地球科学进展 ›› 2023, Vol. 38 ›› Issue (8): 780 -789. doi: 10.11867/j.issn.1001-8166.2023.023

综述与评述 上一篇    下一篇

流域地貌与河网结构影响机制及其演化模型的研究进展
孟宪萌 1( ), 黄檬 1, 黄杰 1, 赵琦 1, 刘登峰 2   
  1. 1.中国地质大学(武汉) 环境学院,湖北 武汉 430074
    2.西安理工大学 水利水电学院,陕西 西安 710048
  • 收稿日期:2022-12-30 修回日期:2023-03-03 出版日期:2023-08-10
  • 基金资助:
    国家自然科学基金项目“考虑低渗透介质特性的越流含水层中水流与溶质运移实验与模拟研究”(51979252)

Recent Advances in Influencing Mechanisms and Evolution Models of Watershed Geomorphology and River Network Structure

Xianmeng MENG 1( ), Meng HUANG 1, Jie HUANG 1, Qi ZHAO 1, Dengfeng LIU 2   

  1. 1.School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
    2.School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China
  • Received:2022-12-30 Revised:2023-03-03 Online:2023-08-10 Published:2023-08-28
  • About author:MENG Xianmeng (1982-), male, Luoyang City, He’nan Province, Associate professor. Research area includes hydrology and water resources. E-mail: mengxianmeng2000@sina.com
  • Supported by:
    the National Natural Science Foundation of China “Experimental study and simulation on water flow and solute transport in a leaky aquifer considering the characteristics of low permeability media”(51979252)

流域地貌和河网结构是地球内外营力长期综合作用的结果,是一个地区构造、气候、植被和生物等因素相互作用的最终表现。由于各地区构造、岩性以及气候等条件的不同导致流域地貌和河网结构存在显著差异,进而对流域水文响应机制与特点产生影响。首先,对定量描述流域地貌和河网形态的特征参数进行了梳理与总结,并详述了构造、岩性以及气候等因素对流域地貌和河网结构影响的研究历程;其次,指出如何再现流域地貌演化过程以及定量研究流域地貌形态的主控因素是当前面临的主要问题;第三,对地貌演化模型的诞生、发展及应用进行了回顾与评述;最后,指出将传统地貌学研究方法与地貌演化模型相结合开展流域地貌及河网结构影响机制的研究是未来的主要发展方向。

Watershed geomorphology and river network structure controlled by tectonic frameworks, regional climate, vegetation, and biological factors are the combined results of the long-term internal and external forces of the Earth. Owing to the different tectonic, lithological, and climatic conditions in various regions, different watersheds have different geomorphic and river network structural characteristics that influence hydrological response mechanisms. In this study, the characteristic parameters for a quantitative description of the watershed geomorphic system and river network morphology are presented, and the impacts of tectonics, lithology, climate, and other factors on watershed geomorphology and river network structures are reviewed. Based on this, it is emphasized that reproducing the evolution of watershed geomorphology and quantifying its main controlling factors is the main problem. Subsequently, the birth, development, and application of the geomorphic evolution model are expounded. Finally, it is suggested that the main future development direction should involve combining traditional geomorphological research methods and geomorphic evolution models to study the influencing mechanisms of watershed geomorphology and river network structure.

中图分类号: 

表1 流域特征参数
Table 1 Watershed characteristic parameters
1 KIRKBY M J. Hillslope process-response models based on the continuity equation[J]. Institute of British Geographers Special Publication, 1971, 3(1): 5-30.
2 MONTGOMERY D R, DIETRICH W E. Channel initiation and the problem of landscape scale[J]. Science, 1992, 255(5 046): 826-830.
3 CANG X Z, LUO W. Noachian climatic conditions on Mars inferred from valley network junction angles[J]. Earth and Planetary Science Letters, 2019, 526. DOI:10.1016/j.epsl.2019.115768 .
4 GALOFRE A G, JELLINEK A M. The geometry and complexity of spatial patterns of terrestrial channel networks: distinctive fingerprints of erosional regimes[J]. Journal of Geophysical Research-Earth Surface, 2017, 122(4): 1 037-1 059.
