地球科学进展 ›› 2022, Vol. 37 ›› Issue (2): 135 -148. doi: 10.11867/j.issn.1001-8166.2022.007

综述与评述 上一篇    下一篇

陆地氧循环过程研究进展
丁磊 1( ), 黄建平 1 , 2( ), 王莉 2, 刘晓岳 1, 魏韵 1   
  1. 1.兰州大学半干旱气候变化教育部重点实验室, 兰州大学大气科学学院, 甘肃 兰州 730000
    2.兰州大学西部生态安全省部共建协同创新中心, 甘肃 兰州 730000
  • 收稿日期:2021-10-28 修回日期:2021-12-22 出版日期:2022-02-10
  • 通讯作者: 黄建平 E-mail:dingl19@lzu.edu.cn;hjp@lzu.edu.cn
  • 基金资助:
    国家自然科学基金项目“干旱半干旱气候变化机理”(41521004);“干旱半干旱地区气候变化及其水循环效应”(41991231)

Advances in Researches of Terrestrial Oxygen Cycle Processes

Lei DING 1( ), Jianping HUANG 1 , 2( ), Li WANG 2, Xiaoyue LIU 1, Yun WEI 1   

  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric and Sciences,Lanzhou University,Lanzhou 730000,China
    2.Collaborative Innovation Center for Western Ecological Safety,Lanzhou University,Lanzhou 730000,China
  • Received:2021-10-28 Revised:2021-12-22 Online:2022-02-10 Published:2022-03-08
  • Contact: Jianping HUANG E-mail:dingl19@lzu.edu.cn;hjp@lzu.edu.cn
  • About author:DING Lei (1995-), male, Zhangjiakou City, Hebei Province, Ph. D student. Research areas include responses in carbon and oxygen fluxes of ecosystem to climate change. E-mail: dingl19@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Mechanism of climate change in arid and semi-arid regions"(41521004);"Climate change in arid and semi-arid regions and its effects on hydrologic cycle"(41991231)

氧循环是地球系统重要的生物化学循环之一,其变化对地球的宜居性有着重要影响。工业革命以来,由于人类活动的影响,现代氧循环相比地质年代的氧循环发生了巨大的变化。陆地氧循环过程在现代氧循环中具有举足轻重的作用。从陆地植被生态系统产氧、陆地燃料燃烧耗氧等方面对已有陆地氧循环过程研究进行了回顾,表明: 陆地过程的变化会直接造成大气氧气浓度的波动,对大气氧气浓度有预测作用; 陆地氧循环过程反映了生态系统对人类活动与气候变化的响应,对评估生态安全具有指示作用。通过探究陆地氧循环过程对气候变化与人类活动的反馈,有助于预测未来大气氧气浓度的变化,为未来区域发展政策制定提供参考。

Oxygen cycle is one of the essential global biogeochemical cycles on Earth, and the change of oxygen cycle is of great importance to the Earth habitability. Since the industrialization, due to anthropogenic disturbance, such as land use change and fossil fuel combustion, modern oxygen cycle has undergone drastic changes compared with the cycle in geologic time scale. As a consequence, modern oxygen cycle provides an innovate view on studying the response of Earth system to climate change and human activities, which has aroused the concern of the academic community. Terrestrial oxygen cycle processes, such as terrestrial ecosystem oxygen production and fuels combustion consumption, are important components of modern oxygen cycle. In the recent years, as the improvement of observing methods and biogeochemical models simulation, the key terrestrial oxygen cycle processes are better understood and estimated. By reviewing the previous studies on key terrestrial processes oxygen fluxes, the methods to estimate or observe the terrestrial oxygen fluxes are summarized, and the main terrestrial oxygen fluxes distribution patterns are presented. The change of terrestrial oxygen budget can directly influence the atmospheric oxygen concentration level through the change in consuming or producing oxygen, therefore playing essential roles in predicting future atmospheric oxygen concentration change. Also the indexes based on terrestrial oxygen cycle processes, such as oxygen footprint index and ecosystem security index, can reflect interactions among different Earth system components and exhibit the responses of ecosystem to climate change and anthropogenic activities, which help to evaluate the security of terrestrial ecosystem. Reviewing the advances in research of terrestrial oxygen processes can improve the understanding of modern oxygen cycle and explore the responses of terrestrial oxygen cycle processes to climate change and human beings activities. This can be helpful to predict the future variation in atmospheric oxygen concentrations and make developmental policies.

