地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 277 -284. doi: 10.11867/j.issn.1001-8166.2003.02.0277

研究论文 上一篇    下一篇

全球变暖、长江水灾与可能损失
姜彤 1,施雅风 1,2   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2003-02-09 修回日期:2003-02-20 出版日期:2003-04-10
  • 通讯作者: 姜彤 E-mail:jiang.t@niglas.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“长江中下游洪水孕灾环境变化、致灾机理与减灾对策”(编号:KZCX3-SW-331); 中国科学院南京地理与湖泊研究所知识创新工程所长专项基金“2050年前长江灾害性洪水趋势与致灾环境演化预研究”(编号:SS220007)资助.

GLOBAL CLIMATIC WARMING, THE YANGTZE FLOODS AND POTENTIAL LOSS

Jiang Tong 1,Shi Yafeng 1,2   

  1. 1.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;2.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000,China
  • Received:2003-02-09 Revised:2003-02-20 Online:2003-04-10 Published:2003-04-01

全球大幅度变暖,使得水循环加快,蒸发和降水增强。长江中下游地区在20世纪90年代已呈现出明显增温趋势,达到 0.2~0.8℃,最大增温区域在长江三角洲地区。降水在长江流域中下游地区增加明显,增加值为5%~20%。20世纪90年代是继50年代后,长江流域性洪水灾害高发的10年。长江流域是我国经济发展的核心地区,对长江流域725个县洪水灾害脆弱性分析结果表明,近 1/3的地区是洪水灾害高脆弱性地区。按照1998年社会经济状况,若遭遇1954年型、1991年型、1996年型和1998年型的洪水时,洪水灾害造成的可能损失分别为589、55、70和196亿美元。气候模拟预测表明,21世纪长江流域地区的增温可能达到 2.7℃,导致降水可能增加 10%,径流可能增加37%。在全球变暖的趋势,以及区域社会经济可持续发展造成不透水面积增大和单位经济价值升高的共同影响下,长江流域发生相当于1870年、1954年和1998的千年、百年和20年一遇洪水的可能性增大,甚至可能发生超过上述频率的特大洪水。

A rapid, high-amplitude global climatic warming would speed global water cycle and strengthen rainfall and evaporation. Mean temperature in 1990s increases 0.2~0.8℃ comparing on the temperature between 1951 and 1980. High temperature increases in the Yangtze Delta. Annual precipitation increases more that 5%~20% in 1990s than the value between 1951 and 1980. At the Yangtze river catchment 5 heavy floods were happened in the 1990s. As the Yangtze river catchment plays an important role in the economic development in China, potential loss to floods increase very quickly. Based on the value of production in 1998, potential losses will be 58 900, 5 500, 7 000 and 19 600 million US dollar if the 1954, 1991, 1996 and 1998 floods would be happened. Based on regional climate model developed from National Climate Centre, increase of greenhouse gases like CO2 will lead to increase of about 2.7℃ of annual mean temperature in the Yangtze river catchment,  it is projected to estimate the increase of 10% precipitation and 37% runoff. It is conclusion that the possibility of heavy floods like the types of 1998, 1954 and 1870 would happen in future as the impact of climatic warming and increasing urbanized area due to fast economic development.

中图分类号: 

[1] Sha Wanying, Shao Xuemei, Huang Mei. Climate Warming in China since 1980s and its impact on natural regional boundary[J]. Science in China (D), 2002, 32(4):317-326.[沙万英, 邵学梅, 黄枚. 20世纪80年代以来中国的气候变暖及其对自然区域界线的影响[J]. 中国科学:D, 2002, 32(4): 317-326.]

[2] Arnell N W. Climate change and global water resources[J]. Global Environmental Change, 1999, 9: 531-549.

[3] Gao X J, Zhao Z C, Ding Y H, et al. Climate change due to greenhouse effects in China as simulated by a regional climate model[J]. Advance in Atmosphere Sciences, 2001, 6:1 224-1 230.

[4] IPCC. Climate Change 2001: The Scientific Basis. Summary for Policymakers and Technical Summary of Working Group I Report[M]. Cambridge , UK: Cambridge University Press, 2001.

[5] Wang Shaowu. Advances in Modern Climatology [M]. Beijing: Meteorological Publishing, 2001.1-305. [王绍武. 现代气候学研究进展[M]. 北京:气象出版社, 2001.1-305. ]

[6] Dong Anxiang, Feng Song, Zhang CunJie. North-South Migration of Rain Belt over the Eastern China in the Past 500 Year[J]. Acta Meteorologica Sinica, 2002, 60 (3): 378-381. [董安祥, 冯松, 张存杰. 500年中国东部雨带的南北摆动[J]. 气象学报, 2002, 60(3): 378-381. ]

[7] Miller J R, Russe G L. The impact of global warming on river runoff [J]. Journal of Geophysical Research, 1992, 97 (D3):1-10.

