地球科学进展 ›› 2001, Vol. 16 ›› Issue (1): 72 -78. doi: 10.11867/j.issn.1001-8166.2001.01.0072

综述与评述 上一篇    下一篇

热带大气季节内振荡研究进展——观测、动力机制和数值模拟
李薇,郭裕福,张学洪   
  1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京  100029
  • 收稿日期:2000-04-21 修回日期:2000-07-10 出版日期:2001-02-01
  • 通讯作者: 李薇(1971-),女,山东人,博士后,主要从事海气相互作用和短期气候研究. E-mail:liw@lasgsgis.iap.ac.cn
  • 基金资助:

    中科院“百人计划”新型学科“海气耦合气候系统模式的有效化研究”;优秀国家重点实验室研究项目!(编号 :4982 -3002 )资助.

PROCEEDING OF OBSERVATION,DYNAMICS AND NUMERICAL SIMULATION STUDIES ON MADDEN-JULIAN OSCILLATION

LI Wei, GUO Yufu, ZHANG Xuehong   

  1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing100029,China
  • Received:2000-04-21 Revised:2000-07-10 Online:2001-02-01 Published:2001-02-01

热带大气季节内振荡 (MJO)是热带大气活动的强信号。对MJO动力机制的探讨,经历了由考虑完全的大气内部过程 (波动 —CISK理论) ,到考虑海洋影响的大气过程 (WISHE理论) ,到最新的考虑大气—海洋耦合作用 (WCMC模式 )的逐步发展、完善的阶段。现阶段大气模式能够模拟 MJO的一些基本特征但存在许多缺陷。在大气模式中引入上层海洋的反馈作用 ,可以有效改善模拟 MJO的时空结构。MJO的强度变化、季节特征、传播速度等的精确描述只能借助于海气耦合模式。

The Madden Julian Oscillation (MJO) represents the most significant form of atmospheric variability in the tropics on intraseasonal timescales. Theoretical understandings of the MJO pass through the courses of complete internal process to atmosphere (Wave CISK), the atmospheric process influenced by ocean(WISHE theory) and the most recent coupled atmosphere ocean process(WCMC model). The current atmospheric models are able to capture some of the salient features of MJO while the overall results are not satisfied. The introduction of oceanic feedback to atmospheric model by using of a simplified upper ocean model, however, can improve the MJO simulation in respects to both the strength and the propagation. An accurate representing to MJO can only be available by the using of coupled model.

中图分类号: 

