1 |
CHAMEIDES W L, PERDUE M. Global biogeochemical cycles: a computer-interactive study of Earth system [M]. New York: Oxford University Press, 1999.
|
2 |
HUANG Jianping, LIU Xiaoyue, HE Yongsheng, et al. The oxygen cycle and a habitable Earth [J]. Science China: Earth Sciences, 2021, 51(4):487-506.
|
|
黄建平,刘晓岳,何永胜,等. 氧循环与宜居地球[J]. 中国科学:地球科学, 2021, 51(4):487-506.
|
3 |
COLMAN A S, MACKENZIE F T, HOLLAND H D, et al. Redox stabilization of the atmosphere and oceans and marine productivity [J]. Science, 1997, 275: 406-408.
|
4 |
CAMPELL I H, ALLEN C M. Formation of supercontinents linked to increases in atmospheric oxygen [J]. Nature Geoscience, 2008, 1: 554-558.
|
5 |
LEWIS S L, MASLIN M A. Defining the Anthropocene [J]. Nature, 2015, 519: 171-180.
|
6 |
KEELINGg R F, MANNING A C. Studies of recent changes in atmospheric O2 content [M]. San Diego: Elsevier, 2014.
|
7 |
HUANG J, HUANG J, LIU X, et al. The global oxygen budget and its future projection [J]. Science Bulletin, 2018, 63: 1 180-1 186.
|
8 |
WANG M, YAN G, YU L, et al. Effects of different artificial oxygen-supply systems on migrants' physical and psychological reactions in high-altitude tunnel construction [J]. Building Environment, 2019, 149: 458-467.
|
9 |
DE AQUINO LEMOS V, SANTOS R V T DOS, LIRA F S,et al. Can high altitude influence cytokines and sleep? [J]. Mediators of Inflammation, 2013: 1-8. DOI: 10.1155/2013/279365 .
|
10 |
LIU X, HUANG J, HUANG J, et al. Estimation of gridded atmospheric oxygen consumption from 1975 to 2018 [J]. Journal of Meteorological Research, 2020, 34(3): 646-658.
|
11 |
HAN D, HUANG J, DING L, et al. Oxygen footprint: an indicator of the anthropogenic ecosystem changes [J]. Catena, 2021, 206: 105501.
|
12 |
HUANG J, YU H, HAN D, et al. Declines in global ecological security under climate change [J]. Ecological Indicators, 2020, 117: 10665.
|
13 |
TANG X, FAN S, DU M, et al. Spatial and temporal patterns of global soil heterotrophic respiration in terrestrial ecosystems [J]. Earth System Science Data, 2020, 12(2): 1 037-1 051.
|
14 |
JOOS F, SPAHNI R. Rates of change in natural and anthropogenic radiative forcing over the past 20 000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 1 425-1 430.
|
15 |
FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M J, et al. Global carbon budget 2020 [J]. Earth System Science Data, 2020, 12: 3 269-3 340.
|
16 |
SMITH W K, REED S C, CLEVELAND C C, et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization [J]. Nature Climate Change, 2015, 6(3): 306-310.
|
17 |
TOWNSEND A R, BRASWELL B H, HOLLAND E A, et al. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen [J]. Ecology Application, 1996, 6(3): 806-814.
|
18 |
SUTTON M A, SIMPSON D, LEVY P E, et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration [J]. Global Change Biology, 2008, 14(9): 2 057-2 063.
|
19 |
WHITTINGHILL K A, CURRIE W S, ZAK D R, et al. Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay: analysis of field observations with an ecosystem model [J]. Ecosystems, 2012, 15(3): 450-461.
|
20 |
NEMANI R R, KEELING C D, HASHIMOTO H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999 [J]. Science, 2003, 300(5 625): 1 560-1 563.
|
21 |
PIAO S, FRIEDLINGSTEIN P, CIAIS P, et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades [J]. Global Biogeochemical Cycles, 2007, 21(3). DOI:10.1029/2006GB002888 .
|
22 |
STOCKER T F, QIN D, PLATTNER G K, et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2013.
|
23 |
YU P, HAN D, LIU S, et al. Soil quality assessment under different land uses in an Alpine grassland [J]. Catena, 2018, 171: 280-287.
|
24 |
BAUER J, HERBST M, HUISMAN J A, et al. Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions [J]. Geoderma, 2008, 145(1): 17-27.
|
25 |
TRUMBORE S E, CZIMCZIK C I. An uncertain future for soil carbon [J]. Science, 2008, 321: 1 445-1 456.
|
26 |
KEELING R F. Development of an Interferometric oxygen analyzer for precise measurement of the atmospheric O2 mole fraction [D]. Cambridge: Harvard University, 1988.
|
27 |
BENDER M L, TANS P P, Ellis J T, et al. A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air [J]. Geochimica et Cosmochimica Acta, 1994, 58: 4 751-4 758.
|
28 |
MANNING A C, SEVERINGHAUS J P. Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer [J]. Global Biogeochemical Cycles, 1999, 13: 1 107-1 115.
|
29 |
STEPHENS B B. Field-based atmospheric oxygen measurements and the ocean carbon cycle [D]. San Diego: University of California, 1999.
|
30 |
STEPHENS B B, PAPLAWSKY W J. Shipboard measurements of atmospheric oxygen using a vacuum-ultraviolet absorption technique [J]. Tellus B: Chemical and Physical Meteorology, 2003, 55: 857-878.