5 LI Jijun, ZHOU Shangzhe, ZHAO Zhijun, et al. On the main curtain of Qinghai-Tibet movement[J]. Science China: Earth Sciences, 2015, 45(10): 1 597-1 608.
李吉均, 周尚哲, 赵志军, 等. 论青藏运动主幕[J]. 中国科学: 地球科学, 2015, 45(10): 1 597-1 608.
6 LI Yalin, WANG Chengshan, WANG Mou, et al. Morphological features of river valleys in the source region of the Yangtze River, northern Tibet, and their response to neotectonic movement[J]. Geology in China, 2006, 33(2): 374-382.
李亚林, 王成善, 王谋, 等. 藏北长江源地区河流地貌特征及其对新构造运动的响应[J]. 中国地质, 2006, 33(2): 374-382.
7 JIN Desheng, QIAO Yunfeng, YANG Lihu, et al. A research of influence of neo-tectonic movement on alluvial rivers: review and prospect[J]. Geographical Research, 2015, 34(3): 437-454.
金德生, 乔云峰, 杨丽虎, 等. 新构造运动对冲积河流影响研究的回顾与展望[J]. 地理研究, 2015, 34(3): 437-454.
8 HE Xiangli, ZHANG Xujiao, HE Zexin. Neotectonics research based on tectonic geomorphologic parameters: progress and discussion[J]. Geoscience, 2014, 28(1): 119-130.
何祥丽, 张绪教, 何泽新. 基于构造地貌参数的新构造运动研究进展与思考[J]. 现代地质, 2014, 28(1): 119-130.
9 TUCKER G E, SLINGERLAND R. Drainage basin responses to climate change[J]. Water Resources Research, 1997, 33(8): 2 031-2 047.
10 SINGH A, REINHARDT L, FOUFOULA-GEORGIOU E. Landscape reorganization under changing climatic forcing: results from an experimental landscape[J]. Water Resources Research, 2015, 51(6): 4 320-4 337.
11 RANJBAR S, HOOSHYAR M, SINGH A, et al. Quantifying climatic controls on river network branching structure across scales[J]. Water Resources Research, 2018, 54(10): 7 347-7 360.
12 ROYDEN L, PERRON J T. Solutions of the stream power equation and application to the evolution of river longitudinal profiles[J]. Journal of Geophysical Research-Earth Surface, 2013, 118(2): 497-518.
13 COOK T L, YELLEN B C, WOODRUFF J D, et al. Contrasting human versus climatic impacts on erosion[J]. Geophysical Research Letters, 2015, 42(16): 6 680-6 687.
14 LI Zhengchen, WANG Xianyan, YU Yang, et al. Influence of lithology and erosion datum on river geomorphology evolution in tectonic active area—a case study of Laohushan and Hasishan areas in the northeast margin of Qinghai-Tibet Plateau[J]. Science China: Earth Science, 2021, 51(6): 994-1 008.
李正晨, 王先彦, 于洋, 等. 岩性和侵蚀基准面对构造活跃区河流地貌演化的影响: 以青藏高原东北缘老虎山和哈思山地区为例[J]. 中国科学: 地球科学, 2021, 51(6): 994-1 008.
15 BAUMANN S, ROBL J, PRASICEK G, et al. The effects of lithology and base level on topography in the northern Alpine foreland[J]. Geomorphology, 2018, 313: 13-26.
16 BURSZTYN N, PEDERSON J L, TRESSLER C, et al. Rock strength along a fluvial transect of the Colorado Plateau—quantifying a fundamental control on geomorphology[J]. Earth and Planetary Science Letters, 2015, 429: 90-100.
17 FORTE A M, YANITES B J, WHIPPLE K X. Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength[J]. Earth Surface Processes and Landforms, 2016, 41(12): 1 736-1 757.
18 ZERNITZ E R. Drainage patterns and their significance[J]. The Journal of Geology, 1932, 40(6): 498-521.
19 HORTON R E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology[J]. Geological Society of America Bulltin, 1945, 50(3): 807-813.
