1 |
IPCC. Climate change 2021: the physical science basis[M]. Cambridge and New York: Cambridge University Press, 2021.
|
2 |
HORTON D E, JOHNSON N C, SINGH D, et al. Contribution of changes in atmospheric circulation patterns to extreme temperature trends[J]. Nature, 2015, 522(7 557): 465-469.
|
3 |
ZHANG Y, YANG P L, GAO Y, et al. Health and economic impacts of air pollution induced by weather extremes over the continental U.S[J]. Environment International, 2020, 143. DOI:10.1029/2020JD033210 .
|
4 |
LIANG X Z. Extreme rainfall slows the global economy[J]. Nature, 2022, 601(7 892): 193-194.
|
5 |
REICHSTEIN M, RIEDE F, FRANK D. More floods, fires and cyclones—plan for domino effects on sustainability goals[J]. Nature, 2021, 592(7 854): 347-349.
|
6 |
World Meterological Organization (WMO). Atlas of mortality and economic losses from weather, climate and water extremes (1970-2019)[R]. WMO-No. 1267, 2021.
|
7 |
AghaKOUCHAK A, CHENG L Y, MAZDIYASNI O, et al. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought[J]. Geophysical Research Letters, 2014, 41(24): 8 847-8 852.
|
8 |
ZSCHEISCHLER J, WESTRA S, van den HURK B J J M, et al. Future climate risk from compound events[J]. Nature Climate Change, 2018, 8(6): 469-477.
|
9 |
ZSCHEISCHLER J, MARTIUS O, WESTRA S, et al. A typology of compound weather and climate events[J]. Nature Reviews Earth & Environment, 2020, 1(7): 333-347.
|
10 |
RAYMOND C, SUAREZ-GUTIERREZ L, KORNHUBER K, et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble[J]. Environmental Research Letters, 2022, 17(3). DOI:10.1088/1748-9326/ac5712 .
|
11 |
HAO Z C. Compound events and associated impacts in China[J]. iScience, 2022, 25(8). DOI: 10.1016/j.isci.2022.104689 .
|
12 |
SINGH J, ASHFAQ M, SKINNER C B, et al. Enhanced risk of concurrent regional droughts with increased ENSO variability and warming[J]. Nature Climate Change, 2022, 12(2): 163-170.
|
13 |
FIELD C B. Managing the risks of extreme events and disasters to advance climate change adaption[M]. New York: Cambridge University Press, 2012.
|
14 |
YU Rong, ZHAI Panmao. Advances in scientific understanding on compound extreme events[J]. Transactions of Atmospheric Sciences, 2021, 44(5):645-649.
|
|
余荣, 翟盘茂. 关于复合型极端事件的新认识和启示[J]. 大气科学学报, 2021, 44(5):645-649.
|
15 |
ZSCHEISCHLER J, SILLMANN J, ALEXANDER L. Introduction to the special issue: compound weather and climate events[J]. Weather and Climate Extremes, 2022, 35. DOI: 10.1016/j.wace.2021.100381 .
|
16 |
WEBER T, BOWYER P, RECHID D, et al. Analysis of compound climate extremes and exposed population in Africa under two different emission scenarios[J]. Earth’s Future, 2020, 8(9). DOI: 10.1029/2019EF001473 .
|
17 |
AIHAITI A, JIANG Z H, ZHU L H, et al. Risk changes of compound temperature and precipitation extremes in China under 1.5℃ and 2℃ global warming[J]. Atmospheric Research, 2021, 264. DOI: 10.1016/j.atmosres.2021.105838 .
|
18 |
FENG S F, WU X Y, HAO Z C, et al. A database for characteristics and variations of global compound dry and hot events[J]. Weather and Climate Extremes, 2020, 30. DOI: 10.1016/j.wace.2020.100299 .
|
19 |
WU Xinying, HAO Zengchao, ZHANG Xuan, et al. Distribution and trend of compound hot and dry events during summer in China[J]. Water Resources and Hydropower Engineering, 2021(12): 90-98.
|
|
武新英, 郝增超, 张璇, 等. 中国夏季复合高温干旱分布及变异趋势[J]. 水利水电技术, 2021(12): 90-98.
|
20 |
LI D L, CHEN Y, MESSMER M, et al. Compound wind and precipitation extremes across the indo-Pacific: climatology, variability, and drivers[J]. Geophysical Research Letters, 2022, 49(14). DOI: 10.1029/2022GL098594 .
|
21 |
MARTIUS O, PFAHL S, CHEVALIER C. A global quantification of compound precipitation and wind extremes[J]. Geophysical Research Letters, 2016, 43(14): 7 709-7 717.
|
22 |
ZHANG Y Q, SUN X B, CHEN C C. Characteristics of concurrent precipitation and wind speed extremes in China[J]. Weather and Climate Extremes, 2021, 32. DOI: 10.1016/j.wace.2021.100322 .
|
23 |
YADDANAPUDI R, MISHRA A, HUANG W, et al. Compound wind and precipitation extremes in global coastal regions under climate change[J]. Geophysical Research Letters, 2022, 49(15). DOI: 10.1029/2022GL098974 .
