地球科学进展 ›› 2012, Vol. 27 ›› Issue (7): 717 -724. doi: 10.11867/j.issn.1001-8166.2012.07.0717

综述与评述 上一篇    下一篇

森林凋落叶分解过程中单萜烯排放研究进展
吴婷,夏传俊,赵娟   
  1. 安徽师范大学环境科学与工程学院,安徽芜湖241000
  • 收稿日期:2012-01-05 修回日期:2012-05-15 出版日期:2012-07-10
  • 通讯作者: 吴婷(1981-), 女, 湖南郴州人, 副教授, 主要从事生活垃圾及植物残体痕量气体排放研究. E-mail:wuting19@mail.ahnu.edu.cn
  • 基金资助:

    国家自然科学基金项目“典型中亚热带森林生态系统凋落叶单萜烯的排放及其影响因素”(编号:41103067); 安徽高校省级自然科学研究重点资助项目“城市生活垃圾腐烂过程中挥发性有机臭气的组成特征和排放规律研究”(编号:KJ2010A141); 安徽师范大学培育基金项目“城市生活垃圾处理系统恶臭污染特征标志物筛选与监控指标建立研究”(编号:2010xmpy016)资助.

Review on Emission of Monoterpenes during the Decomposition of Leaves Litter in Forest Ecosystem

Wu Ting, Xia Chuanjun, Zhao Juan   

  1. College of Environmental Science and Technology, Anhui Normal University, Wuhu241000, China
  • Received:2012-01-05 Revised:2012-05-15 Online:2012-07-10 Published:2012-07-10

对森林凋落叶分解过程中排放单萜烯气体的研究方法、种类、来源、排放量及影响因素进行综述。森林凋落叶分解过程中单萜烯气体排放的研究方法主要是在实验室控制条件下对凋落叶进行培养模拟分解并同步采集分析单萜烯气体样品,或者在野外采用分解袋法对凋落叶进行现场分解后带回实验室采集测定单萜烯气体样品;凋落叶排放的单萜烯目前检测到的有14种,其中α/β蒎烯、莰烯、柠檬烯在各类森林凋落叶排放的气体中检出频率较高, 主要来源于凋落叶本身成分的挥发作用和微生物活动的二次产物;森林凋落叶单萜烯气体排放速率为10-9~10-6g/(g(干凋落叶)·h),排放量在10-9~10-6 g/g(干凋落叶)范围内;森林凋落叶单萜烯排放受凋落叶种类、本身单萜烯的含量和分解时间阶段以及微生物活动等因素影响;建立不同森林生态系统凋落叶分解过程中单萜烯排放清单和探讨森林凋落叶分解过程中单萜烯的排放规律将成为森林凋落叶分解过程中排放单萜烯研究的一个发展趋势。

This paper reviews the recent progress in the study of the research method, variety, sources, emission rates, production as well as the control factors of monoterpenes emitted from leaves litter during their decomposition. The research approach mainly included two steps: The decomposition of leaves litter and the determination of monoterpenes. In general, leaves litter were decomposed in field with litter bags and then transferred to laboratory or directly incubated on laboratory to determine mononterpenes in gases released from them. In total, fourteen monoterpenes were determined in gases released from leaves litter in forest, among   which α/β-pinene, campene and linmonene were the most common. They were mainly derived from volatilization of inherited monnoterpenes of leaves litter or degradation of leaves litter substrates from microbial activity. The emission rates of monoterpenes ranged from 10-9~10-6 g/(g(dry leaves litter)·h), while the production of monoterpenes were within 10-9~10-6g/g(dry leaves litter). The release of monoterpenes was controlled by species, inherited monoterpenes of leaves litter, decay stage and microbial activity during the decomposition process. In future, studies will be concentrated on the inventory and profile of monoterpenes emitted from leaves litter in different forest ecosystem.

中图分类号: 

[1]Chen Jinling, Jin Guangze, Zhao Fengxia. Litter decomposition and nutrient dynamics at different succession stages of typical mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2 209-2 216.[陈金玲, 金光泽, 赵凤霞. 小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J]. 应用生态学报, 2010, 21(9): 2 209-2 216.]