20 STRAHLAR A N. Quantitative analysis of watershed geomorphology[J]. Transactions, American Geophysical Union, 1957, 38(6): 913-920.
21 SCHUMM S A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey[J]. Geological Society of America Bulletin, 1956, 67(5): 597-646.
22 SHREVE R L. Statistical law of stream numbers[J]. The Journal of Geology, 1966, 74(1): 17-37.
23 SMART J S. The analysis of drainage network composition[J]. Earth Surface Processes, 1978, 3(2): 129-170.
24 RINALDO A, RODRIGUEZ-ITURBE I, RIGON R, et al. Self-organized fractal river networks[J]. Physical Review Letters, 1993, 70(6): 822-825.
25 CIEPLAK M, GIACOMETTI A, MARITAN A, et al. Models of fractal river basins[J]. Journal of Statistical Physics, 1998, 91(1): 1-15.
26 la BARBERA P, ROSSO R. On the fractal dimension of stream networks[J]. Water Resources Research, 1989, 25(4): 735-741.
27 HE Longhua, ZHAO Hong. The fractal dimension of river networks and its interpretation[J]. Scientia Geographica Sinica, 1996, 16(2): 124-128.
何隆华, 赵宏. 水系的分形维数及其含义[J]. 地理科学, 1996, 16(2): 124-128.
28 REN Juan, YANG Wunian, XU Juan. Calculation of fractal dimension of water system in the upper reaches of Minjiang River based on GIS and DEM[J]. Geospatial Information, 2015, 13(1): 77-79.
任娟, 杨武年, 许娟. 基于GIS与DEM的岷江上游流域水系分维值计算[J]. 地理空间信息, 2015, 13(1): 77-79.
29 QIAO Pengteng, TANG Yaming, ZHANG Changliang, et al. The fractal feature and geological significance of water system in the Loess Hilly area in the western part of Lyuliang Mountain area[J]. Journal of Gansu Sciences, 2021, 33(3): 103-108.
乔朋腾, 唐亚明, 张常亮, 等. 吕梁山区西部黄土丘陵区水系分形特征及地质意义[J]. 甘肃科学学报, 2021, 33(3): 103-108.
30 REFICE A, GIACHETTA E, CAPOLONGO D. SIGNUM: a Matlab, TIN-based landscape evolution model[J]. Computers & Geosciences, 2012, 45: 293-303.
31 COULTHARD T J. Landscape evolution models: a software review[J]. Hydrological Processes, 2001, 15(1): 165-173.
32 BOGGS G S, EVANS K G, DEVONPORT C C, et al. A suite of GIS tools for assessing landform evolution[C]// 6th international conference on geocomputation, 2001: 24-26.
33 MENG Xianmeng, ZHANG Pengju, ZHOU Hong, et al. Recent advances in fractal characteristics of river network structure[J]. Advances in Earth Science, 2019, 34(1): 48-56.
孟宪萌, 张鹏举, 周宏, 等. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
34 CHEN Yanguang. Simplicity, complexity, and mathematical modeling of geographical distributions[J]. Progress in Geography, 2015, 34(3): 321-329.
陈彦光. 简单、复杂与地理分布模型的选择[J]. 地理科学进展, 2015, 34(3): 321-329.
35 TEJEDOR A, SINGH A, ZALIAPIN I, et al. Scale-dependent erosional patterns in steady-state and transient-state landscapes[J]. Science Advances, 2017, 3(9). DOI:10.1126/sciadv.1701683 .
36 ABED-ELMDOUST A, MIRI M A, SINGH A. Reorganization of river networks under changing spatiotemporal precipitation patterns: an optimal channel network approach[J]. Water Resources Research, 2016, 52(11): 8 845-8 860.
37 SHELEF E, HILLEY G E. Symmetry, randomness, and process in the structure of branched channel networks[J]. Geophysical Research Letters, 2014, 41(10): 3 485-3 493.
38 AI Nanshan. Comentropy in erosional drainage-system[J]. Journal of Soil and Water Conservation, 1987, 1(2): 1-8.
艾南山.侵蚀流域系统的信息熵[J]. 水土保持学报, 1987, 1(2): 1-8.