中图分类号: 

图1 现代全球氧循环示意图(据参考文献[ 7 ]修改)
Fig. 1 The schematic diagram of modern oxygen cyclemodified after reference 7 ])
图2 现代全球陆地生态系统产氧的分布(据参考文献[ 7 ]修改)
Fig. 2 The current global distributions of terrestrial ecosystem oxygen productionmodified after reference 7 ])
图3 未来情景下陆地生态系统产氧的变化(据参考文献[ 7 ]修改)
Fig. 3 Future scenarios of terrestrial ecosystem oxygen productionmodified after reference 7 ])
图4 2018年全球燃料燃烧耗氧的分布(据参考文献[ 10 ]修改)
Fig. 4 Global distributions of oxygen consumption due to fuels combustion in 2018modified after reference 10 ])
图5 19752018年全球燃料燃烧耗氧的变化(据参考文献[ 10 ]修改)
modified after reference 10 ])
Fig. 5 Variations in oxygen consumption due to fuels combustion from 1975 to 2018
图6 2018年人类呼吸耗氧(a)和家畜呼吸耗氧(b)的分布(据参考文献[ 10 ]修改)
Fig. 6 Global distribution of oxygen consumption due toahuman beings respiration andblivestock respiration in 2018modified after reference 10 ])
图7 2018年自然火灾耗氧的分布(据参考文献[ 10 ]修改)
Fig. 7 Global distribution of oxygen consumption due to natural fire in 2018modified after reference 10 ])
图8 城市不同高度在不同耗氧情景下氧气浓度降到19.5%所需的天数 (据参考文献[ 59 ]修改)
O I为城市陆地耗氧与产氧量的比值
Fig. 8 Time required for different heights with different OI values in urban to reach a hypoxic environmentmodified after reference 59 ])
O I is defined as the ratio between urban terrestrial oxygen consumption and production
图9 按照生态安全指数划分的不同等级土地分布 (据参考文献[ 12 ]修改)
modified after reference 12 ])
Fig. 9 Global distribution of different types of land based on Ecological Security Indicators
1 CHAMEIDES W L, PERDUE M. Global biogeochemical cycles: a computer-interactive study of Earth system [M]. New York: Oxford University Press, 1999.
2 HUANG Jianping, LIU Xiaoyue, HE Yongsheng, et al. The oxygen cycle and a habitable Earth [J]. Science China: Earth Sciences, 2021, 51(4):487-506.
黄建平,刘晓岳,何永胜,等. 氧循环与宜居地球[J]. 中国科学:地球科学, 2021, 51(4):487-506.
3 COLMAN A S, MACKENZIE F T, HOLLAND H D, et al. Redox stabilization of the atmosphere and oceans and marine productivity [J]. Science, 1997, 275: 406-408.
4 CAMPELL I H, ALLEN C M. Formation of supercontinents linked to increases in atmospheric oxygen [J]. Nature Geoscience, 2008, 1: 554-558.
5 LEWIS S L, MASLIN M A. Defining the Anthropocene [J]. Nature, 2015, 519: 171-180.
6 KEELINGg R F, MANNING A C. Studies of recent changes in atmospheric O2 content [M]. San Diego: Elsevier, 2014.
7 HUANG J, HUANG J, LIU X, et al. The global oxygen budget and its future projection [J]. Science Bulletin, 2018, 63: 1 180-1 186.
8 WANG M, YAN G, YU L, et al. Effects of different artificial oxygen-supply systems on migrants' physical and psychological reactions in high-altitude tunnel construction [J]. Building Environment, 2019, 149: 458-467.
9 DE AQUINO LEMOS V, SANTOS R V T DOS, LIRA F S,et al. Can high altitude influence cytokines and sleep? [J]. Mediators of Inflammation, 2013: 1-8. DOI: 10.1155/2013/279365 .
10 LIU X, HUANG J, HUANG J, et al. Estimation of gridded atmospheric oxygen consumption from 1975 to 2018 [J]. Journal of Meteorological Research, 2020, 34(3): 646-658.
11 HAN D, HUANG J, DING L, et al. Oxygen footprint: an indicator of the anthropogenic ecosystem changes [J]. Catena, 2021, 206: 105501.
12 HUANG J, YU H, HAN D, et al. Declines in global ecological security under climate change [J]. Ecological Indicators, 2020, 117: 10665.
13 TANG X, FAN S, DU M, et al. Spatial and temporal patterns of global soil heterotrophic respiration in terrestrial ecosystems [J]. Earth System Science Data, 2020, 12(2): 1 037-1 051.