[2]Jacob M, Weland N, Platner C, et al. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity[J]. Soil Biology & Biochemistry, 2009, 41(10): 2 122-2 130.

[3]Zavarzin G A. Bacteria and Composition of the Atmosphere[M]. Moscow: Nauka Publisher, 1984: 199.

[4]Han Shijie, Dong Yunshe, Cai Zucong, et al. Carbon Cycle and Its Biogeochemistry in Terrestrial Ecosystems of China[M]. Beijing: Science Press, 2008.[韩士杰, 董云社, 蔡祖聪, 等. 中国陆地生态系统碳循环的生物地球化学过程[M]. 北京:科学出版社, 2008.]

[5]Kainulainen P, Holopainen J K. Concentrations of secondary compounds in Scots pine needles at different stages of decomposition[J]. Soil Biology & Biochemistry, 2002, 34(1): 37-42.

[6]Hassiotis C N. Chemical compounds and essential oil release through decomposition process from Lavandula stoechas in Mediterranean region[J]. Biochemical Systematics and Ecology, 2010, 38(4): 493-501.

[7]Hassiotis C N, Lazari D M. Decomposition process in the Mediterranean region. Chemical compounds and essential oil degradation from Myrtus communis[J]. International Biodeterioration & Biodegradation, 2010, 64(5): 356-362.

[8]Jo G G, Kim J H. Changes in terpenes of three kinds of pine needles during litter decomposition[J]. Journal of Ecology and Field Biology, 2010, 33 (2): 175-186.

[9]Hakola H, Tarvainen V, Laurila T, et al. Seasonal variation of VOC concentrations above a boreal coniferous forest [J]. Atmospheric Environment, 2003, 37(12): 1 623-1 634.

[10]Hellén H, Hakola H, Pystynen K H, et al. C2-C10 hydrocarbon emissions from a boreal wetland and forest floor[J]. Biogeosciences Discussions, 2005, 2(6): 1 795-1 814.

[11]Isidorov V, Jdanova M. Volatile organic compounds from leaves litter[J]. Chemosphere, 2002, 48(9): 975-979.

[12]Hayward S, Muncey R J, James A E, et al. Monoterpene emissions from soil in a Sitka spruce forest[J]. Atmospheric Environment, 2001, 35(24): 4 081-4 087.

[13]Leff J W, Fierer N. Volatile Organic Compound (VOC) emissions from soil and litter samples[J]. Soil Biology & Biochemistry, 2008, 40(7): 1 629-1 636.

[14]Calogirou A, Larsen B R, Kotzias D. Gas-phase terpene oxidation products: A review[J]. Atmospheric Environment, 1999, 33(9): 1 423-1 439.

[15]Calvert J, Fall R, Goldan P, et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry[J]. Global Biogeochemical Cycles, 1992, 6(4): 389-430.

[16]Poisson N, Kanakidou M, Crutzen P J. Impact of nonmethane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-Dimensional modelling results[J]. Journal of Atmospheric Chemistry, 2000, 36(2): 157-230.

[17]Chameides W L, Lindsay R W, Richard J, et al. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study[J].Science,1988, 241(4 872):1 473-1 474.

[18]Trainer M, Williams E J, Parrish D D, et al. Models and observations of the impact of natural hydrocarbons and rural ozone [J]. Nature,1987,329(6 141): 705-707.

[19]Griffin R, Cocker D, Seinfeld J, et al. Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons [J]. Geophysical Research Letters, 1999, 26(17): 2 721-2 724.

[20]He Nianpeng, Han Xingguo, Pan Qingmin. Volatile organic compounds emitted from vegetation and their contribution to the terrestrial carbon cycle [J]. Acta Ecologica Sinica, 2005, 25(8): 2 041-2 048.[何念鹏,韩兴国,潘庆民.植物源VOCs及其对陆地生态系统碳循环的贡献[J]. 生态学报, 2005, 25(8): 2 041-2 048.]

[21]Guenther A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems [J]. Chemosphere, 2002,49(8): 837-844.

[22]Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research, 1995, 100 (D5): 8 873-8 892.

[23]Ramirez K S, Lauber C L, Fierer N. Microbial consumption and production of volatile organic compounds at the soil-litter interface [J]. Biogeochemistry,2010,99(1/3): 97-107.

