地球科学进展 ›› 2001, Vol. 16 ›› Issue (1): 65 -71. doi: 10.11867/j.issn.1001-8166.2001.01.0065

综述与评述 上一篇    下一篇

古海洋溶解氧研究方法综述
胡修棉,王成善   
  1. 成都理工学院沉积地质研究所,四川 成都  610059
  • 收稿日期:2000-02-28 修回日期:2000-07-05 出版日期:2001-02-01
  • 通讯作者: 胡修棉(1974-),男,江西新建人,博士研究生,从事沉积学和古海洋学研究. E-mail:wcs@dinosaur.cdit.edu.an
  • 基金资助:

    国家杰出青年科学基金“特提斯喜马拉雅中新生代古海洋与生烃环境”(编号 :49625203)资助.

SUMMARIZATION ON THE STUDYING METHODS OF THE PALAEO-OCEAN DISSOLVED OXYGEN

HU Xiumian, WANG Chengshan   

  1. Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu  610059,China
  • Received:2000-02-28 Revised:2000-07-05 Online:2001-02-01 Published:2001-02-01

介绍了国内外在古海洋溶解氧研究领域内的主要方法和动态,并分别对沉积构造法、沉积硫法、同位素法、微量元素法、稀土元素法、有机地球化学法及古生态法等研究方法进行了全面的分析和评论,指出,古海洋溶解氧含量重建对于理解大洋循环、古气候、生物绝灭、地质事件以及有机质演化具有十分重要的科学意义,它有赖于溶解氧含量的替代性指标的建立、富氧问题研究的进一步深入以及综合分析气圈、水圈、沉积圈、生物圈等各子系统内部及它们之间氧的物质输送和转化。 

Major studying methods and their new development related to palaeo ocean dissolved oxygen are summarized and discussed. Studying methods discussed include bioturbation, sulfur/carbon ratio, degree of pyritization (DOP), sulfur and carbon isotopes, trace element, rare earth element (mainly cerium anomaly), organic geochemistry and palaeo ecology (mainly dissolved oxygen index). It is proposed that reestablishment of the paleo ocean dissolved oxygen will greatly benefit to understand paleo ocean current, paleo climate, bio events, and organic evolution, which will largely be relied on establishment of substitute markers for dissolved oxygen, knowledge of oxic environment and oxygen cycle of Earth science system.

中图分类号: 

