[1] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: cause and consequence[J]. Geol Mijnbown, 1976, 55: 179~184. [2] Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272: 1 155~1 158. [3] Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276: 235~238. [4] Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA [ J ]. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 154: 275~292. [5] Kaiho K, Kajiwara Y, Kaiho K,et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery[J]. Palaeoceanography, 1999, 14: 511~524. [6] Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 83: 65~85. [7] Harries P J, Kauffman E G, Hansen T A. Models for biotic survival following mass extinction[A]. In: Hart M B, ed. Biotic recovery from mass extinction events[C]. Geological Society Special Publication No.102,1996.41~60. [8] Raulp D M, Sepkoski J J Jr. Mass extinctions in the marine fossil record[J]. Science, 1982, 215: 1 501~1 503. [9] 王成善,胡修棉,万晓樵,等.西藏南部中白垩世Cenomanian-Turonian缺氧事件研究[J].自然杂志,1999,(4):244~245. [10] Rhoads D C, Morse J W. Evolutionary and ecological significance of oxygen-deficient marine basins[J]. Lethaia, 1971,4: 413~428. [11] Berner R A, Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks [J]. Geology, 1984, 12: 365~368. [12] Calvert S E, Karlin R E. Relationships between sulfur, organic carbon and iron in the modern sediments of the Black Sea[J]. Geochim Cosmochim Acta, 1991, 55: 2 483 ~2 490. [13] Raiswell R, Berner R A. Pyrite formation in euxinic and semi-euxinic sediments[J]. Amer J Sci, 1985, 285: 710~724. [14] Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a palaeo environmental indicator of bottom-water oxygenation[J]. J Sediment Petrol, 1988, 58: 812~819. [15] Dean W E, Arthur M A. Iron-sulfur-carbon relationships in organic-carbon-rich sequence I: Cretaceous Western Interior Seaway[J]. Amer J Sci, 1989, 289: 708~743. [16] Kajiwara Y, Kaiho K. Oceanic anoxic at the Cretaceous/tertiary boundary supported by the sulfur isotope record[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 99: 151~162. [17] Arthur M A, Dean W, Pratt L M. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary[J]. Nature, 1988, 335: 714~717. [18] Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annu Rev Earthplanet Sci,1994, 22: 499~551. [19] 同济大学海洋地质系.古海洋学概论[M].上海:同济大学出版社,1989. [20] 汪云亮.深海沉积系元素成因的地球化学原理[J].岩相古地理,1990,(2):46~56. [21] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: implication for the geological record[J]. Chemical Geology, 1993, 113: 67~88. [22] 程先豪.海洋沉积物中碘的早期成岩再迁移[J].海洋学报, 1993,15(4):56~63. [23] YAN Jia-xin, ZHANG Haiqing. Paleo-oxygenation facies: A Aew research field in sedimentology[J]. Geological science and Technology Information, 1996,15(3):7~13.[颜佳新,张海清.古氧相——一个新的沉积学研究领域[J].地质科技情报,1996,15(3):7~13.] [24] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsyvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99: 65~82. [25] Minami E. Gehalte seltener erden in europ? ischen und japanischen Tonschiefern[J]. Nachr Ges Wiss Goett(Math -Phys, Kl Ⅳ), 1935, 1: 155~170. [26] Piper D Z. Rare earth elements in the sedimentary cycle: a summary[J]. Chemical Geology, 1974, 285~304. [27] Wang Y L, Liu Y G, Schmitt R A. Rare earth elements geo-chemistry of south Atlantic deep sea sediments: Ce anomaly change at -54 Ma.[J]. Geochim Cosmochim Acta, 1986, 50:1 337~1 355. [28] Wu Mingqing, Ouyang Ziyuan, Song Yunhua, et al. Paleoocean redox change in western marin of Tarim Basin-evidenced from REE anomaly of shelly fossils[J]. Science in China(Series B),1992,(2):206~215.[吴明清,欧阳自远,宋云华,等.塔里木盆地西缘古海洋氧化还原条件的变化——介壳化石的稀土元素铈证据[J].中国科学(B辑),1992,2:206~215.] [29] YIN Haisheng, PENG Jun, XIA Wenjie. The late Precam-brian paleo-ocean evolution of the southeast Yangtze continentals margin: REE record[J]. Acta Sedimentologica Sinica, 1995,13(4):131~137.[伊海生,彭军,夏文杰.扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J].沉积学报,1995,13(4):131~137.] [30] Shimizu H, Masuda K. Cerium in chert as an indication of marine environment of its formation[J]. Nature, 1977, 266: 346~348. [31] Liu Y G, Miah M R U, Schmitt R A. Cerium: a chemical tracer for paleo-oceanic redox conditions[J]. Geochim Cosmochim Acta, 1988, 52: 1 361~1 371. [32] Fu Jiamo, Sheng Guoying, Xu Jiayou, et al. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments[J]. Organic Geochemistry,1990, 16: 769~779. [33] Farrimond P, Eglinton G, Brassell S C, et al. The Cenomanian-Turonian anoxic event in Europe: an organic geochemical study[J]. Mar Petrol Geol, 1990, 7: 75~89. [34] Grantham P J, Posthuma J, DeGroot K. Variation and significance of the C27and C28triterpane content of a North Sea core and various North Sea crude oils[A]. In: Douglas A G, Maxwell J R, eds. Advances in Organic Geochemistry 1979[C]. New York: Pergamon Press, 1980.29~38. [35] Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17: 47~61. [36] ten Haven HL, de Leeuw J W, Rullkotter J, et al. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator[J]. Nature, 1987, 330: 641~643. [37] Peters K E, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. Prentice Hall Inc,1995.[彼得斯K E,莫尔多万J M.生物标记化合物指南——古代沉积物和石油中的分子化石的解释[M].姜乃煌,等译.北京:石油工业出版社,1995.] [38] HU Xiu-mian, WANG Cheng-shan, LI Xiang-hui, et al. Cenomanian-Turonian anoxc event in southern Tiet: A study of organic geochemistry[J].Geochimica, 2000, 29(5):417~424.[胡修棉,王成善,李祥辉等.西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究[J].地球化学.2000,29(5):417~424.] [39] Jenkyns H C. Cretaceous anoxic events: from continents to oceans[J]. J Geol Soc London, 1980, 137: 171~188. [40] Sjoerdsma P G, van der Zwaan G J. Simulating the effect of changing organic flux and oxygen content on the distribution of benthic foraminifera[J]. Mar Micropaleontol, 1992, 19: 163~180. [41] Berhard J M. Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene[J]. J Foraminifer Res, 1986, 16: 207~205. [42] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22: 719~722. [43] Kaiho K. Planktonic and benthic foraminiferal extinction events during the last 100 Ma[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 111: 45~71. [44] Kaiho K, Hasegawa T. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 111: 29~43. [45] Kaiho K. A low extinction rate of intermediate-water benthic foraminifera at the Cretaceous/Tertiary boundary[J]. Mar Micropaleontol, 1992, 18: 229~259. [46] Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1991, 83: 65~85. [47] Wang Chengshan, Hu Xiumian, Li Xianghui. Dissolved Oxygen in Paleo-ocean: Anoxic events and hight-oxic problems[J]. Marine Geology &Quaternary Geology,1999,19(3):39~47.[王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧事件[J].海洋地质与第四纪地质,1999,19(3):39~47.] |