[24]Smolander A, Ketola R A, Kotiaho T, et al. Volatile monoterpenes in soil atmosphere under birch and conifers: Effects on soil N transformations[J]. Soil Biology & Biochemistry, 2006, 38(12): 3 436-3 442. 

[25]Wilt F M, Miller G C, Everett R L. Measurement of monoterpene hydrocarbon leavels in vapor phase surrounding single-leaf pinyon (Pinus monophylla Torr. & Frem.: Pinaceae) understory litter[J]. Journal of Chemical Ecology, 1993, 19(7): 1 417-1 428.

[26]Gray C M, Monson R K, Fierer N. Emissions of volatile organic compounds during the decomposition of plant litter[J]. Journal of Geophysical Research,2010,115: G03015,doi:10.1029/2010JG001291.

[27]Isidorov V A, Smolewska M, Purzyska-Pugacewicz A, et al. Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition [J]. Biogeosciences, 2010, 7(9): 2 785-2 794.

[28]Guo Jianfen, Yang Yusheng, Chen Guangshui, et al. A review on litter decomposition in forest ecosystem [J]. Scientia Silvae Sinicae, 2006, 42(4): 93-100.[郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4): 93-100.]

[29]Zhang Xueping, Zhang Yi, Hou Weiling, et al. Decomposition of coniferous litter and the function of soil animal in the Xiao Hinggan Mountains [J]. Scientia Geographica Sinica, 2000, 20(6): 552-556.[张雪萍, 张毅, 侯威岭, 等.小兴安岭针叶凋落物的分解与土壤动物的作用[J]. 地理科学, 2000, 20(6): 552-556.]

[30]Holopainen J K, Heijari J, Oksanen E, et al. Leaf volatile emissions of Betula pendula during autumn coloration and leaf fall [J]. Journal of Chemical Ecology, 2010, 36(10): 1 068-1 075.

[31]Isidorov V A, Vinogorova V T, Rafalowski K. HS-SPME analysis of volatile organic compounds of coniferous needle litter [J]. Atmospheric Environment,2003, 37(33): 4 645-4 650.

[32]Isidorov V, Vinogorova V, Rafalowski K. Gas chromatographic determination of extractable compounds composition and emission rate of volatile terpenes from larch needle litter[J]. Journal of Atmospheric Chemistry,2005,50(3): 263-278.

[33]Cheng  A X, Lou  Y B, Mao Y B, et al. Plant terpenoids: Biosynthesis and ecological functions [J]. Journal of Integrative Plant Biology, 2007,49(2): 179-186. 

[34]Hoeffler J F, Hemmerlin A, Grosdemange-Billiard C, et al. Isoprenoid biosynthesis in higher plants and in Escherichia coli: On the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate[J]. Biochemical Journal, 2002, 366(Pt2): 573-583.

[35]Lichtenthaler H K, Schwender J, Disch A, et al. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway[J]. FEBS Letters, 1997, 400(3): 271-274.

[36]Simpson D, Winiwarter W, Børjesson G, et al. Inventorying emissions from nature in Europe[J]. Journal of Geophysical Research, 1999, 104(D7): 8 113-8 152.

[37]Li Qingjun, Klinger L F. The correlation between the volatile organic compound emissions and the vegetation succession of the ecosystems in different climatic zones of China[J]. Acta Botanica Sinica, 2001, 43(10): 1 065-1 071.[李庆军, Klinger L F.中国不同气候带植被挥发性有机化合物通量与生态系统演替的相关性[J]. 植物学报, 2001, 43(10): 1 065-1 071.]

[38]Zhao Jing, Bai Yuhua, Wang Zhihui, et al. Studies on the emission rates of plants VOCs in China[J]. China Environmental Science, 2004, 24 (6):654-657.[赵静, 白郁华, 王志辉, 等. 我国植物VOCs排放速率的研究[J].中国环境科学, 2004, 24 (6):654-657.]

[39]Dindorf T, Kuhn U, Ganzeveld L, et al. Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget[J]. Journal of Geophysical Research, 2006, 111: D16305,doi:10.1029/2005JD006751.

