地球科学进展 ›› 1998, Vol. 13 ›› Issue (6): 572 -581. doi: 10.11867/j.issn.1001-8166.1998.06.0572

干旱气候变化与可持续发展 上一篇    下一篇

大气气溶胶辐射强迫及气候效应的研究现状
罗云峰 1,周秀骥 2,李维亮 2   
  1. 1.北京大学地球物理系 北京 100871;2.中国气象科学研究院 北京 100081
  • 收稿日期:1998-03-05 修回日期:1998-07-28 出版日期:1998-12-01
  • 通讯作者: 罗云峰

ADVANCES IN THE STUDY OF ATMOSPHERIC AEROSOL RADIATIVE FORCING AND CLIMATE CHANGE

Luo Yunfeng 1,Zhou Xiuji 2,Li Weiliang 2   

  1. 1.Department of Geophysics, Beijing University, Beijing 100871;2.Chinese Academy of Meteorological Sciences, Beijing 100081
  • Received:1998-03-05 Revised:1998-07-28 Online:1998-12-01 Published:1998-12-01

由于工业活动的影响,对流层气溶胶含量明显增加。他们通过直接吸收和反射太阳辐射以及改变其它辐射强迫因子(云、臭氧)的大小间接影响地气系统的能量收支。近年来研究表明:人类活动产生的气溶胶具有与CO2温室气体大小相当、符号相反的辐射强迫效应。他们在全球或区域范围内削弱温室气体的变暖趋势,对气候变化造成很大的影响。文章就人为气溶胶辐射强迫及气候效应近年来的研究状况做了介绍。

Since pre-industrial times, the concentration of atmospheric aerosols increase obviously. Aerosols influence the energy budget of earth-atmosphere system directly by absorbing and back-scattering incoming solar radiation, and indirectly by changing the magnitude of other radiative forcing factors, such as cloud, ozone, et al. Recent studies present that anthropogenic aerosol radiative forcing is comparable but opposite in sign to the current greenhouse forcing caused by increase of CO2 and then reduce the warming tendency by increased greenhouse gases in region and in globe, and play an important role in climate change. In this paper, we introduce the advance in the study of aerosol radiative forcing and its climate response.

中图分类号: 

