地球科学进展 ›› 2003, Vol. 18 ›› Issue (3): 345 -350. doi: 10.11867/j.issn.1001-8166.2003.03.0345

研究论文 上一篇    下一篇

ASTER数据的自组织神经网络分类研究
哈斯巴干,马建文,李启青   
  1. 中国科学院遥感应用研究所,北京 100101
  • 收稿日期:2002-10-18 修回日期:2003-01-07 出版日期:2003-06-01
  • 通讯作者: 哈斯巴干 E-mail:hasibagan@263.net
  • 基金资助:

    国家863计划项目“基于SIG框架的数字城市服务系统与示范”(编号:2002AA134030);863-103项目“遥感图像处理平台”(编号:2002AA133030)资助.

STUDY ON ASTER DATA CLASSIFICATION USING SELF-ORGANIZING NEURAL NETWORK METHOD

Hasi Bagan,Ma Jianwen, Li Qiqing   

  1. The Institute of Remote Sensing Applications, CAS, Beijing 100101,China
  • Received:2002-10-18 Revised:2003-01-07 Online:2003-06-01 Published:2003-06-01

传统的遥感数据分类方法大多基于统计学的参数估计,假设数据分布服从高斯正态分布。神经网络方法无需参数估计和统计假设,因而,近来越来越多地应用于遥感数据分类之中。介绍了基于聚类分析的自组织特征映射分类方法。ASTER卫星数据是新型遥感数据,包括 3个15 m分辨率波段和 3个30 m分辨率的短波红外波段。选择北京地区的ASTER数据作为方法实验数据,首先对数据进行了小波融合,然后进行了土地覆盖类型的自组织特征映射神经网络分类研究,把研究结果同最大似然判别法得到的分类结果进行了比较,分类精度比最大似然判别法总体提高了9%。

    The assumption of statistical model is not needed for Neural Networks (NN) while most traditional classification method for remote sensing data assumed normal distribution model. More and more NN application cases have been found in remote sensing data classification. In this paper, we proposed a method of Kohonen Self-organizing feature map based on clustering analysis. ASTER data is a new remote sensing data, which includes 3 bands of 15 m resolution and 3 bands of 30m resolution. ASTER data of Beijing have been chosen for our research. The land cover classification result in neural networks method has been shown in this paper after wavelet fusion of data. The classification has 9% of accuracy ratio more than MLH classification.
    The idea of neural networks came from the basic structure of functioning of the human brain. In the modern field of science and engineering, the neural networks have strengthened their importance with numerous applications ranging from pattern recognition, fields of classification etc. There are different kinds of the neural networks available depending on the task to be performed. In this study the Kohonen self-organized network is used. There are 6 notes in import layer of the structure of Kohonen self-organized network and ASTER data bands 1,2,3N,5,7,9 corresponding to one note in import layer. Output layer has the structure of 25×25 neural notes. Learning speed α starting value is 0.9, α reduced to 0.001 stopped with net calculation processing. Maximum circulation time is 2 500.  
    ASTER is the only instrument to fly on the EOS AM-1 plate form that will acquire high-resolution image. The primary goal of the ASTER mission is to obtain high-resolution image data in 15 channels over targeted areas of the Earth's surface, as well as black-and-white stereo images, with a revisit time between 4 and 16 days. Band 1、2 are visible bands, band 3N,3B are near inferred bands, the resolution is 15 m; Band from 4 to 9 are group of  short wave inferred bands, theresolution is 30 m; Band from 10~14 are thermal bands, the resolution is 90m. With ASTER's merits earth scientists to address a wide range of globule-change topics. In the paper we introduce Kohonen self-organized network in classification of land cover in Beijing area in 2001 by using ASTER data.

中图分类号: 

[1] Zhang Xiaocan,Huang Zhicai,Zhao Yuanhong.Remote Sensing Digital Image Processing[M]. Hangzhou:ZheJiang University Press,1997.222-232.[张孝灿,黄智才,赵元洪. 遥感数字图像处理[M]. 杭州: 浙江大学出版社, 1997.222-232.]