[8] Bengtsm L. 人为气候变化的数值模拟[J]. AMBIO (中文版), 1997, 26(11): 58-65.

[9] King L, Metzler M, Jiang T. Flood Risks and Land Use Conflicts in the Yangtze Catchment, China and at the Rhine River, Germany, —Strategies for a Sustainable Flood Management[C]. Germany:Peter Lang Europaischer Verlag der Wissenschaften, 2001. 1-239.

[10] Ye Duzheng, Huang Ronghui. Flood/Drought Trends and Mechanism in the Huanghe and the Yangtze River Catchments[M]. Jinan: Shangdong Scientific and Technological Publishing House, 1996. 1-387. [叶笃正, 黄荣辉. 黄河长江流域旱涝规律和成因研究[M]. 济南:山东科学技术出版社,1996.1-387.]

[11] IPCC. Climate Change: The Scientific Assessment[M]. Cambridge, UK: Cambridge University Press,1990.

[12] IPCC. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment 1992[M]. Cambridge , UK: Cambridge University Press, 1992.

[13] IPCC. Climate Change 1995:The Science of Climate Change[M]. Cambridge, UK: Cambridge University Press. 1996.

[14] Hydrological Bureau of ChangJiang Water Resources Commission. Flood in 1998 and Hydrological Monitoring and Forecasting [M]. Beijing: Hydraulic and Hydropower Publishing House, 2000. 1-200. [长江水利委员会水文局.1998年长江洪水及水文监测预报[M]. 北京:中国水利水电出版社,2000. 1-200. ]

[15] ChangJiang Water Resources Commission. Floods and Droughts in the Yangtze River catchment[M]. Beijing: Hydraulic and Hydropower Publishing House, 2002. 1-326.[长江水利委员会. 长江流域水旱灾害[M].北京:中国水利电力出版社,2002.1 -326. ]

[16] Ning Maijin, Zhou Beida. Analysis of floods in Hunan province in 1990s and hazard mitigation[J]. Hydrology, 2002, 22(2):47 -50. [宁迈进,周北达.20世纪90年代湖南省洪灾原因分析及减灾对策[J].水文, 2002,222):47 -50. ]

[17] Tao Shiyan, Ni Keqi, Zhao Sixiong, et al. Mechanism of Summer Rain Storm in China and its Forecasting[M]. Beijing: Meteorological Publishing, 2001.1 -184. [陶诗言,倪克琪,赵思雄,. 1998夏季中国暴雨的形成机理与预报研究[M].北京:气象出版社,2001.1 -184. ]

[18] Wang Dongguan, Xie Qiang, Du Yan, et al. Warming Events in the south China sea during 1997 -1998[J]. Chinese Science Bulletin, 2002, 47(9): 711 -716.[王东关,谢强,杜岩,. 1997—1998年南海暖事件[J]. 科学通报,2002, 479):711 -716. ]

[19] Wikinson C,Cinden O, Cesar H, et al. Ecological and socio-economic impact of 1998 coral mortality in the Indian Ocean: An Enso impact and a warming of future change[J]. AMBIO, 1999, 28(2):188 -196.

[20] Jiang Tong. Analysis of Flood Hazards in the Yangtze River Valley and Strategies for Sustainable Flood Risk Management[M]. Germany: Shaker Verlag, 2000.

[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 童磊,郑珂,苏飞. 生计脆弱性概念、分析框架与评价方法[J]. 地球科学进展, 2020, 35(2): 209-217.
[3] 徐一丹,李建平,汪秋云,林霄沛. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
[4] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[5] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[6] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[7] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[8] 杨建平, 丁永建, 方一平, 秦大河. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529.
[9] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[10] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[11] 陈幸荣, 蔡怡, 谭晶, 黄勇勇, 汪雷. 全球变暖hiatus现象的研究进展[J]. 地球科学进展, 2014, 29(8): 947-955.
[12] 陈仁升, 阳勇, 韩春坛, 刘俊峰, 康尔泗, 宋耀选, 刘章文. 高寒区典型下垫面水文功能小流域观测试验研究[J]. 地球科学进展, 2014, 29(4): 507-514.
[13] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[14] 石先武,谭骏,国志兴,刘钦政. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 2013, 28(8): 866-874.
[15] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
阅读次数
全文


摘要