14 JOOS F, SPAHNI R. Rates of change in natural and anthropogenic radiative forcing over the past 20 000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 1 425-1 430.
15 FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M J, et al. Global carbon budget 2020 [J]. Earth System Science Data, 2020, 12: 3 269-3 340.
16 SMITH W K, REED S C, CLEVELAND C C, et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization [J]. Nature Climate Change, 2015, 6(3): 306-310.
17 TOWNSEND A R, BRASWELL B H, HOLLAND E A, et al. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen [J]. Ecology Application, 1996, 6(3): 806-814.
18 SUTTON M A, SIMPSON D, LEVY P E, et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration [J]. Global Change Biology, 2008, 14(9): 2 057-2 063.
19 WHITTINGHILL K A, CURRIE W S, ZAK D R, et al. Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay: analysis of field observations with an ecosystem model [J]. Ecosystems, 2012, 15(3): 450-461.
20 NEMANI R R, KEELING C D, HASHIMOTO H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999 [J]. Science, 2003, 300(5 625): 1 560-1 563.
21 PIAO S, FRIEDLINGSTEIN P, CIAIS P, et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades [J]. Global Biogeochemical Cycles, 2007, 21(3). DOI:10.1029/2006GB002888 .
22 STOCKER T F, QIN D, PLATTNER G K, et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2013.
23 YU P, HAN D, LIU S, et al. Soil quality assessment under different land uses in an Alpine grassland [J]. Catena, 2018, 171: 280-287.
24 BAUER J, HERBST M, HUISMAN J A, et al. Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions [J]. Geoderma, 2008, 145(1): 17-27.
25 TRUMBORE S E, CZIMCZIK C I. An uncertain future for soil carbon [J]. Science, 2008, 321: 1 445-1 456.
26 KEELING R F. Development of an Interferometric oxygen analyzer for precise measurement of the atmospheric O2 mole fraction [D]. Cambridge: Harvard University, 1988.
27 BENDER M L, TANS P P, Ellis J T, et al. A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air [J]. Geochimica et Cosmochimica Acta, 1994, 58: 4 751-4 758.
28 MANNING A C, SEVERINGHAUS J P. Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer [J]. Global Biogeochemical Cycles, 1999, 13: 1 107-1 115.
29 STEPHENS B B. Field-based atmospheric oxygen measurements and the ocean carbon cycle [D]. San Diego: University of California, 1999.
30 STEPHENS B B, PAPLAWSKY W J. Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique [J]. Tellus B: Chemical and Physical Meteorology, 2003, 55: 857-878.
31 STEPHENS B B, BAKWIN P, TANS P P, et al. Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations [J]. Journal of Atmospheric and Oceanic Technology, 2007, 24: 82-94.
32 TOHJIMA Y. Method for measuring changes in the atmospheric O2/N2 ratio by a gas chromatograph equipped with a thermal conductivity detector [J]. Journal of Geophysical Research: Biogeosciences, 2000, 105: 14 575-14 584.
33 SEVERINGHAUS J P. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2 [D]. New York: Columbia University, 1995.
34 ISHIDOYA S, MURAYAMA S, TAKAMURA C, et al. O2∶CO2 exchange ratios observed in a cool temperate deciduous forest ecosystem of central Japan [J]. Tellus B: Chemical and Physical Meteorology, 2013, 65: 21120.
35 BATTLE M, MUNGER J, CONLEY M, et al. Atmospheric measurements of the terrestrial O2∶CO2 exchange ratio of a mid-latitude forest [J]. Atmospheric Chemistry and Physics, 2018, 19: 8 687-8 701.