[2] Luo Jiancheng,Wang Qinmin,Ma Jianghong,et al. The EM-based maximum likelihood classifier for remotely sensed data[J]. Acta Geodaetica et Cartographica Sinica,2002,31(2):234-239.[骆剑承,王钦敏,马江洪,.遥感图像最大似然分类方法的EM改进算法[J].测绘学报,2002,31(2):234-239.]

[3] Sun Jiabing, Shu Ning, Guan Zequn. Remote Sensing Theory,Method and Application[M].Beijing: Surveying and Mapping Press, 1997.176-242.[孙家炳,舒宁,关泽群.遥感原理、方法和应用[M]. 北京:测绘出版社,1997.176-242.]

[4] Kohonen T. Self-organizated formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43: 59-69.

[5] C Y Ji. Land-use classification of remotely sensed data using kohonen self-organizing feature map neural networks[J]. Photogrammetric Engineering & Remote Sensing, 2000, 66(12): 1 451-1 460.

[6] Cui Jintai. An Introduction to Wavelets[M]. Xi'an: Xi'an Jiaotong University Press, 1995.198-242.[崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995.198-242.]

[7] Mallat S G. A theory of multiresolution signal decomposition the wavelet representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989,11(7): 674-693.

[8] Jorge Nunez, Xavier Otazu, Octavi Fors, et al. Multiresolution-based image fusion with additive wavelet decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(3):1 204-1 211. 

[9] Hasibagan,Ma Jianwen,Li Qiqing,et al.Wavelet high frequency substitution fusion method[J]. Journal of Image and Graphics,2002,7A(10):1 012-1 016.[哈斯巴干,马建文,李启青,.小波局部高频替代融合方法[J].中国图象图形学报,2002,7A(10):1 012-1 016.]

[10] Kohonen T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1 464-1 480.

[11] Yuan Zengren. Artificial Neural Network and Application[M]. Beijing:Tsinghua University Press,1999.[袁曾任. 人工神经元网络及其应用[M]. 北京: 清华大学出版社,1999.]

[12] Li Deren. Discussion on Earth observation and geographic information system[J]. Advances in Earth Sciences, 2001, 16(5):689-703.[李德仁.对地观测与地理信息系统[J].地球科学进展,2001,16(5):689-703.]

[1] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[2] 刘文聪, 张春菊, 汪陈, 张雪英, 朱月琴, 焦守涛, 鲁艳旭. 基于 BiLSTM-CRF的中文地质时间信息抽取[J]. 地球科学进展, 2021, 36(2): 211-220.
[3] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[4] 程惠红,孙长青,王聪. 2020年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1163-1170.
[5] 何建军,郭郁葱,刘哲,吴捷,李莉. 2020年度大气科学领域项目评审与资助成果简析[J]. 地球科学进展, 2020, 35(11): 1201-1210.
[6] 邓辉,李果营,杨海风,温宏雷,张参. 走滑应变椭圆模型的改进及应用举例[J]. 地球科学进展, 2019, 34(8): 868-878.
[7] 李积明,刘哲,郭郁葱,彭怡然,闻新宇. 2019年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2019, 34(11): 1212-1217.
[8] 程维明, 刘樯漪, 王娇, 高文信, 刘建忠. 全月球形貌类型分类方法初探[J]. 地球科学进展, 2018, 33(9): 885-897.
[9] 陈科贵, 李进, 黄长兵, 陈愿愿, 王刚, 刘阳. BP神经网络在富钾卤水中的应用研究[J]. 地球科学进展, 2018, 33(6): 614-622.
[10] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[11] 陈科贵, 吴刘磊, 陈愿愿, 王刚. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016, 31(10): 1041-1046.
[12] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[13] 陈科贵, 陈旭, 张家浩. 复合渗透率测井评价方法在砂砾岩稠油油藏的应用 *——以克拉玛依油田某区八道湾组为例[J]. 地球科学进展, 2015, 30(7): 773-779.
[14] 李育, 朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801.
[15] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
阅读次数
全文


摘要