地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 285 -291. doi: 10.11867/j.issn.1001-8166.2003.02.0285

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

青藏高原地区过去2000年来的气候变化
杨保   
  1. 中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2002-02-20 修回日期:2002-10-21 出版日期:2003-04-10
  • 通讯作者: 杨保 E-mail:yangbao@ns.lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目“青藏高原过去2千年气候变化与气候模拟研究”(编号:40201011);中国科学院知识创新工程重大项目“西部生态环境演变规律与水土资源可持续利用研究”第二课题“近2000年来西部环境变化研究”(编号:KZCX1-10-02)联合资助.

CLIMATE HISTORY OF THE TIBETAN PLATEAU DURING THE LAST TWO MILLENNIA

Yang Bao   

  1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2002-02-20 Revised:2002-10-21 Online:2003-04-10 Published:2003-04-01

依据冰芯、树轮、沉积物分析和冰川波动等各单点古气候代用资料,以及重建的综合温度变化曲线,分析了近 2000年青藏高原温度变化的整体性和区域性特征。全青藏高原综合温度曲线显示中世纪暖期(1150-1400年)、小冰期(1400-1900年)以及公元 3~5世纪冷期的存在。青藏高原温度变化具有明显的区域性特征。在 9~11世纪,青藏高原东北部以温暖为特征,而青藏高原南部和西部表现为寒冷。青藏高原南部和西部分别于1150-1400年(此时段在高原东北部表现为弱暖期)和1250-1500年经历了气候变暖。与中国东部文献记录的最新综合研究结果比较,高原东北部与中国东部的温度变化最为一致。而且,许多重大气候事件,如1100-1150年、1500-1550年、1650-1700年和1800-1850年的冷事件在高原和中国东部同时出现,而后 3次冷期与小冰期期间中国西部发生的冰川前进相匹配。

    The reconstruction of long climatic series spanning the past few centuries and millennia is important both for understanding natural climate variations at those timescales and for estimating anthropogenic influence on the climate system. Our view of past climatic conditions, however, is heavily biased by the data from high-latitude northern and southern hemispheres. To test and validate climatic models on a global scale, it is essential to expand this database to all regions of the Earth’s surface. The Tibetan plateau affects the large-scale atmospheric circulation over Asia including the monsoon over South Asia and the south China sea. Therefore, the climate history of the Tibetan plateau is an important component in reconstructing the Earth's climate history. In the last decades, many paleoclimatic records, such as ice cores, tree rings, lake sediments and glacier fluctuations covering the last two millennia, have been recovered on the Tibetan plateau. In this paper, the above various proxy data are used to reconstruct the regional-scale temperatures of the Tibetan plateau during the last two millennia. The reconstructions display temperature fluctuations in different parts of the Tibetan plateau. Generally, the northeastern Tibetan plateau experienced distinct warming in 800-1100 AD, slight warming in 1150-1350 AD, and three cold periods during the “Little Ice Age” between 1400-1900 AD. In contrast, the southern Tibetan plateau witnessed an early warming in the6-8th centuries, an obvious cooling in 800-1150 AD, a dramatic warming in1150-1400 AD, and the coldest conditions in the 17th century. In addition, the warmer and cooler periods correspond well to glacier fluctuations in the northeastern and southern Tibetan plateau. For the western Tibetan plateau, the δ18O records of the Guliya ice core indicate that the temperatures in the “Little Ice Age” were higher than that in the middle ages, which would contrast with all other regions of the plateau. On the other hand, a 1400-year-long tree-ring chronology established in the northwest Karakorum, Pakistan, shows that the warmest period was from 800 AD and 1139, whereas an obvious cool period was recorded in 1140-1874 AD with the coldest period in the first half of the 17th century. More proxy records from the western Tibetan plateau are needed to arrive at firm conclusions. 
    A number of lines of evidence suggested that the “Medieval Warm Period” was not global in extent, although relatively warm conditions might have prevailed during some parts of the middle ages for some areas of the globe. As described above, in China, the warm climate during this period varied in time and space. Evidence from Dunde, Dulan, Tianjun, Qinghai lake, and other independent proxy records indicates that a warm period between 800 AD and 1100 AD occurred in the northeastern Tibetan Plateau and eastern China, which was also indicated by tree-ring chronology in the Karakorum. Five lines of evidence (Qamdo, Ximen lake, Hidden lake, Chencou lake, and the southern Tibet records)indicate that the southern Tibetan plateau experienced a warm period in 1150-1400 AD, which was also recorded in the temperature reconstructions for the whole plateau. Therefore, the two warm periods of 800-1100 AD and 1150-1400 AD can be referred to as correlative of the “Medieval Warm Period”, regardless of their regional differences. Several circulation patterns-winter monsoon, west wind drift, and summer monsoon (south-west and south-east monsoon), might have been responsible for these regional temperature differences.