39 HOWARD A D, KERBY G. Channel changes in badlands[J]. Geological Society of America Bulletin, 1983, 94(6): 739-752.
40 HACK J T. Stream-profile analysis and stream-gradient index[J]. Journal of Research of the US Geological Survey, 1973, 1(4): 421-429.
41 STRAHLER A H. Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society of America Bulletin, 1952, 63(23): 1 117-1 142.
42 CANNON P J. Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin[J]. Oklahoma Geology Notes, 1976, 36(1): 3-16.
43 HARE P W, GARDNER T W. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica[J]. Tectonic Geomorphology, 1985, 4: 75-104.
44 MANDELBROT B B. The fractal geometry of nature[J]. American Journal of Physics, 1983, 51(3): 286-287.
45 MANDELBROT B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3 775): 636-638.
46 CARLSTON C W. Drainage density and streamflow: physiographic and hydraulic studies of rivers[R]. Geological survey professional paper, United States Government Printing Office, Washington,1963.
47 HOWARD A D. Theoretical model of optimal drainage networks[J]. Water Resources Research, 1990, 26(9): 2 107-2 117.
48 MENG X M, ZHANG P J, LI J, et al. The linkage between box-counting and geomorphic fractal dimensions in the fractal structure of river networks: the junction angle[J]. Hydrology Research, 2020, 51(6): 1 397-1 408.
49 GOREN L, WILLETT S D, HERMAN F, et al. Coupled numerical-analytical approach to landscape evolution modeling[J]. Earth Surface Processes and Landforms, 2014, 39(4): 522-545.
50 BRAUN J, SAMBRIDGE M. Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization[J]. Basin Research, 1997, 9(1): 27-52.
51 HOWARD A D. A detachment-limited model of drainage basin evolution[J]. Water Resources Research, 1994, 30(7): 2 261-2 285.
52 HOOSHYAR M, SINGH A, WANG D B, et al. Climatic controls on landscape dissection and network structure in the absence of vegetation[J]. Geophysical Research Letters, 2019, 46(6): 3 216-3 224.
53 LI Huimin, ZHANG Jianjun, HUANG Ming, et al. Characteristic parameters of typical watershed based on DEM in the Loess Plateau, northern China[J]. Journal of Beijing Forestry University, 2012, 34(2): 90-95.
李慧敏, 张建军, 黄明, 等. 基于DEM的黄土高原典型流域特征参数分析[J]. 北京林业大学学报, 2012, 34(2): 90-95.
54 MORGAN R P C. The influence of scale in climatic geomorphology: a case study of drainage density in west Malaysia[J]. Geografiska Annaler: Series A, Physical Geography, 1973, 55(2): 107-115.
55 YANG Jingchun, LI Youli. Principles of geomorphology[M]. Beijing: Peking University Press, 2005.
杨景春, 李有利. 地貌学原理[M]. 北京: 北京大学出版社, 2005.
56 TAN Yungui. A preliminary discussion on the development and problems in the research of regional geomorphology in China[J]. Geographical Research, 1990, 9(4): 104-109.
谭云贵. 我国区域地貌学研究进展及问题初探[J]. 地理研究, 1990, 9(4): 104-109.
57 ANAND A K, PRADHAN S P. Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin[J]. Journal of Mountain Science, 2019, 16(8): 1 943-1 961.
58 SABER R, ISIK V, CAGLAYAN A. Tectonic geomorphology of the Aras drainage basin (NW Iran): implications for the recent activity of the Aras fault zone[J]. Geological Journal, 2019, 55(7): 5 022-5 048.
59 WANG Y Z, ZHENG D W, ZHANG H P, et al. The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan Plateau: inference from bedrock channel profiles[J]. Tectonophysics, 2019, 759: 15-29.
60 DUAN Y Y, PEI X J, ZHANG X C. The hypsometric integral based on digital elevation model for the area west of Lüliang Mountains in Loess Plateau, Shanxi, China[J]. Frontiers in Earth Science, 2022, 10. DOI:10.3389/feart.2022.827836 .
