地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 572 -576. doi: 10.11867/j.issn.1001-8166.2013.05.0572

海底科学观测 上一篇    下一篇

海洋浮游生物原位观测技术研究进展
陈纪新,黄邦钦 *,柳 欣   
  1. 近海海洋环境科学国家重点实验室,厦门大学环境与生态学院,福建 厦门 361005
  • 收稿日期:2013-04-07 修回日期:2013-04-12 出版日期:2013-05-10
  • 通讯作者: 黄邦钦(1964-),男,福建闽清人,教授,主要从事海洋浮游生物生态研究.E-mail:bqhuang@xmu.edu.cn
  • 基金资助:

    国家自然科学基金项目“典型海区基于功能群的浮游植物群落结构及其与颗粒有机碳输出的耦合”(编号:40925018)资助

The Progress of  In Situ Observation of Marine Plankton

Chen Jixin,Huang Bangqin,Liu Xin   

  1. State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
  • Received:2013-04-07 Revised:2013-04-12 Online:2013-05-10 Published:2013-05-10

原位观测技术在生物海洋学过程研究中的应用,从海洋生物多样性、海洋生物的生理生态响应和宏观的生态过程及其变动机制等方向的研究中得到迅速的发展,极大提高了对海洋生物学、生态学以及不同时空尺度生物地球化学过程的认识。包括原位光学检测技术、水下显微摄像与自动化鉴定技术、水下流式细胞技术、分子生物传感器等新型原位观测技术,拓宽了各类型观测平台的研究对象范围。重点阐述生物海洋学原位观测技术的发展现状、应用实例及其在立体海洋观测系统中的应用前景。

In situ observation techniques got rapid development in the process of biological oceanography research, from the physiological and ecological response of marine biodiversity, marine biological and ecological processes of macro and change mechanism and so on, which greatly improved the marine biology, ecology and biogeochemical processes of different temporal and spatial scales. Current techniques including  in situ  optical detection technology, underwater microscopic camera and automatic identification technology, underwater flow cytometry technology, and the biosensor technology based on molecular biology, broaden the study scope of each type of observation platform. This paper will focus on present technology development of  in situ observation of the marine plankton, application and their prospect in the threedimensional ocean observation system.

中图分类号: 

[1]Ruhl H A, Andre M, Beranzoli L, et al. Societal need for improved understanding of climate change, antropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas[J]. Progress in Oceanography, 2011, 91(1):1-33.

[2]Paul J, Scholin C, Van Den Engh G, et al. In situ  instrumentation[J]. Oceanography,2007, 20(2): 70-78.

[3]Rudnic D L, Perry M J. ALPS: Autonomous and Lagrangian Platforms and Sensors[R]. California: Workshop Report, 2003:64.

[4]Wang Pinxian. Watch the Earth from the bottom of the sea: The third observation platform for Earth system[J]. Journal of Nature, 2007, 29(3):125-130.[汪品先.从海底观察地球:地球系统的第三个观测平台[J].自然杂志,2007,29(3):125-130.]

[5]Demer D A, Soule M A, Hewitt R P. A multiple-frequency method for potentially improving the accuracy and precision of in situ target strength measurements[J].Journal of the Acoustical Society of America, 1999, 105(4):153-165.

[6]De Robertis A. Validation of acoustic echo counting studies of zooplankton behavior”[J]. ICES Journal of Marine Science, 2001,58:38-43.

[7]Jaffe J S, Ohman M D, De Robertis A. Sonar estimates of daytime activity levels of Euphausia pacifica in Saanich Inlet[J]. Canadian Journal of  Fisheries & Aquatic Sciences, 1999, 56(11):2 000-2 010.

[8]Lavery A C, Stanton T K, McGehee D E, et al. Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton[J].Journal of the Acoustical Society of America, 2002, 111(3):156-162.

[9]Wiebe P H, Stanton T K, Greene C H, et al. BIOMAPER-II: An integrated instrument platform for coupled biological and physical measurements in coastal and oceanic regimes[J].IEEE Journal of Oceanic Engineering, 2002, 27(3): 256-278.

[10]Holliday D V, Staton T K. Active acoustical assessment of plankton and micronekton[C]∥Medwin H, ed. Sounds in the Sea: From Ocean Acoustics to Acoustical Oceanography. Cambridge, 2005:355-373.