中图分类号: 

[1] Bradley R S, Jones P D. “Little Ice Age” summer temperature variation: Their nature and relevance to recent global warming trends[J]. The Holocene, 1993, 3: 367-376.

[2] Hughes M K, Diaz H F. Was there a “Medieval Warm Period” and if so, where and when?[J]. Climatic Change, 1994, 26: 109-142.

[3] Mann M E, Park J, Bradley R S. Global interdecadal and century-scale climate oscillations during the past five centuries[J]. Nature, 1995, 378: 266-270.

[4] Yadav R R, Park W K, Bhattacharyya A. Spring-temperature variations in western Himalaya, India, as reconstructed from tree-rings: AD 1390-1987[J]. The Holocene, 1999, 9(1): 85-90.

[5] Reiter E R, Gao D Y. Heating of the Tibetan plateau and movements of the south Asian high during spring[J]. Monthly Weather Review, 1982, 110:1 694-1 711.

[6] Dai Jiaxi. The Climate of the Tibetan Plateau[M]. Beijing: Meteorological Press, 1990. 56-62. [戴加洗主编. 青藏高原气候[M]. 北京: 气象出版社,1990. 56-62.]

[7] Li C, Yanai M. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J]. Journal of Climate, 1996, 9: 358-375.

[8] Ueda H, Yasunari T. Role of warming over the Tibetan plateau in early onset of the summer monsoon over the bay of Bengal and the South China sea[J]. Journal of Meteorological Society of Japan, 1998, 76(1): 1-12.

[9] Lin P N, Thompson L G, Davis M E, et al. 1 000 years of climatic changes in China: ice-coreδ18O evidence[J]. Annals of Glaciology, 1995, 21: 189-195.

[10] Wang Shaowu, Ye Jinlin, Gong Daoyi, et al. Construction of mean annual temperature series for the last one hundred years in China[J]. Quarterly Journal of Applied Meteorology, 1998, 9(4: 392-400. [王绍武, 叶瑾林, 龚道溢, . 近百年中国年平均气温序列的建立[J]. 应用气象学报, 1998, 9(4): 392-400.]

[11] Wang Shaowu, Gong Daoyi. Enhancement of the warming trend in China[J]. Geophysical Research Letters, 2000, 27(16): 2 581-2 584.

[12] Thompson L G, Mosley-Thompson E, Davis M E,et al. Recent warming: Ice core evidence from tropical ice cores with emphasis on Central Asia[J]. Global Planetary Change, 1993, 7: 145-156.

[13] Kang Xingcheng, Zhang Qihua, Graumlich L J, et al. Reconstruction and variation of climate in Dulan region, Qinghai during last 2000 years[J]. Advances in Earth Sciences, 2000, 15(2): 215-221.[康兴成, 张其花, Graumlich L J,. 青海都兰过去2000年来的气候重建及其变迁[J]. 地球科学进展, 2000, 15(2): 215-221.]

[14] Wang Yuxi, Liu Guangyuan, Zhang Xiangong, et al. The relationships of tree rings of Qilianshan Juniper and climatic change and glacial activity during the past 1000 years in China[J]. Kexue Tongbao, 1983, 28(12): 746-750.

[15] Zhang Pengxi, Zhang Baozhen, Qian Guimin, et al. The study of paleoclimatic parameter of Qinghai lake since Holocene[J]. Quaternary Sciences, 1994, 3: 225-238. [张彭熹, 张保珍, 钱桂敏, . 青海湖全新世以来古环境参数的研究[J]. 第四纪研究, 1994, (3): 225-238.]

[16] Wu Xiangding, Lin Zhenyao. Climatic change during the last 2000 years in Tibet[A]. In: Central Weather Bareau,ed.Proceedings of Symposium on Climatic Change[C]. Beijing: Science Press, 1981. 18-25. [吴祥定, 林振耀. 青藏高原近二千年来气候变迁的初步探讨[A].: 中央气象局编全国气候变化学术讨论会文集[C]. 北京: 科学出版社, 1981. 18-25.]

[17] Braeuning A. Zur Dendroklimatologie Hochtibets Waehrend Des letzten Jahrtausends[D]. Dissertationes Botanicae: University of Hohenheim, 1999.1-164.

[18] Wang Sumin, Xue Bin, Xia Weilan. Lake records of climatic change in the past 2000 years of Ximen Cuo (Lake)[J]. Quaternary Research, 1997, 1: 62-69. [王苏民, 薛滨, 夏威岚. 希门错2000多年来气候变化的湖泊记录[J]. 第四纪研究, 1997, (1): 62-69.]

[19] Tang L Y, Shen C M, Liu K B,et al. Changes in south Asian monsoon: New high-resolution paleoclimatic records from Tibet, China[J]. Chinese Science Bulletin,2000,45(1): 87-91.

