Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (4): 446-457    DOI: 10.11867/j.issn.1001-8166.2017.04.0446
论文     
全球1.5 ℃温升背景下中国极端事件变化的区域模式预估
李东欢1, 2, 邹立维1, 3, *, 周天军1, 2
1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029;
2.中国科学院大学,北京 100049;
3.江苏省气候变化协同创新中心,江苏 南京 210023
Changes of Extreme Indices over China in Response to 1.5 ℃ Global Warming Projected by a Regional Climate Model
Li Donghuan1, 2, Zou Liwei1, 3, *, Zhou Tianjun1, 2
1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;
2.University of Chinese Academy of Sciences, Beijing 100049, China;
3.Jiangsu Collaborative Innovation Center of Climate Change, Nanjing 210023, China
 全文: PDF(1238 KB)   HTML
摘要:

利用区域海气耦合模式FROALS模拟的区域气候模式降尺度协同试验(CORDEX)的东亚区域的动力降尺度试验数据,分析了全球1.5 ℃温升背景下中国地区极端温度指数、极端降水指数以及民生相关指数的可能变化。结果表明,中国地区的暖事件显著增加,冷事件显著减少。高强度和中等强度极端暖事件发生风险分别为1986—2005年基准期的2.14和1.93倍,高强度和中等强度极端冷事件发生风险分别为基准期的0.58和0.63倍。分区来看,华北的高强度极端暖事件增幅最大(将为基准期的2.94倍),东北高强度极端冷事件减幅最大(将为基准期的0.38倍)。西北、青藏高原以及东北等地区的极端干旱事件发生风险略增加(分别为基准期的1.13,1.04,1.22倍)。全国大部分地区的平均降水显著增加,高强度的极端降水事件在全国普遍增加,并且在华北和东南的发生风险增幅最大(分别为基准期的1.88倍和1.85倍)。闷热日数在东部地区显著增加,并且与单一的极端高温事件相比,极端闷热日数的增加风险更大(将为基准期的5.34倍)。全国取暖度日显著减少,东部以及西北的降温度日显著增加,在人口密度较大的东部地区取暖度日的减幅(-258 ℃·d)大于降温度日的增幅(72 ℃·d),但与基准期相比,降温度日的变化比例(82%)大于取暖度日(-10%)。

关键词: 1.5 ℃温升阈值极端降水指数民生相关指数极端温度指数    
Abstract:

The possible changes of extreme climates over China under 1.5 ℃ global warming scenario were investigated by using the output of CORDEX (COordinated Regional Downscaling Experiment) experiments with a regional air-sea coupled model FROALS over East Asia domain. Results indicated that compared to the baseline period of 1986-2005, warm events would significantly increase while cold events would significantly decrease over China in a 1.5 ℃ warmer world. The risks of extreme and moderate warm events would be 2.14 and 1.93 times of that in the baseline period, respectively. The risks of extreme and moderate cold events would be 0.58 and 0.63 times of that in the baseline period, respectively. Compared to other sub-regions, the increasing amplitude of extreme warm events would be higher in North China, while the decreasing amplitude of extreme cold events would be higher in Northeast China. Risks of extreme dry events would increase in Northwest China, Tibetan Plateau and Northeast China (1.13, 1.02 and 1.22 times of that in baseline period). Precipitation intensity and extreme wet events would increase significantly over most parts of China, and the increasing amplitudes extreme wet events will be higher in North China and South China (1.88 and 1.85 times of that in the baseline period). Days when people may feel uncomfortable would increase significantly in eastern China, and compared to simple extreme warm events, the increasing amplitude of extreme uncomfortable days would be larger. The absolute changes of heating degree-days would be larger than that of cooling degree-days (-258℃·d and 72℃·d, respectively) in eastern China, but the relative change of heating degree-days would be smaller than cooling degree-days (-10% and 82%, respectively).