61 ZHANG Wei, TANG Qianyu, LIU Liang, et al. Geomorphologic analysis of the Yuqu River drainage basin in Tenasserim Chain based on hypsometric integral value[J]. Scientia Geographica Sinica, 2020, 40(8): 1 394-1 402.
张威, 唐倩玉, 刘亮, 等. 基于面积—高程积分的他念他翁山玉曲流域地貌学分析[J]. 地理科学, 2020, 40(8): 1 394-1 402.
62 SCOTTI V N, MOLIN P, FACCENNA C, et al. The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): quantitative geomorphological analysis and geochronology[J]. Geomorphology, 2014, 206: 37-57.
63 SEYBOLD H, BERGHUIJS W R, PRANCEVIC J P, et al. Global dominance of tectonics over climate in Shaping River longitudinal profiles[J]. Nature Geoscience, 2021, 14(7): 503-507.
64 FAN Yunlong, PAN Baotian, HU Zhenbo, et al. An analysis of tectonic geomorphologic characteristics of the Beipanjiang Basin in the Yunnan-Guizhou Plateau[J]. Advances in Earth Science, 2018, 33(7): 751-761.
樊云龙, 潘保田, 胡振波, 等. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
65 el HAMDOUNI R, IRIGARAY C, FERNÁNDEZ T, et al. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain)[J]. Geomorphology, 2008, 96(1/2): 150-173.
66 EHSANI J, ARIAN M. Quantitative analysis of relative tectonic activity in the Jarahi-Hendijan Basin area, Zagros, Iran[J]. Geosciences Journal, 2015, 19(4): 751-765.
67 WU Yunpeng, YANG Rong. Lithologic control on landscape evolution in the drainage basin of Changshan River[J]. Quaternary Sciences, 2021, 41(6): 1 574-1 583.
吴运鹏, 杨蓉. 常山港流域岩性对地貌演化的控制[J]. 第四纪研究, 2021, 41(6): 1 574-1 583.
68 LIU Xin, GUO Fusheng, CHEN Liuqin, et al. Lithologic control on the development of Danxia landscapes in red basins[J]. Mountain Research, 2019, 37(2): 214-221.
刘鑫, 郭福生, 陈留勤, 等. 红层盆地岩性差异对丹霞地貌发育的控制[J]. 山地学报, 2019, 37(2): 214-221.
69 DIBIASE R A, ROSSI M W, NEELY A B. Fracture density and grain size controls on the relief structure of bedrock landscapes[J]. Geology, 2018, 46(5): 399-402.
70 CHADWICK O A, ROERING J J, HEIMSATH A M, et al. Shaping post-orogenic landscapes by climate and chemical weathering[J]. Geology, 2013, 41(11): 1 171-1 174.
71 BOOKHAGEN B, STRECKER M R. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes[J]. Earth and Planetary Science Letters, 2012, 327: 97-110.
72 PERRON J T, KIRCHNER J W, DIETRICH W E. Formation of evenly spaced ridges and valleys[J]. Nature, 2009, 460(7 254): 502-505.
73 GABET E J, PRATT-SITAULA B A, BURBANK D W. Climatic controls on hillslope angle and relief in the Himalayas[J]. Geology, 2004, 32(7): 629-632.
74 STARK C P, BARBOUR J R, HAYAKAWA Y S, et al. The climatic signature of incised river meanders[J]. Science, 2010, 327(5 972): 1 497-1 501.
75 FAVIS-MORTLOCK D. A self-organizing dynamic systems approach to the simulation of rill initiation and development on hillslopes[J]. Computers & Geosciences, 1998, 24(4): 353-372.
76 WILLGOOSE G, BRAS R L, RODRIGUEZ-ITURBE I. A coupled channel network growth and hillslope evolution model: 1. theory[J]. Water Resources Research, 1991, 27(7): 1 671-1 684.
77 CODILEAN A T, BISHOP P, HOEY T B. Surface process models and the links between tectonics and topography[J]. Progress in Physical Geography-Earth and Environment, 2006, 30(3): 307-333.