[11]Warren J D, Stanton T K, Benfield M C, et al. “In situ measurements of acoustic target strengths of gas-bearing siphonophores”[J]. ICES Journal of Marine Science,2011,58 (4): 422-432.

[12]Lorenzen C. A method for the continuous measurement of in vivo chlorophyll concentration[J]. Deep-Sea Research, 1966, 13:223-227.

[13]Kolber Z, Falkowski P G. Use of fluorescence to estimate phytoplankton photosynthesis in situ[J]. Limnology, 1993, 38:1 646-1 665.

[14]Volent Z, Johnsen G, Hovland E K, et al. Improved monitoring of phytoplankton bloom dynamics in a Norwegian fjord by integrating satellite data, pigment analysis, and Ferrybox data with a coastal observation network[J].Journal of Applied Remote Sensing,2012, 5(1):530-561.

[15]Boss E, Swifd D, Taylor L, et al. Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite[J]. Limnology and Oceanography,2008,53: 2 112-2 122.

[16]Ashjian C J, Davis C S, Gallager S M, et al. Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder[J]. Deep-Sea Research II, 2001, 48:1-3.

[17]Chisholm S W, Olson R J, Zettler E R, et al. A novel free-living prochlorophyte abundant in the oceanic euphotic zone[J].Nature,1988, 334:340-343.

[18]Dubelaar G B, Groenewegen A C, Stokdijk W, et al. Optical plankton analyser: A flow cytometer for plankton analysis, II: Specifications[J]. Cytometry,1989, 10:529-539.

[19]Olson R J, Shalapyonok A, Sosik H M. An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot[J]. Deep-Sea Research Ⅱ, 2003, 50:301-315.

[20]Greenfield D I, Marin III R, Jensen S, et al. Application of the Environmental Sample Processor (ESP) methodology for quantifying Pseudo-nitzschia australis using ribosomal RNA-targeted probes in sandwich and fluorescent in situ hybridization[J]. Limnology and Oceanography: Methods, 2006, 4:426-435.

[21]Scholin C A, Doucette G J, Cembella A D. Prospects for developing automated systems for in situ detection of harmful algae and their toxins[C]∥Babin M, Roesler C S, Cullen J J, eds.Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms. Paris, France:UNESCO Publishing, 2009.

[22]Strickler J R, Hwang J S. Matched spatial filters in long working distance microscopy of phase objects[C]∥Cheng P C, Hwang P P, Wu J L, eds. Focus on Modern Microscopy. World Scientific Publishing Inc., River Edge, New Jersey, 2000:215-232.

[23]Hobson P R, Watson J. The principles and practice of holographic recording of plankton[J].Journal of Optics A: Pure & Applied Optics, 2002,4(4):12-22.

[1] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[2] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11): 1111-1119.
[3] 胡毅,丁见祥,房旭东,王立明,刘伯然,李海东. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10): 1081-1091.
[4] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[5] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[6] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[7] 马乐天, 冯旭文, 李家彪. 海洋技术国际标准化在中国的起步及其实践意义[J]. 地球科学进展, 2017, 32(6): 660-667.
[8] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[9] 黄文星, 朱本铎, 刘丽强, 张金鹏. 海底地理实体命名对大陆架划界的影响——以日本为例[J]. 地球科学进展, 2016, 31(8): 811-819.
[10] 刘增宏, 吴晓芬, 许建平, 李宏, 卢少磊, 孙朝辉, 曹敏杰. 中国Argo海洋观测十五年[J]. 地球科学进展, 2016, 31(5): 445-460.
[11] 於维樱, 冯志纲, 王琳. 加拿大海洋学研究态势与最新进展分析[J]. 地球科学进展, 2016, 31(5): 542-552.
[12] 张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4): 422-427.
[13] 葛人峰, 侍茂崇. “船时共享航次计划”——国家自然科学基金委员会的重大创建[J]. 地球科学进展, 2016, 31(4): 428-435.
[14] 李艳雯, 邢喆, 李四海, 樊妙. 基于海底地名命名的海底地理实体分类进展[J]. 地球科学进展, 2014, 29(6): 756-764.
[15] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
阅读次数
全文


摘要