[1] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: cause and consequence[J]. Geol Mijnbown, 1976, 55: 179~184.
[2] Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272: 1 155~1 158.
[3] Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276: 235~238.
[4] Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA [ J ]. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 154: 275~292.
[5] Kaiho K, Kajiwara Y, Kaiho K,et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery[J]. Palaeoceanography, 1999, 14: 511~524.
[6] Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 83: 65~85.
[7] Harries P J, Kauffman E G, Hansen T A. Models for biotic survival following mass extinction[A]. In: Hart M B, ed. Biotic recovery from mass extinction events[C]. Geological Society Special Publication No.102,1996.41~60.
[8] Raulp D M, Sepkoski J J Jr. Mass extinctions in the marine fossil record[J]. Science, 1982, 215: 1 501~1 503.
[9] 王成善,胡修棉,万晓樵,等.西藏南部中白垩世Cenomanian-Turonian缺氧事件研究[J].自然杂志,1999,(4):244~245.
[10] Rhoads D C, Morse J W. Evolutionary and ecological significance of oxygen-deficient marine basins[J]. Lethaia, 1971,4: 413~428.
[11] Berner R A, Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks [J]. Geology, 1984, 12: 365~368.
[12] Calvert S E, Karlin R E. Relationships between sulfur, organic carbon and iron in the modern sediments of the Black Sea[J]. Geochim Cosmochim Acta, 1991, 55: 2 483 ~2 490.
[13] Raiswell R, Berner R A. Pyrite formation in euxinic and semi-euxinic sediments[J]. Amer J Sci, 1985, 285: 710~724.
[14] Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a palaeo environmental indicator of bottom-water oxygenation[J]. J Sediment Petrol, 1988, 58: 812~819.
[15] Dean W E, Arthur M A. Iron-sulfur-carbon relationships in organic-carbon-rich sequence I: Cretaceous Western Interior Seaway[J]. Amer J Sci, 1989, 289: 708~743.
[16] Kajiwara Y, Kaiho K. Oceanic anoxic at the Cretaceous/tertiary boundary supported by the sulfur isotope record[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 99: 151~162.
[17] Arthur M A, Dean W, Pratt L M. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary[J]. Nature, 1988, 335: 714~717.
[18] Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annu Rev Earthplanet Sci,1994, 22: 499~551.
[19] 同济大学海洋地质系.古海洋学概论[M].上海:同济大学出版社,1989.
[20] 汪云亮.深海沉积系元素成因的地球化学原理[J].岩相古地理,1990,(2):46~56.
[21] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: implication for the geological record[J]. Chemical Geology, 1993, 113: 67~88.
[22] 程先豪.海洋沉积物中碘的早期成岩再迁移[J].海洋学报, 1993,15(4):56~63.
[23] YAN Jia-xin, ZHANG Haiqing. Paleo-oxygenation facies: A Aew research field in sedimentology[J]. Geological science and Technology Information, 1996,15(3):7~13.[颜佳新,张海清.古氧相——一个新的沉积学研究领域[J].地质科技情报,1996,15(3):7~13.]
[24] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsyvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99: 65~82.
[25] Minami E. Gehalte seltener erden in europ? ischen und japanischen Tonschiefern[J]. Nachr Ges Wiss Goett(Math -Phys, Kl Ⅳ), 1935, 1: 155~170.
[26] Piper D Z. Rare earth elements in the sedimentary cycle: a summary[J]. Chemical Geology, 1974, 285~304.
[27] Wang Y L, Liu Y G, Schmitt R A. Rare earth elements geo-chemistry of south Atlantic deep sea sediments: Ce anomaly change at -54 Ma.[J]. Geochim Cosmochim Acta, 1986, 50:1 337~1 355.
[28] Wu Mingqing, Ouyang Ziyuan, Song Yunhua, et al. Paleoocean redox change in western marin of Tarim Basin-evidenced from REE anomaly of shelly fossils[J]. Science in China(Series B),1992,(2):206~215.[吴明清,欧阳自远,宋云华,等.塔里木盆地西缘古海洋氧化还原条件的变化——介壳化石的稀土元素铈证据[J].中国科学(B辑),1992,2:206~215.]
[29] YIN Haisheng, PENG Jun, XIA Wenjie. The late Precam-brian paleo-ocean evolution of the southeast Yangtze continentals margin: REE record[J]. Acta Sedimentologica Sinica, 1995,13(4):131~137.[伊海生,彭军,夏文杰.扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J].沉积学报,1995,13(4):131~137.]
[30] Shimizu H, Masuda K. Cerium in chert as an indication of marine environment of its formation[J]. Nature, 1977, 266: 346~348.
[31] Liu Y G, Miah M R U, Schmitt R A. Cerium: a chemical tracer for paleo-oceanic redox conditions[J]. Geochim Cosmochim Acta, 1988, 52: 1 361~1 371.
[32] Fu Jiamo, Sheng Guoying, Xu Jiayou, et al. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments[J]. Organic Geochemistry,1990, 16: 769~779.
[33] Farrimond P, Eglinton G, Brassell S C, et al. The Cenomanian-Turonian anoxic event in Europe: an organic geochemical study[J]. Mar Petrol Geol, 1990, 7: 75~89.
[34] Grantham P J, Posthuma J, DeGroot K. Variation and significance of the C27and C28triterpane content of a North Sea core and various North Sea crude oils[A]. In: Douglas A G, Maxwell J R, eds. Advances in Organic Geochemistry 1979[C]. New York: Pergamon Press, 1980.29~38.
[35] Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17: 47~61.
[36] ten Haven HL, de Leeuw J W, Rullkotter J, et al. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator[J]. Nature, 1987, 330: 641~643.
[37] Peters K E, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. Prentice Hall Inc,1995.[彼得斯K E,莫尔多万J M.生物标记化合物指南——古代沉积物和石油中的分子化石的解释[M].姜乃煌,等译.北京:石油工业出版社,1995.]
[38]  HU Xiu-mian, WANG Cheng-shan, LI Xiang-hui, et al. Cenomanian-Turonian anoxc event in southern Tiet: A study of organic geochemistry[J].Geochimica, 2000, 29(5):417~424.[胡修棉,王成善,李祥辉等.西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究[J].地球化学.2000,29(5):417~424.]
[39] Jenkyns H C. Cretaceous anoxic events: from continents to oceans[J]. J Geol Soc London, 1980, 137: 171~188.
[40] Sjoerdsma P G, van der Zwaan G J. Simulating the effect of changing organic flux and oxygen content on the distribution of benthic foraminifera[J]. Mar Micropaleontol, 1992, 19: 163~180.
[41] Berhard J M. Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene[J]. J Foraminifer Res, 1986, 16: 207~205.
[42] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22: 719~722.
[43] Kaiho K. Planktonic and benthic foraminiferal extinction events during the last 100 Ma[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 111: 45~71.
[44] Kaiho K, Hasegawa T. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 111: 29~43.
[45] Kaiho K. A low extinction rate of intermediate-water benthic foraminifera at the Cretaceous/Tertiary boundary[J]. Mar Micropaleontol, 1992, 18: 229~259.
[46] Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1991, 83: 65~85.
[47] Wang Chengshan, Hu Xiumian, Li Xianghui. Dissolved Oxygen in Paleo-ocean: Anoxic events and hight-oxic problems[J]. Marine Geology &Quaternary Geology,1999,19(3):39~47.[王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧事件[J].海洋地质与第四纪地质,1999,19(3):39~47.]

[1] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[2] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[3] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[4] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.
[5] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[6] 宋孝玉,李亚娟,蒋俊,马玉霞. 非饱和土壤水分运动参数空间变异性研究进展与展望[J]. 地球科学进展, 2008, 23(6): 613-618.
[7] 庄艳丽,赵文智. 干旱区凝结水研究进展[J]. 地球科学进展, 2008, 23(1): 31-38.
[8] 许昆明,胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展, 2006, 21(8): 863-869.
[9] 张兰兰,陈木宏,向荣,张丽丽. 放射虫现代生态学的研究进展及其应用前景——利用放射虫化石揭示古海洋、古环境的基础研究[J]. 地球科学进展, 2006, 21(5): 474-481.
[10] 李秋艳;赵文智. 干旱区土壤种子库的研究进展[J]. 地球科学进展, 2005, 20(3): 350-358.
[11] 王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.
[12] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 2003, 18(5): 681-690.
[13] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3): 402-410.
[14] 肖笃宁,李秀珍. 西部开发,规划先行——关于开展景观生态建设规划的建议[J]. 地球科学进展, 2000, 15(4): 376-380.
[15] 倪志耀,王仁民,袁建平.

元古宙蛇绿岩研究中有关问题的讨论[J]. 地球科学进展, 1999, 14(5): 468-474.

阅读次数
全文


摘要