|
24 |
WU Y, MIAO C Y, SUN Y, et al. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation[J]. GeoHealth, 2021, 5(5). DOI: 10.1029/2021GH000390 .
|
25 |
WU X Y, HAO Z C, HAO F H, et al. Variations of compound precipitation and temperature extremes in China during 1961-2014[J]. Science of the Total Environment, 2019, 663: 731-737.
|
26 |
ZHOU P, LIU Z Y. Likelihood of concurrent climate extremes and variations over China[J]. Environmental Research Letters, 2018, 13(9). DOI: 10.1088/1748-9326/aade9e .
|
27 |
ZHAO H D, ZHANG L N, KIRKHAM M B, et al. U.S. winter wheat yield loss attributed to compound hot-dry-windy events[J]. Nature Communications, 2022, 13(1): 1-9.
|
28 |
TAVAKOL A, RAHMANI V, HARRINGTON J. Probability of compound climate extremes in a changing climate: a copula-based study of hot, dry, and windy events in the central United States[J]. Environmental Research Letters, 2020, 15(10). DOI: 10.1088/1748-9326/abb1ef .
|
29 |
WANG J, CHEN Y, LIAO W L, et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities[J]. Nature Climate Change, 2021, 11(12): 1 084-1 089.
|
30 |
MA F, YUAN X. More persistent summer compound hot extremes caused by global urbanization[J]. Geophysical Research Letters, 2021, 48(15). DOI: 10.1029/2021GL093721 .
|
31 |
WANG J, CHEN Y, TETT S F B, et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes[J]. Nature Communications, 2020, 11(1): 1-11.
|
32 |
WU S J, WANG P, TONG X L, et al. Urbanization-driven increases in summertime compound heat extremes across China[J]. Science of the Total Environment, 2021, 799. DOI: 10.1016/j.scitotenv.2021.149166 .
|
33 |
YOU J W, WANG S. Higher probability of occurrence of hotter and shorter heat waves followed by heavy rainfall[J]. Geophysical Research Letters, 2021, 48(17). DOI: 10.1029/2021GL094831 .
|
34 |
NING G C, LUO M, ZHANG W, et al. Rising risks of compound extreme heat-precipitation events in China[J]. International Journal of Climatology, 2022, 42(11): 5 785-5 795.
|
35 |
WU S J, CHAN T O, ZHANG W, et al. Increasing compound heat and precipitation extremes elevated by urbanization in South China[J]. Frontiers in Earth Science, 2021, 9. DOI: 10.3389/feart.2021.636777 .
|
36 |
LIU Mujia, YANG Xiuqin, YAO Fei, et al. Spatial-temporal changes in compound extreme flood-heatwave events over China during 1961-2020[J]. China Rural Water and Hydropower, 2023(4): 167-176.
|
|
刘慕嘉, 杨秀芹, 姚飛, 等. 1961—2020年中国洪水—热浪复合极端事件时空变化特征[J]. 中国农村水利水电, 2023(4): 167-176.
|
37 |
CHEN Y, LIAO Z, SHI Y, et al. Detectable increases in sequential flood-heatwave events across China during 1961-2018[J]. Geophysical Research Letters, 2021, 48(6). DOI: 10.1029/2021GL092549 .
|
38 |
LIAO Z, CHEN Y, LI W, et al. Growing threats from unprecedented sequential flood-hot extremes across China[J]. Geophysical Research Letters, 2021, 48(18). DOI: 10.1029/2021GL094505 .
|
39 |
AGHAKOUCHAK A, CHIANG F, HUNING L S, et al. Climate extremes and compound hazards in a warming world[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 519-548.
|
40 |
POSCHLOD B, ZSCHEISCHLER J, SILLMANN J, et al. Climate change effects on hydrometeorological compound events over southern Norway[J]. Weather and Climate Extremes, 2020, 28. DOI:10.1029/2021GL094505 .
|
41 |
ZSCHEISCHLER J, SENEVIRATNE S I. Dependence of drivers affects risks associated with compound events[J]. Science Advances, 2017, 3(6). DOI: 10.1126/sciadv.1700263 .
|
42 |
WANG R, LÜ G N, NING L, et al. Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons[J]. Atmospheric Research, 2021, 260. DOI: 10.1016/j.atmosres.2021.105692 .
|
43 |
HAO Z C, HAO F H, SINGH V P, et al. Quantifying the relationship between compound dry and hot events and El Niño-Southern Oscillation (ENSO) at the global scale[J]. Journal of Hydrology, 2018, 567: 332-338.
|
44 |
KANG Y, GUO E L, WANG Y F, et al. Characterisation of compound dry and hot events in Inner Mongolia and their relationship with large-scale circulation patterns[J]. Journal of Hydrology, 2022, 612. DOI: 10.1016/j.jhydrol.2022.128296 .
|
45 |
WEN Z, YU R, ZHAI P M, et al. The evolution process of a prolonged compound drought and hot extreme event in Southwest China during the 2019 pre-monsoon season[J]. Atmospheric Research, 2023, 283. DOI: 10.1016/j.atmosres.2022.106551 .