[20] Jones P D, Osborn T J, Briffa K R. Estimating sampling errors in larger-scale temperature averages[J]. Journal of Climatology, 1999, 10: 2 548-2 568.

[21] Crowley T J, Lowery T S. How warm was the Medieval Warm Period?[J]. AMBIO, 2000, 29(1): 51-54.

[22] Feng Song, Yao Tandong, Jiang Hao, et al. Temperature variations over Qinghai-Xizang plateau in the past 600 years[J]. Plateau Meteorology, 2001, 20(1):105-108. [冯松,姚檀栋,江灏,.青藏高原近600年的温度变化[J]. 高原气象, 2001, 20(1): 105-108.]

[23] Liu Kam-biu, Yao Z J, Thompson L G. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan plateau[J]. Geology, 1998, 26(2): 135-138.

[24] Zheng B X, Jiao K Q, Li S J, et al. New progress about chronological studies of Quaternary glaciation in Qinghai-Xizang plateau[J]. KXTB Science Bulletin, 1990, 36: 482-486.

[25] Wang Zongtai. Glacial fluctuations and environment since the Little Ice Age on central Tianshan mountains and east Qilianshan Mountains[J]. Acta Geographica Sinica, 1991, 46(2): 160-167. [王宗太. 天山中段及祁连山东段小冰期以来的冰川及环境[J]. 地理学报, 1991, 46(2): 160-167.]

[26] Li JiJun, Zheng Benxing. Glaciers in Xizang[M]. Beijing:Sicence Press, 1986. 328. [李吉均, 郑本兴. 西藏冰川[M]. 北京: 科学出版社,1986. 328.]

[27] Zheng Benxing, Ma Qiuhua. The glacier variation, climatic change and the river valley development in the Holocene on the Gongga mountains[J]. Acta Geographica Sinica, 1994, 49(6): 500-508. [郑本兴, 马秋华. 贡嘎山地区全新世的冰川变化、气候变化与河谷阶地发育[J]. 地理学报, 1994, 49(6): 500-508.]

[28] Lehmkuhl F. Late Pleistocene, late-glacial and Holocene glacier advances on the Tibetan plateau[J]. Quaternary International, 1997,(38/39): 77-83.

[29] Zimmermann B, Schleser G H, Braeuning A. Preliminary results of a Tibetan stable C-isotope chronology dating from 1200 to 1994[J]. Isotopes in Environmental and Health Studies, 1997, 33: 157-165. 

[30] Wu Xiangding. Dendroclimatic studies in China[A]. In: Bradley P D, Jones P D, eds. Climate Since 1500 AD[C]. New York: Routledge, 1992. 432-445.

[31] Wu Xiangding, Lin Zhenyao. A preliminary analysis of climatic variation during the last hundred years and its outlook on Tibetan plateau[J]. Chinese Science Bulletin, 1978, 23(12): 746-750. [吴祥定, 林振耀. 西藏近代气候变化及其趋势的探讨[J]. 科学通报, 1978, 23(12): 746-750.]

[32] Wu Xiangding, Lin Zhenyao, Sun Li. A preliminary study on the climatic change of the Hengduan Mountains area since 1600 AD. Advance in Atmospheric Sciences, 1988, 5(4): 437-443.

[33] Braeuning A. Dendrochronology for the last 1400 years in eastern Tibet[J]. GeoJournal, 1994, 34(1): 75-95.

[34] Röthlisberger F, Geyh M A. Glaciers variations in Himalayas and Karakorum[J]. Zeitschr Gletscherk. Glazialgeol, 1985, 21: 237-249.

[35] Shi Yafeng, Yao Tandong, Yang Bao. Decadal climatic variations recorded in Guliya ice core and comparison with the historical documentary data from East China during the last 2000 years[J]. Science in China(D), 1999, 42 (supp): 91-100.

[36] Yao Tandong, Thompson L G, Qin Dahe, et al. Variations in temperature and precipitation in the past 2000a on the Xizang (Tibet)Plateau—Guliya ice core record[J]. Science in China (D), 1996, 39(4): 459-467.

[37] Kotlyakov V M, Serebryanny R, Solomina O N. Climate change and glacier fluctuation during the last 1000 years in the southern Mountains of the USSR[J]. Mountain Research and Development, 1991, 11(1): 1-12.

[38] Thompson L G, Yao T, Mosley-Thompson E, et al. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores[J]. Science, 2001, 289: 1 916-1 919.

[39] Wang Shaowu, Gong Daoyi, Zhu Jinhong. Twentieth-century climatic warming in China in the context of the Holocene[J]. The Holocene, 2001, 11(3): 313-321.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[14] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[15] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
阅读次数
全文


摘要