78 TUCKER G E, HANCOCK G R. Modelling landscape evolution[J]. Earth Surface Processes and Landforms, 2010, 35(1): 28-50.
79 WILLETT S D, SLINGERLAND R, Uplift HOVIUS N., shortening, and steady state topography in active mountain belts[J]. American Journal of Science, 2001, 301(4/5): 455-485.
80 RINALDO A, DIETRICH W E, RIGON R, et al. Geomorphological signatures of varying climate[J]. Nature, 1995, 374(6 523): 632-635.
81 ANDERSON R S. Evolution of the Santa Cruz Mountains, California, through tectonic growth and geomorphic decay[J]. Journal of Geophysical Research-Solid Earth, 1994, 99(B10): 20 161-20 179.
82 FORTE A M, WHIPPLE K X. Criteria and tools for determining drainage divide stability[J]. Earth and Planetary Science Letters, 2018, 493: 102-117.
83 YANG R, SUHAIL H A, GOURBET L, et al. Early Pleistocene drainage pattern changes in eastern Tibet: constraints from provenance analysis, thermochronometry, and numerical modeling[J]. Earth and Planetary Science Letters, 2020, 531. DOI:10.1016/j.epsl.2019.115955 .
84 FERRIER K L, HUPPERT K L, PERRON J T. Climatic control of bedrock river incision[J]. Nature, 2013, 496(7 444): 206-209.
85 TUCKER G E. Drainage basin sensitivity to tectonic and climatic forcing: implications of a stochastic model for the role of entrainment and erosion thresholds[J]. Earth Surface Processes and Landforms, 2004, 29(2): 185-205.
86 LAGUE D, HOVIUS N, Discharge DAVY P., variability discharge, and the bedrock channel profile [J]. Journal of Geophysical Research-Earth Surface, 2005, 110(F4). DOI:10.1029/2004JF000259 .
87 MOLNAR P, ANDERSON R S, KIER G, et al. Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision[J]. Journal of Geophysical Research-Earth Surface, 2006, 111(F2). DOI:10.1029/2005JF000310 .
88 DIBIASE R A, WHIPPLE K X. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate[J]. Journal of Geophysical Research-Earth Surface, 2011, 116(F4). DOI:10.1029/2011JF002095 .
89 DIBIASE R A, WHIPPLE K X, HEIMSATH A M, et al. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 134-144.
90 KWANG J S, PARKER G. Extreme memory of initial conditions in numerical landscape evolution models[J]. Geophysical Research Letters, 2019, 46(12): 6 563-6 573.
91 WHIPPLE K X, TUCKER G E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B8): 17 661-17 674.
92 WHIPPLE K X. Fluvial landscape response time: how plausible is steady-state denudation?[J]. American Journal of Science, 2001, 301(4/5): 313-325.
93 PAZZAGLIA F J. Landscape evolution models[J]. Developments in Quaternary Sciences, 2003, 1(3): 247-274.
94 BEESON H W, MCCOY S W, KEEN-ZEBERT A. Geometric disequilibrium of river basins produces long-lived transient landscapes[J]. Earth and Planetary Science Letters, 2017, 475: 34-43.
95 NIEMANN J D, BRAS R L, VENEZIANO D. A physically based interpolation method for fluvially eroded topography[J]. Water Resources Research, 2003, 39(1). DOI:10.1029/2001WR001050 .
96 COLEMAN M L, NIEMANN J D, JACOBS E P. Reconstruction of hillslope and valley paleotopography by application of a geomorphic model[J]. Computers & Geosciences, 2009, 35(9): 1 776-1 784.
97 JUNG K, NIEMANN J D, HUANG X J. Under what conditions do parallel river networks occur?[J]. Geomorphology, 2011, 132(3/4): 260-271.
[1] 王国华,赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26(8): 848-858.
[2] 陈冬霞,庞雄奇,姜振学. 透镜体油气成藏机理研究现状与发展趋势[J]. 地球科学进展, 2002, 17(6): 871-876.
[3] 高鹏;李后强;艾南山. 流域地貌的分形研究[J]. 地球科学进展, 1993, 8(5): 63-70.
阅读次数
全文


摘要