36 SEIBT U, BRAND W A, HEIMANN M, et al. Observations of O2/CO2 exchange ratios during ecosystem gas exchange [J]. Global Biogeochemical Cycles, 2004, 18: GB4024.
37 KEELING R F, SHERTZ S R. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle [J]. Nature, 1992, 358(6 389): 723-727.
38 BLOOM A, CALDWELL R, FINAZZO J, et al. Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation [J]. Plant Physiology, 1989, 91: 352-356.
39 LI C, HUANG J, DING L, et al. Estimation of oceanic and land carbon sinks based on the most recent oxygen budget [J]. Earth's Future, 2021, 9: e2021EF002124.
40 RANDERSON J T, MASIELLO C A, STILL C J, et al. Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2 [J]. Global Change Biology, 2006, 12: 260-271.
41 POORTER H, VILLAR R. The fate of acquired carbon in plants: chemical composition and construction costs [M]// Bazzaz F, Grace J P. Plant resource allocation. The Hague, the Netherlands: SPB Academic Publishing, 1997.
42 WORRALL F, CLAY G D, MASIELLO C A, et al. Estimating the oxidative ratio of the global terrestrial biosphere carbon [J]. Biogeochemistry, 2013, 115: 23-32.
43 CLAY G D, WORRALL F. Oxidative ratio of southern African soils and vegetation: updating the global or estimate [J]. Catena, 2015, 126: 126-133.
44 YOKOTA T, KIKUCHI N, YOSHIDA Y, et al. Six-year-long GHG observation by GOSAT and three-year carbon flux estimation [C]. Tokyo: Japan Geoscience Union Meeting 2015, 2015.
45 O'NEILL E, ENTEKHABI D, NJOKU E, et al. The NASA Soil Moisture Active Passive (SMAP) Mission: overview [C]//30th IEEE International Geoscience and Remote Sensing Symposium. Hawaii, 2010.
46 KEELING R F. Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air [J]. Journal of Atmospheric Chemistry, 1988, 7: 153-176.
47 ISHIDOYA S, SUGAWARA H, TERAO Y, et al. O2∶CO2 exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO2 emissions [J]. Atmospheric Chemistry and Physics, 2020, 20: 5 293-5 308.
48 LAAN S VAN DER, LAAN-LUIJKX I T VAN DER, RODENBECK C, et al. Atmospheric CO2δ(O2/N2), APO and oxidative ratios from aircraft flask samples over Fyodorovskoye, Western Russia [J]. Atmospheric Environment, 2014, 97: 174-181.
49 MINEJIMA C, KUBO M, TOHJIMA Y, et al. Analysis of ΔO2/ΔCO2 ratios for the pollution events observed at Hateruma Island, Japan [J]. Atmospheric Chemistry and Physics, 2012, 12: 2 713-2 723.
50 SUGAWARA H, ISHIDOYA S, TERAO Y, et al. Anthropogenic CO2 emissions changes in an urban area of Tokyo, Japan, due to the COVID-19 pandemic: a case study during the state of emergency in April-May 2020 [J]. Geophysical Research Letters, 2021, 48(15): 1-10.
51 STEINBACH J, GERBIG C, RODENBECK C, et al. The CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate (COFFEE) dataset: effects from varying oxidative ratios [J]. Atmospheric Chemistry and Physics, 2011, 11: 6 855-6 770.
52 HENRY C J K. Basal metabolic rate studies in humans: measurement and development of new equations [J]. Public Health Nutrition, 2005, 8: 1 133-1 152.
53 DINTENFASS L, JULIAN D G, SEAMAN G V F. Heart perfusion, energetics, and ischemia [M]. Boston: Springer, 1983.
54 FRAPE D. Equine nutrition and feeding (third edition) [M]. Oxford: Blackwell Publishing, 2004.
55 KLEIBER M. Body size and metabolism [J]. Hilgardia, 1932, 6: 315-353.