Key words: People&#x02019    1.5 ℃ warming target    Extreme temperature indices    Extreme precipitation indices    s livelihood associated indices.
收稿日期: 2017-02-02 出版日期: 2017-04-20
ZTFLH:  P467  
基金资助:

公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012); 国家自然科学基金项目“东亚—西北太平洋夏季风的参数优化研究”(编号:41575105)资助

通讯作者: 邹立维(1984-),男,福建清流人,副研究员,主要从事区域气候模式研发和应用研究.E-mail:zoulw@mail.iap.ac.cn   
作者简介: 李东欢(1990-),女,江苏连云港人,博士研究生,主要从事气候模拟研究.E-mail:lidh@lasg.iap.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李东欢
邹立维
周天军

引用本文:

李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.

Li Donghuan, Zou Liwei, Zhou Tianjun. Changes of Extreme Indices over China in Response to 1.5 ℃ Global Warming Projected by a Regional Climate Model. Advances in Earth Science, 2017, 32(4): 446-457.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.04.0446        http://www.adearth.ac.cn/CN/Y2017/V32/I4/446

[1] IPCC. Climate Change 2013: The Physical Science Basis[M].Cambridge, UK, and New York, USA: Cambridge University Press,2013.
[2] Schneider S H, Mastrandrea M D. Probabilistic assessment of “dangerous” climate change and emissions pathways[J]. Proceedings of the National Academy of Sciences of the United States of America , 2005, 102(44): 15 728-15 735.
[3] Alexander L V, Zhang X, Peterson T C, et al . Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research : Atmospheres , 2006, 111(D5),doi:10.1029/2005JD006290.
[4] Min S K, Zhang X, Zwiers F W, et al . Human contribution to more-intense precipitation extremes[J]. Nature , 2011, 470(7 334): 378-381.
[5] Coumou D, Rahmstorf S. A decade of weather extremes[J]. Nature Climate Change , 2012, 2(7): 491-496.
[6] Ding Y, Ren G, Zhao Z, et al . Detection, causes and projection of climate change over China: An overview of recent progress[J]. Advances in Atmospheric Sciences , 2007, 24(6): 954-971.
[7] Zhai P, Pan X. Trends in temperature extremes during 1951-1999 in China[J]. Geophysical Research Letters , 2003, 30(17): 1 913.
[8] Ding T, Qian W, Yan Z. Changes in hot days and heat waves in China during 1961-2007[J]. International Journal of Climatology , 2010, 30(10): 1 452-1 462.
[9] Zhai P, Zhang X, Wan H, et al . Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate , 2005, 18(7): 1 096-1 108.
[10] Ma S, Zhou T, Stone D A, et al . Detectable anthropogenic shift toward heavy precipitation over eastern China[J]. Journal of Climate , 2017,doi:10.1175/JCLI-D-16-0311.1.
[11] Pal J S, Eltahir E A B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability[J]. Nature Climate Change , 2016, 6(2): 197-200.
[12] Glaser J, Lemery J, Rajagopalan B, et al . Climate change and the emergent epidemic of CKD from heat stress in rural communities: The case for heat stress nephropathy[J]. Clinical Journal of the American Society of Nephrology , 2016, 11(8): 1 472-1 483.
[13] Zeng Jingjing, Qu Jiansheng, Pei Huijuan, et al . An overview of international climate change conferences and analysis of recent hot issues[J]. Advances in Earth Science , 2015, 30(11): 1 210-1 217.
. 地球科学进展, 2015, 30(11): 1 210-1 217].
[14] Schleussner C F, Lissner T K, Fischer E M, et al . Differential climate impacts for policy-relevant limits to global warming: The case of 1.5℃ and 2℃[J]. Earth System Dynamics , 2016, 7(2): 327-351.
[15] Chen Xiaolong, Zhou Tianjun. Surface air temperature projection under 1.5 ℃ warming threshold based on corrected pattern scaling technique[J]. Advances in Earth Science ,2017, 32(4): 435-445.[陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J].地球科学进展, 2017, 32(4):435-445.]