[1] Mdden R A, Julian P R. Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28: 702~708.
[2] Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40~50 day period[J]. J Atmos Sci, 1972, 29: 1 109~1 123.
[3] Slingo J M, Rowell D P, Sperber K R,et al. On the predictability of the interannual behavior of the Madden-Julian oscillation and its relationship with El Niño[J]. Q J R Meteorol Soc, 1999,125: 583~609.
[4] Yasunari T. Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon[J]. J Meteor Soc Japan, 1979, 57: 227~242.
[5] Lorenc A C. The evolution of planetary-scale 200-mb divergent flow during the FGGE year[J]. Quart J Roy Meteor Soc, 1984,110: 427~441.
[6] Lau K M, Phillips T J. Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal timescales[J]. J Atmos Sci, 1986, 43: 1 164~1 181.
[7] Ferranti L, Palmer T N, Molteni F,et al. Tropical-extratropical interaction associated with the 30~60 day oscillation and its impact on medium and extended range prediction[J]. J Atmos Sci, 1990, 47: 2 177~2 199.
[8] Lau K M, Chan P H. Interannual and intraseasonal variations of tropical convection: a possible link between the 40-day mode and ENSO? [J]. J Atmos Sci, 1988, 45: 506~521.
[9] Sperber K R, Slingo J M, Inness P M, et al. On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and the GLA and UKMO AMIP simulations[J]. Climate Dyn, 1997, 13: 769~795.
[10] Madden R A, Julian P R. Observations of the 40-50-day tropical oscillation: a review[J]. Mon Wea Rev, 1994, 112: 814~837.
[11] Li Chongyin, ed. Introduction to Climatic Dynamics [M].Beijing: China Meteorology Press,1995. 104~105. (in Chinese)
[12] Salby M L, Hendon H H. Intraseasonal behavior of clouds, temperature and motion in the tropics [J]. J Atmos Sci, 1994, 51: 2 207~2 224.
[13]  Kousky V E, Kayano M T. Principal modes of outgoing long-wave radiation and 250 mb circulation for the South American sector[J]. J Climate, 1994, 7: 1 131~1 138.
[14] Slingo J M, Sperber K R, Boyle J S, et al. Intraseasonal oscillation in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject[J]. Climate Dyn, 1996, 12: 325~357.
[15] Lau K M, Sui C. Mechanism for short-term sea surface temperature regulation: Observations during TOGA COARE[J]. J Climate, 1997, 10: 465~472.
[16] Webster P. The role of hydrological processes in ocean-atmosphere interactions[J]. Rev Geophys, 1994,32: 427~476.
[17] Zhang C. Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean[J]. J Atmos Sci, 1996,53: 739~758.
[18] Zhang C, McPhaden M J. Intraseasonal surface cooling in the equatorial western Pacific[J]. J Climate, 1999, in press.
[19] Hendon HH, Glick J. Intraseasonal air-sea interaction in the tropical Indian Ocean and Pacific Oceans [J]. J Climate, 1997, 10: 647~661.
[20] Jones C, Waliser D E, Gautier C. The influence of the Mad-den-Julian oscillation on ocean surface heat fluxes and sea surface temperature[J]. J Climate, 1998, 11: 1 057~1 072.
[21] Lau K M, Peng L, Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere I, Basic theory[J]. J Atmos Sci, 1987, 44: 950~972.
[22] Flatau M, Flatau P J, Phoebus P,et al. The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations[J]. J Atmos Sci, 1997, 54:2 372~2 386.
[23] Jones C, Weare B C. The role of low-level moisture convergence and ocean latent fluxes in the Madden-Julian oscillation: On observational analysis using ISCCP data and ECMWF analysis[J]. J Climate, 1996, 9: 3 086~3 104.
[24] Cronin M F, McPhaden M J. The upper ocean heat balance in the western equatorial Pacific warm pool during September-December 1992[J]. J Geophys Res, 1997, 102: 8 533~8 554.
[25] Shinoda T, Hendon HH, Glick J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans[J]. J Climate, 1998, 11: 1 685~1 702.
[26] Lukas R, Hayes S P, Wyrtki K. Equatorial sea level response during the 1982-83 El Niño[J]. J Geophys Res, 1984, 89: 10 425~10 430.
[27] Enfield D B. The intraseasonal oscillation in eastern pacific sea levels—how is forced[J]. J Phys Oceanogr, 1987, 17: 1860~1 876.
[28] Nakazawa T. MJO—A key component in the atmosphere for triggering ENSO[A]. In: Proceedings of a Conference on the TOGA COARE [C]. WCRP-107 (WMO/TD-No. 940),1999.165~166.
[29] Slingo J M, Delecluse P. Goal 4: Scale interactions and the tropical atmosphere-ocean system[A]. In: Proceedings of a Conference on the TOGA COARE[C]. WCRP-107 (WMO/TD-No. 940), 1999.59~69.
[30] Waliser D E, Lau K M, Kim J H. The influence of coupled sea surface temperatures on the Madden-Julian oscillation: A model perturbation experiment[J]. J Atmos Sci, 1999, 56:333~358.
[31] Lindzen R S. Wave-CISK in the tropics[J]. J Atmos Sci, 1974, 31: 156~179.
[32] Lindzen R S. Wave-CISK and tropical spectra[J]. J Atmos Sci, 1974, 31: 1 447~1 449.
[33]  Chang C P. Viscous internal gravity waves and low-frequency oscillation in the tropics[J]. J Atmos Sci, 1977, 34: 901~910.
[34] Salby M L, Garcia R, Hendon H H. Planetary-scale circulations in the presence of climatological and wave-induced heating[J]. J Atmos Sci, 1994, 51:2 344~2 367.
[35] Lau K M, Peng L, Sui C,et al. Dynamics of super cloud clusters, westerly wind bursts, 30~60 day oscillation and ENSO: An unified view[J]. J Meteor Soc Japan, 1989, 67: 205~219.
[36] Li Chongyin. A further inquiry on the mechanism and 30-60 day oscillation in the tropical atmosphere[J]. Adv in Atmos Sci, 1993, 10: 41~53.
[37] Emanuel KA. An air-sea interaction model of intraseasonal oscillation in the tropics[J]. J Atmos Sci, 1987, 44: 2 324~2 340.
[38] Yu J, Neelin J D. Models of tropical variability under convective adjustment and Madden-Julian oscillation, Part II: Numerical results[J]. J Atmos Sci, 1994, 51: 1 895 ~1 914.
[39] Neelin J D, Held I M, Cook K H. Evaporation-wind feed-back and low-frequency variability in the tropical atmosphere[J]. J Atmos Sci, 1987, 44: 2 341~2 348.
[40] Wang B. Dynamics of the tropical low-frequency waves: An analysis of the Kelvin wave[J]. J Atmos Sci, 1988, 45:2 051~2 065.
[41] Wang B, Xie X. Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian oscillation[J]. J Climate, 1998, 11: 2 116~2 135.

[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[7] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[8] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[9] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[12] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[13] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[14] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[15] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
阅读次数
全文


摘要