|
46 |
HAO Z C, HAO F H, XIA Y L, et al. Compound droughts and hot extremes: characteristics, drivers, changes, and impacts[J]. Earth-Science Reviews, 2022, 235. DOI: 10.1016/j.earscirev.2022.104241 .
|
47 |
CATTO J L, DOWDY A. Understanding compound hazards from a weather system perspective[J]. Weather and Climate Extremes, 2021, 32. DOI: 10.1016/J.WACE.2021.100313 .
|
48 |
National Bureau of Statistics of China. Statistical communiqué of the People’s Republic of China on the 2022 national economic and social development[EB/OL]. 2023.[2023-02-28]. .
|
49 |
XIAO Z X, WANG Z Q, PAN W J, et al. Sensitivity of extreme temperature events to urbanization in the Pearl River Delta region[J]. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55(3): 373-386.
|
50 |
LIN L J, GAO T, LUO M, et al. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China[J]. Science of the Total Environment, 2020, 744. DOI: 10.1016/j.scitotenv.2020.140264 .
|
51 |
VOGEL M M, HAUSER M, SENEVIRATNE S I. Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble[J]. Environmental Research Letters, 2020, 15(9). DOI: 10.1088/1748-9326/ab90a7 .
|
52 |
MENG Y, HAO Z C, FENG S F, et al. Increase in compound dry-warm and wet-warm events under global warming in CMIP6 models[J]. Global and Planetary Change, 2022, 210. DOI: 10.1016/j.gloplacha.2022.103773 .
|
53 |
LIU W B, SUN F B, FENG Y, et al. Increasing population exposure to global warm-season concurrent dry and hot extremes under different warming levels[J]. Environmental Research Letters, 2021, 16(9). DOI: 10.1088/1748-9326/ac188f .
|
54 |
HE Y, HU X K, XU W, et al. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands[J]. Science of the Total Environment, 2022, 824. DOI: 10.1016/j.scitotenv.2022.153885 .
|
55 |
DESER C, LEHNER F, RODGERS K B, et al. Insights from Earth system model initial-condition large ensembles and future prospects[J]. Nature Climate Change, 2020, 10(4): 277-286.
|
56 |
WOOD R R, LEHNER F, PENDERGRASS A G, et al. Changes in precipitation variability across time scales in multiple global climate model large ensembles[J]. Environmental Research Letters, 2021, 16(8). DOI: 10.1088/1748-9326/ac10dd .
|
57 |
TOUMA D, STEVENSON S, SWAIN D L, et al. Climate change increases risk of extreme rainfall following wildfire in the western United States[J]. Science Advances, 2022, 8(13). DOI: 10.1126/sciadv.abm0320 .
|
58 |
MAHER N, MILINSKI S, SUAREZ-GUTIERREZ L, et al. The max Planck institute grand ensemble: enabling the exploration of climate system variability[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(7): 2 050-2 069.
|
59 |
FENG Y, WANG H, SUN F B, et al. Dependence of compound hot and dry extremes on individual ones across China during 1961-2014[J]. Atmospheric Research, 2023, 283. DOI:10.1016/j.atmosres.2022.106553 .
|
60 |
YU H Q, LU N, FU B J, et al. Hotspots, co-occurrence, and shifts of compound and cascading extreme climate events in Eurasian drylands[J]. Environment International, 2022, 169. DOI: 10.1016/j.envint.2022.107509 .
|
61 |
SARHADI A, AUSÍN M C, WIPER M P, et al. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions[J]. Science Advances, 2018, 4(11). DOI: 10.1126/sciadv.aau3487 .
|
62 |
ZSCHEISCHLER J, LEHNER F. Attributing compound events to anthropogenic climate change[J]. Bulletin of the American Meteorological Society, 2022, 103(3): E936-E953.
|
63 |
MATTHEWS T, WILBY R L, MURPHY C. An emerging tropical cyclone-deadly heat compound hazard[J]. Nature Climate Change, 2019, 9(8): 602-606.
|
64 |
KREIBICH H, van LOON A F, SCHRÖTER K, et al. The challenge of unprecedented floods and droughts in risk management[J]. Nature, 2022, 608(7 921): 80-86.
|
65 |
van der WIEL K, LENDERINK G, de VRIES H. Physical storylines of future European drought events like 2018 based on ensemble climate modelling[J]. Weather and Climate Extremes, 2021, 33. DOI: 10.1016/j.wace.2021.100350 .
|
66 |
LU Ying, GUO Liangjie, HOU Yunyue, et al. Comprehensive multi-hazard risk assessment method applicated in urban land-use planning[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(3):538-546.
|
|
卢颖, 郭良杰, 侯云玥, 等. 多灾种耦合综合风险评估方法在城市用地规划中的应用[J]. 浙江大学学报(工学版), 2015, 49(3):538-546.
|
67 |
TILLOY A, MALAMUD B D, WINTER H, et al. A review of quantification methodologies for multi-hazard interrelationships[J]. Earth-Science Reviews, 2019, 196. DOI: 10.1016/j.earscirev.2019.102881 .
|