56 SEVERINGHAUS J P, BROECKER W S, DEMPSTER W F, et al. Oxygen loss in biosphere 2 [J]. Eos Transactions American Geophysical Union, 1994, 75: 33-37.
57 SUN G D, MU M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model [J]. Climatic Change, 2013, 120: 755-769.
58 SUN G D, MU M. Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in north-south transect of Eastern China [J]. Plant and Soil, 2017, 413: 243-260.
59 WEI Y, WU J, HUANG J, et al. Declining oxygen level as an emerging concern to global cities [J]. Environmental Science and Technology, 2021, 55: 7 808-7 817.
60 VINGRYS A J, GARNER L F. The effect of a moderate level of hypoxia on human color vision [J]. Documenta Ophthalmologica, 1987, 66(2): 171-185.
61 HOBKIRK J P, DAMY T, WALTERS M, et al. Effects of reducing inspired oxygen concentration for one hour in patients with chronic heart failure: implications for air travel [J]. European Journal of Heart Failure, 2013, 15(5): 505-510.
62 LUTTMANN-GIBSON H, SARNAT S E, SUH H H, et al. Short-term effects of air pollution on oxygen saturation in a cohort of senior adults in Steubenville, Ohio [J]. Journal of Occupational and Environmental Medicine, 2014, 56(2): 149-154.
63 DART T, GALLO M, BEER J, et al. Hyperoxia and hypoxic hypoxia effects on simple and choice reaction times [J]. Aerospace Med Human Performance, 2017, 88: 1 073-1 080.
64 CAI Yunlong. Socioeconomic perspectives on ecological problems [J]. Advances in Earth Science,2020,35(7): 742-749.
蔡运龙. 生态问题的社会经济检视 [J]. 地球科学进展, 2020, 35(7): 742-749.
65 QIU Guoyu, ZHANG Xiaonan. China's urbanization and its ecological environment challenges in the 21st century [J]. Advances in Earth Science, 2019, 34(6): 640-649.
邱国玉, 张晓楠. 21世纪中国的城市化特点及其生态环境挑战 [J]. 地球科学进展, 2019, 34(6): 640-649.
66 RYAN C, ELSNER P. The potential for sand dams to increase the adaptive capacity of East African drylands to climate change [J]. Regional Environment Change, 2016, 16: 2 087-2 096.
67 JI F, WU Z H, HUANG J P, et al. Evolution of land surface air temperature trend [J]. Nature Climate Change, 2014, 4: 462-466.
68 SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review [J]. Earth Science Reviews, 2010, 99: 125-161.
69 SHERWOOD S, FU Q. A drier future [J]. Science, 2014, 343: 737-739.
70 SENEVIRATNE S I, DONAT M G, MUELLER B, et al. No pause in the increase of hot temperature extremes [J]. Nature Climate Change, 2014, 4: 161-163.
71 VOGEL M M, ORTH R, CHERUY F, et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks [J]. Geophysical Research Letters, 2017, 44: 1 511-1 519.
72 EFFLER S W, O'DONNELL D M, OWEN C J. America's most polluted lake: monitoring rehabilitation with computer-driven robots [J]. Journal of Urban Technology, 2002, 9: 21-44.
73 BERNER R A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2 [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5 653-5 664.
[1] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[2] 傅伯杰,周国逸,白永飞,宋长春,刘纪远,张惠远,吕一河,郑华,谢高地. 中国主要陆地生态系统服务功能与生态安全[J]. 地球科学进展, 2009, 24(6): 571-576.
[3] 陈亚宁,郝兴明,李卫红,陈亚鹏,叶朝霞,赵锐锋. 干旱区内陆河流域的生态安全与生态需水量研究——兼谈塔里木河生态需水量问题[J]. 地球科学进展, 2008, 23(7): 732-738.
[4] 岳耀杰,周洪建,王静爱,史培军,吕红峰,何春阳,严平. 生态安全条件下亚洲沙区土地利用结构研究[J]. 地球科学进展, 2006, 21(2): 131-137.
[5] 杨志峰,崔保山,黄国和,白军红,孙涛,李晓文,刘新会. 黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J]. 地球科学进展, 2006, 21(11): 1119-1126.
[6] 何大明;吴绍洪;彭华;杨志峰;欧晓昆;崔保山. 纵向岭谷区生态系统变化及西南跨境生态安全研究[J]. 地球科学进展, 2005, 20(3): 338-344.
[7] 王让会,游先祥. 西部干旱区内陆河流域脆弱生态环境研究进展——以新疆塔里木河流域为例[J]. 地球科学进展, 2001, 16(1): 39-44.
阅读次数
全文


摘要