[1] 石广玉. 气候变化的辐射强迫研究的最新进展. 现代大气科学前言与展望. 北京: 气象出版社, 1996.
[2] IPCC. Radiative forcing of climate change. In: Climate Change 1994. Cambridge: Cambridge University Press, 1995.
[3] Hameed S, Dignon J. Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970- 1986. J Air Pollut Control Assoc, 1992,42:159-163.
[4] Galloway J N, Likens G E, Hawley M E. Acid deposition: Natural versus anthropogenic sources. Science, 1984, 226: 829- 831.
[5] 王文兴. 中国环境酸化问题. 环境科学学报, 1997, 17(3): 1.
[6] 陈隆勋, 邵永宁, 张清芬, 等. 近四十年来我国气候变化的初步分析. 应用气象学报, 1991, 2: 164- 173.
[7] Wigley T M L. Possible climate change due to SO2 derived cloud condensation nuclei. Nature, 1989, 339: 365- 367.
[8] Engardt M, Rodhe H. A comparison between patterns of tempreture trends and sulfate aerosol pollution. Geophys Res Lett, 1993, 20:117-120.
[9] Karl T R, Knight R W, Kukla G, et al. Evidence for radiative effects of ant horopogenic sulfate aerosols in the observed climate record. In: R J Chharlson, J Heintzenberg eds. Aerosol Forcing of Climate. Chichester: John Wiley, 1995. 281- 296.
[10] Durkee P A. Observations of aerosol cloud interaction in satellite detected visible and near infrared radiance. Proc Symp on Role of Clouds in Atmospheric Chemitry and Global Climate. American Meterological Society, 1989. Jan 30- Feb 2. Anaheim, CA.
[11] Bol in B, Charlson R J. On the role of the tropospheric sulfur cycle in the short wave radiative climate of the earth. Ambio, 1976, 5:47-54.
[12] Charlson R J, Langner J, Rodhe H, et al. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic aerosol. Tellus, 1991, 43AB: 152- 163.
[13] Langner J, Rodhe H. A global three-dimensional model of the tropospheric sulfur cycle. J Atmos Chem,1991, 13: 225- 263.
[14] Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosols. Science, 1992, 255: 422-430.
[15] Kiehl J T, Briegleb B P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 1993, 260: 311-314.
[16] Hansen J, Lacis A. How sensitive is the world's climate? National Geographic Research and Exploration. 1993, 9: 142-158.
[17] Chuang C C, Penner J E, Taylor K E, et al. Climate effects of anthropogenic sulfate: simulation from a coupled chemistry, climate model. Preprints of the Conference on Atmosphric Chemistry, Nashville, Tennessee. American M eteorological Society, Boston,USA. January 1994: 170- 174.
[18] Taylor K E, Penner J E. Response of the climate system to atmospheric aerosols and greenhouse gases. Nature, 1994, 369: 734-737.
[19] Boucher O, Anderson T L. GCM assessment of the sensitivity of direct climat e forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J Geophys Res, 1995, 100: 26 061-26 092.
[20] Kiehl J T, Rodhe H. Modeling geographical and seasonal foring of climate. Chharlson R J, Heintzenberg J, eds. Chichester: John Wiley, 1995.281- 296.
[21] Pham M, Megie G, Muller J F, et al. A Three-dimensional study of the tropospheric sulfur cycle. J Geophys Res, 1996, 100:26 061- 26 092.
[22] Mitchell J F B, Johns T C, Gregory J M, et al. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 1995, 376: 501- 504.
[23] Cox S J, Wang W C, Schwartz S E. Climate response to radiative forcings by sulfate aerosols and greenhouse gases. Geophys Res Lett, 1995, 22: 2 509- 2 512.
[24] Catherine C C, Joyce E P, Karl E T, et al. An assessent of the radidtive effects of anthropogenic sulfate. J Geophys Res, 1997, 102(D3): 3 761- 3 778.
[25] Penner J E, Charlson R J, Hales J M, et al. Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols.Bull Am Meterol Soc, 1994, 75: 375- 400.
[26] Twomey S. Optics of individual aerosol particles. In: Atmospheric A erosols. New York: Elsevier, 1977. 199- 217.
[27] 章澄昌, 周文贤. 大气气溶胶教程. 北京: 气象出版社, 1995.
[28] Garland J. Condensation on ammonium sulfate particles and its effects on visibility. Atmos Environ, 1969, 3: 347- 354.
[29] Tang I N, Munkelwitz H R. A erosol growth studies, iii, Ammonium bisulfate aerosols in a miost atmosphere. J Aerosol Sci, 1977,8: 321- 330.
[30] Hegg D, Ferek R, Hobbs P. Light scattering and cloud condensation nucleus activity of sulfate aerosol measured over the northeast atlantic ocean. J Geophys Res, 1993, 98: 14 887- 14 894.
[31] Pilinis C, Pandis S N, Seinfeld J H. Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J Geophys Res, 1995, 100(D9) : 18 739- 18 754.
[32] Nemesure S, Wagener R, Schwartz S E. Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composion, and relative humidity. J Geophys Res, 1995, 100(D12): 26 105- 26 116.
[33] Wenwei P, Menner A T, Gregory J M, et al. Uncertainty analysis of direct radiative forcing by anthropogenic sulfate aerosols. J Geophys Res, 1997, 102(D18): 21 915- 21 924.
[34] Twomey S A. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci, 1977, 34: 1 149- 1 152.
[35] Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosols. Science, 1992, 255: 422- 430.
[36] Kaufman Y J, Chou M D. Model simulat ions of the competing climatic effects of SO2 and CO2. J Climate, 1993, 6: 1 241- 1 252.
[37] Han Q, Rossow W B, Lacis A A. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J Climate,1994, 7: 465- 497.
[38] Boucher O. GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii. J Climate, 1995, 8: 1 403- 1 409.
[39] Boucher O, Treut H L, Baker M. Precipitet ion and radiation modelling in a GCM: Introduction of cloud microphysical processes. J Geophys Res, 1995, 100: 16 395-16 414.
[40] Jones A, Roberts D L, Slingo A. A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature,1994,370:450- 453.
[41] Boucher O, Rodhe H. The sulfate-CCN-cloud albedo effect: A sensitivity study. Rep CM-83, Dep of Meteorol, Stockholm.Stockholm Univ, 1994. 20.
[42] Boucher O, Lohmann U. The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus,1995, 47B: 281- 300.
[43] Erickson D J, Oglesby R J, Marshell S. Climate response to indirect anthropogenic sulfate forcing. J Geophys Res, 1995, 100: 2 017- 2 033.
[44] Feichter J, Kjellstrom E, Rodhe H, et al. Simulation of the tropospheric sulfur cycle in a global climate model. Atmos Environ,1996, 20: 1 693- 1 707.
[45] Chin M, Jacob D F, Gardner G M, et al. A global three-dimensional model of tropospheric sulfate. J Geophys Res, 1996, 101: 18 667- 18 690.
[46] Kasibhatla P, Chameides W L, John J S. A Three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthoropogenic suldate aerosols. J Geophys Res, 1997, 102: 3 737-3 759.
[47] Russell P B, Kinne S A, Bergstrom R W. Aerosol climate effects: local radiative forcing and column closure experiments. J Geophys Res, 1997, 102(D8) : 9 397-9 407.
[48] Schwartz S E. The whitehouse effect shortwave radiative forcing of climate by anthropogenic aerosols: an overview. Journal of Aerosol Science, 1996, 27(3): 359- 382.
[49] Bernd K. Late 20th century climate change over the Northern Hemisphere and its consequences for numerical weather prediction: editorial essay, Climate Change. Dordrecht, The Netherlands, 1996, 32(4) : 379- 385.
[50] Clarke A D, Porter J N, Valero F P J, et al. Vertical profiles, aerosol mocrophysics, and optical closure during the Atlantic Stratocumulus Transition Experiment: Measured and modeled column optical properties. J Geophys Res, 1996, 101: 4 443- 4 453.
[51] Hobbs P V, Huebert B J, ed. Atmospheric Aerosols, A new focus of the international global atmospheric chemistry project. The International Global Atmospheric Chemistry (IGAC) project. A core project of the International Geosphere-Biosphere-Program(TGBP),Cambridge, Massachusetts, USA, 1996.
[52] Li Xiaowen, Zhou Xiuji, Li Weiliang, et al. The Cooling of Sichuan Province in Recent 40 Years And Its Probable Mechanisms. Acta Meteorologica Sinica, 1995, 9(1): 57- 68.
[53] 钱云, 符淙斌, 王自发. 工业SO2排放对东亚和我国温度变化的影响. 环境和气候研究, 1996, 2: 143- 149.
[54] 张远航, 胡可钊. 重庆市交通扬尘尘源鉴别. 环境科学研究, 1993, 6(1): 20- 24.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要