[16] Jiang Dabang, Fu Yuanhai. Climate change over China with a 2 ℃ global warming[J]. Chinese Journal of Atmospheric Sciences , 2012, 36 (2) :234-246.
. 大气科学, 2012, 36(2): 234-246.]
[17] Lang Xianmei, Sui Yue. Changes in mean and extreme climates over China with a 2℃ global warming[J]. Chinese Science Bulletin , 2013, 58(8):734-742.
. 科学通报, 2013, 58(8): 734-742.]
[18] Chen X, Zhou T. Uncertainty in crossing time of 2℃ warming threshold over China[J]. Science Bulletin , 2016, 61(18): 1 451-1 459.
[19] Chen Xiaochen, Xu Ying, Yao Yao. Changes in climate extremes over China in a 2 ℃, 3 ℃, and 4 ℃ warmer world[J]. Chinese Journal of Atmospheric Sciences ,2015,39 (6): 1 123-1 135, doi:10.3878/j.issn.1006-9895.1502.14224"> doi:10.3878/j.issn.1006-9895.1502.14224.
. 大气科学, 2015, 39(6): 1 123-1 135, doi:10.3878/j.issn.1006-9895.1502.14224"> doi:10.3878/j.issn.1006-9895.1502.14224.]
[20] Guo X, Huang J, Luo Y, et al . Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models[J]. Theoretical and Applied Climatology , 2017, 128(3): 507-522.
[21] Guo X, Huang J, Luo Y, et al . Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models[J]. Natural Hazards , 2016, 84(3): 2 299-2 319.
[22] Xiong Wei, Feng Lingzhi, Ju Hui, et al . Possible impacts of high temperatures on China’s rice yield under climate change[J]. Advances in Earth Science , 2016, 31(5): 515-528.
. 地球科学进展, 2016, 31(5): 515-528.]
[23] Meehl G A, Bony S. Introduction to CMIP5[J]. Clivar Exchanges , 2011, 16(2): 4-5.
[24] Zou L, Zhou T. Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon?[J]. Journal of Climate , 2013, 26(7): 2 353-2 367.
[25] Zou L, Zhou T, Peng D. Dynamical downscaling of historical climate over CORDEX East Asia Domain: A comparison of regional ocean atmosphere coupled model to standalone RCM simulations[J]. Journal of Geophysical Research : Atmospheres , 2016, 121:1 442-1 458.
[26] Zou L, Zhou T. Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM[J]. Journal of Geophysical Research : Atmospheres , 2016, 121(6): 2 691-2 704.
[27] Pal J S, Giorgi F, Bi X, et al . Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET[J]. Bulletin of the American Meteorological Society , 2007, 88(9): 1 395-1 409.
[28] Liu H, Lin P, Yu Y, et al . The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2[J]. Acta Meteorologica Sinica , 2012, 26(3): 318-329.
[29] Joshi M, Hawkins E, Sutton R, et al . Projections of when temperature change will exceed 2[deg] C above pre-industrial levels[J]. Nature Climate Change , 2011, 1(8): 407-412.
[30] Zhang X, Alexander L, Hegerl G C, et al . Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. Wiley Interdisciplinary Reviews : Climate Change , 2011, 2(6): 851-870.
[31] Masterson J M, Richardson F A. HUMIDEX: A Method of quantifying Human Discomfort due to Excessive Heat and Humidity[M]. Canada:Environment Canada Representative, 1979.
[32] Shi Jun, Cui Linli, Tian Zhan, et al . Impact of temperature change on heating and cooling energy consumption of residential buildings in East China[J]. Journal of Natural Resources , 2011, 26(3): 460-467.
. 自然资源学报, 2011, 26(3): 460-467.]
[33] Li Donghuan, Zhou Tianjun, Zou Liwei, et al . Simulated and projected surface air temperature over China in RegCM3 CORDEX East Asia experiments[J]. Chinese Journal of Atmospheric Sciences ,2017, doi:10.3878/j.issn.1 006-9 895.1607.16153.
. 大气科学,2017, doi:10.3878/j.issn.1006-9895.1607.16153.]

[1] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.