in the community climate system model [J]. Journal of Geophysical Research-Atmospheres2003108D21),4 659doi: 10. 1029/2002JD003203.

[42] Pierce T EWaldruff P S. Pc-Beis a personal-computer version of the biogenic emissions inventory system [J]. Journal of Air & Waste Management Assocation1991417:937-941.

[43] Pierce TGeron CBender Let al. Influence of increased isoprene emissions on regional ozone modeling [J]. Journal of Geophysical Research1998103D19),25 611-25 629.

[44] Graedel T EBates T SBouwman A Fet al. A compilation of inventories of emissions to the atmosphere [J]. Global Biogeochemical Cycles19937: 1-26.

[45] Olson J. World ecosystemsWE1.4: Digital raster data on a 10 minute geographic 1080 2160 grid [G]. Global ecosystems databaseVersion 1.0: Disc A1992NOAA National Geophysical Data CenterBoulderCO.

[46] EDC-NESDIDMonthly Global Vegetation Index from Gallo bi-weekly experimental calibrated GVIApril 1985-December 1990. Digital raster data on a 10-minute geographiclat/long 1080 2160 grid [G]. Global Ecosystems Datbase Version 1.0. Disc A1992NOAA National Geophysical Data CenterBoulderCO.

[47] Leemans RCramer W. IIASA database for mean monthly values of temperatureprecipitationand cloudiness on a global terrestrial grid: Digital raster data on a 30 minute geographiclat/long 320 times 720 grid [G]. Global Ecosystems Database Version 1.0: Disc A1992NOAA National Geophysical Data CenterBoulderCO.

[48] Dickinson R ESellers A HKennedy P Jet al. Biosphere-Atmosphere Transfer SchemeBATS for the NCAR community climate model [R]. NCAR Technical NoteNCARTN275+STR1986:69.

[49] Bonan G B. Land-atmospheric interactions for climate system models: Coupling biophysicalbiogeochemical and ecosystem dynamical processes [J].Remote Sensing of Environment199551: 57-73. 

[50] Dai YZeng XDickinson R Eet al. The common land modelCLM),technical documentation and user's guide [J]. Bulletin of the American Meterorological Society200384: 1 013-1 023. 

[51] Oleson K WDai YBonan Get al. Technical Description of the Community Land ModelCLM[R]. NCAR Technical NoteNCARNCAR/TN-461+STR2004.

[52] Ji J J. A climate-vegetation interaction model: Simulating physical and biological processes at the surface [J]. Journal of Biogeography199522:445-451.

[53] Dickinson R EShaikh MGraumlich Let al. Interactive canopies for a climate model [J]. Journal of  Climate199811:2 823-2 836.

[54] Dickinson R EBerry J ABonan G Bet al. Nitrogen controls on climate model evapotranspiration [J]. Journal of Climate2002153:278-295.

[55] Mao Jiafu. Researches on the improvement and application of Sheffield dynamic global vegetation model [D]. Beijing: Institute of Atmospheric PhysicsChinese Academy of Sciences2007.[毛嘉富.Sheffield动态全球植被模型的改进及应用研究[D]. 北京: 中国科学院大气物理研究所,2007.]

[56] Du ChuanliLiu Xiaodong. Introduction of Community Land Model 3.0[J]. Shaanxi Meteorology2005,(6:13-14.[杜川利,刘晓东.公用陆面模式(Community Land Model 3.0)简介[J]. 陕西气象,2005,(6:13-14.]

[57] Foley J APrentice I CRamankutty Net al. An integrated model of land surface processes terrestrial carbon balance and vegetation dynamics [J]. Global Biogeochemical Cycles199610:603-628.

[58] Friend A DStivens A KKnox R Get al. A process-basedterrestrial biosphere model of ecosystem dynamicsHybrid v3.0[J]. Ecological Modeling199795:247-287.

[59] Brovkin VGanopolski ASvirezhev Y. A continuous climate-vegetation classification for use in climate-biosphere studies [J]. Ecological Modelling1997101:251-261.

[60] Woodward F ISteffen W L. Natural Disturbances and Human Land Use in Dynamic Global Vegetation Models [R]. International Geosphere-Biosphere Programme Report 38. Sweden1996.

[61] Sitch SSmith BPrentice I Cet al. Evaluation of ecosystem dynamicsplant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model [J]. Global Change Biology20039: 161-185.

[62] Cox P MBetts R AJones C Det al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J]. Nature2000408: 184-187.

[63] Bonan G BLevis SSitch Set al. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics [J]. Global Change Biology20039:1 543-1 566.

[64] Krinner GViovy NNoblet Ducoudr Net al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system [J]. Global Biogeochemical Cyles200519GB1015doi: 10.1029/2003GB002199.

[65] Ramankutty NFoley J A. Estimating historical changes in global land cover: Croplands from 1700 to 1992 [J]. Global Biogeochemical Cycles199913:997-1 027.

[66] Kucharik C JFoley J ADelire Det al. Large-scale vegeatation feedback on a doubled CO2 climate [J]. Journal of Climate200013:1 313-1 325.

[67] Zhang Ningning. Simulating succession dynamics of Far East Boreal forests under climate changing scenarios [D]. Beijing: Institute of Atmospheric PhysicsChinese Academy of Sciences2007.[张宁宁.气候变化情景下远东地区北方森林演替动态研究[D].北京: 中国科学院大气物理研究所,2007.]

[68] Zeng NDing Y HPan J Het al. Climate change—The Chinese challenge [J]. Science2008319:730-731.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[4] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[5] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[6] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[7] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[8] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[9] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[10] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[11] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[12] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[13] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[14] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[15] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
阅读次数
全文


摘要