[40]Geron C, Owen S, Guenther A, et al. Volatile organic compounds from vegetation in southern Yunnan province, China: Emission rates and some potential regional implications [J]. Atmospheric Environment, 2006, 40(10): 1 759-1 773.

[41]Guenther A, Geron C, Pirce T, et al. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America[J]. Atmospheric Environment, 2000, 34(12/14): 2 205-2 230.

[42]Kuhn U, Rottenberger S, Biesenthal T, et al. Isoprene and monoterpene emissions of Amaznian tree species during the wet season: Direct and indirect investigations on controlling environmental functions[J]. Journal of Geophysical Research, 2000, 107(D20): 8 071.

[43]Solmon F, Sarrat C, Serca D, et al. Isoprene and monoterpenes biogenic emissions in France: Modeling and impact during a regional pollution episode[J]. Atmospheric Environment, 2004, 38(23): 3 853-3 865.

[44]Steinbrecher R, Smiatek G, Kàble R, et al.Intra-and inter-annual variability of VOC emissions from natural and seminatural vegetation in Europe and neighbouring countries[J]. Atmospheric Environment, 2009, 43(7): 1 380-1 391.

[45]Zimmerman P R, Chatfield R B, Fishmann J, et al. Estimates on the production of CO and H2  from the oxidation of hydrocarbon emissions from vegetation[J]. Geophysical Research Letters, 1978, 5(8): 679-682.

[46]Tian X J, Takeishi T. Relative roles of microorganisms and soil animals on needle litter decomposition in a subalpine coniferous forest[J]. Acta Phytoecologica Sinica, 2002, 26(3): 257-263.

[47]Mo Jiangming, Xue Luhua, Fang Yunting. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China [J]. Acta Ecologica Sinica, 2004, 24(7): 1 413-1 421.[莫江明, 薛碌花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7):1 413-1 421.]

[48]Peng Shaolin, Liu Qiang. The dynamics of forest litter and its responses to global warming[J]. Acta Ecologica Sinica, 2002, 22(9): 1 534-1 544.[彭少麟, 刘强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报, 2002, 22(9): 1 534-1 544.]

[49]Song Xinzhang, Jiang Hong, Zhang Huiling, et al. A review on the effects of global environment change on litter decomposition[J]. Acta Ecologica Sinica, 2008, 28(9): 4 414-4 423.[宋新章, 江洪, 张慧玲, 等. 全球环境变化对森林凋落物分解的影响[J]. 生态学报, 2008, 28(9): 4 414-4 423.]

[50]Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship[J]. Oikos, 1997, 79(3): 439-449.

[51]He X B, Lin Y H, Han G M, et al. The effect of temperature on decomposition of leaf litter from two tropical forests by a microcosm experiment[J]. European Journal of Soil Biology, 2010, 46(3/4): 200-207.

[52]Wang S J, Ruan H H, Han Y. Effects of microclimate, litter type, and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China[J]. Ecological Research, 2010, 25(6): 1 113-1 120.

[53]Warneke C, Karl T, Judmaier H, et al. Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry[J]. Global Biogeochemical Cycles, 1999, 13(1): 9-17.

[54]Derendorp L, Holzinger R, Wishkerman A, et al. Methyl chloride and C2-C5 hydrocarbon emissions from dry leaf litter and their dependence on temperature[J]. Atmospheric Environment, 2011, 45(18): 3 112-3 119.

[55]Lathière J, Hauglustaine D A, De Noblet-Ducoudré N, et al. Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model[J]. Journal of Geophysical Research, 2005, 32: L20818,doi:10.1029/2005GL024164.

[56]Levis S, Wiedinmyer C, Bonan G B, et al. Simulating biogenic volatile organic compound emissions in the community climate system model[J]. Journal of Geophysical Research, 2003, 108(D21): 1-9,doi:10.1029/2002JD003203.

[1] 程国栋, 赵传燕, 王瑶. 内陆河流域森林生态系统生态水文过程研究[J]. 地球科学进展, 2011, 26(11): 1125-1130.
[2] 邓琦,刘世忠,刘菊秀,孟泽,张德强. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 2007, 22(9): 976-986.
阅读次数
全文


摘要