|
31 |
STEPHENS B B, BAKWIN P, TANS P P, et al. Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations [J]. Journal of Atmospheric and Oceanic Technology, 2007, 24: 82-94.
|
32 |
TOHJIMA Y. Method for measuring changes in the atmospheric O2/N2 ratio by a gas chromatograph equipped with a thermal conductivity detector [J]. Journal of Geophysical Research: Biogeosciences, 2000, 105: 14 575-14 584.
|
33 |
SEVERINGHAUS J P. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2 [D]. New York: Columbia University, 1995.
|
34 |
ISHIDOYA S, MURAYAMA S, TAKAMURA C, et al. O2∶CO2 exchange ratios observed in a cool temperate deciduous forest ecosystem of central Japan [J]. Tellus B: Chemical and Physical Meteorology, 2013, 65: 21120.
|
35 |
BATTLE M, MUNGER J, CONLEY M, et al. Atmospheric measurements of the terrestrial O2∶CO2 exchange ratio of a mid-latitude forest [J]. Atmospheric Chemistry and Physics, 2018, 19: 8 687-8 701.
|
36 |
SEIBT U, BRAND W A, HEIMANN M, et al. Observations of O2/CO2 exchange ratios during ecosystem gas exchange [J]. Global Biogeochemical Cycles, 2004, 18: GB4024.
|
37 |
KEELING R F, SHERTZ S R. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle [J]. Nature, 1992, 358(6 389): 723-727.
|
38 |
BLOOM A, CALDWELL R, FINAZZO J, et al. Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation [J]. Plant Physiology, 1989, 91: 352-356.
|
39 |
LI C, HUANG J, DING L, et al. Estimation of oceanic and land carbon sinks based on the most recent oxygen budget [J]. Earth's Future, 2021, 9: e2021EF002124.
|
40 |
RANDERSON J T, MASIELLO C A, STILL C J, et al. Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2 [J]. Global Change Biology, 2006, 12: 260-271.
|
41 |
POORTER H, VILLAR R. The fate of acquired carbon in plants: chemical composition and construction costs [M]// Bazzaz F, Grace J P. Plant resource allocation. The Hague, the Netherlands: SPB Academic Publishing, 1997.
|
42 |
WORRALL F, CLAY G D, MASIELLO C A, et al. Estimating the oxidative ratio of the global terrestrial biosphere carbon [J]. Biogeochemistry, 2013, 115: 23-32.
|
43 |
CLAY G D, WORRALL F. Oxidative ratio of southern African soils and vegetation: updating the global or estimate [J]. Catena, 2015, 126: 126-133.
|
44 |
YOKOTA T, KIKUCHI N, YOSHIDA Y, et al. Six-year-long GHG observation by GOSAT and three-year carbon flux estimation [C]. Tokyo: Japan Geoscience Union Meeting 2015, 2015.
|
45 |
O'NEILL E, ENTEKHABI D, NJOKU E, et al. The NASA Soil Moisture Active Passive (SMAP) Mission: overview [C]//30th IEEE International Geoscience and Remote Sensing Symposium. Hawaii, 2010.
|
46 |
KEELING R F. Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air [J]. Journal of Atmospheric Chemistry, 1988, 7: 153-176.
|
47 |
ISHIDOYA S, SUGAWARA H, TERAO Y, et al. O2∶CO2 exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO2 emissions [J]. Atmospheric Chemistry and Physics, 2020, 20: 5 293-5 308.
|
48 |
LAAN S VAN DER, LAAN-LUIJKX I T VAN DER, RODENBECK C, et al. Atmospheric CO2, δ(O2/N2), APO and oxidative ratios from aircraft flask samples over Fyodorovskoye, Western Russia [J]. Atmospheric Environment, 2014, 97: 174-181.
|
49 |
MINEJIMA C, KUBO M, TOHJIMA Y, et al. Analysis of ΔO2/ΔCO2 ratios for the pollution events observed at Hateruma Island, Japan [J]. Atmospheric Chemistry and Physics, 2012, 12: 2 713-2 723.
|
50 |
SUGAWARA H, ISHIDOYA S, TERAO Y, et al. Anthropogenic CO2 emissions changes in an urban area of Tokyo, Japan, due to the COVID-19 pandemic: a case study during the state of emergency in April-May 2020 [J]. Geophysical Research Letters, 2021, 48(15): 1-10.
|
51 |
STEINBACH J, GERBIG C, RODENBECK C, et al. The CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate (COFFEE) dataset: effects from varying oxidative ratios [J]. Atmospheric Chemistry and Physics, 2011, 11: 6 855-6 770.
|
52 |
HENRY C J K. Basal metabolic rate studies in humans: measurement and development of new equations [J]. Public Health Nutrition, 2005, 8: 1 133-1 152.
|
53 |
DINTENFASS L, JULIAN D G, SEAMAN G V F. Heart perfusion, energetics, and ischemia [M]. Boston: Springer, 1983.
|
54 |
FRAPE D. Equine nutrition and feeding (third edition) [M]. Oxford: Blackwell Publishing, 2004.
|
55 |
KLEIBER M. Body size and metabolism [J]. Hilgardia, 1932, 6: 315-353.
|
56 |
SEVERINGHAUS J P, BROECKER W S, DEMPSTER W F, et al. Oxygen loss in biosphere 2 [J]. Eos Transactions American Geophysical Union, 1994, 75: 33-37.
|
57 |
SUN G D, MU M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model [J]. Climatic Change, 2013, 120: 755-769.
|
58 |
SUN G D, MU M. Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in north-south transect of Eastern China [J]. Plant and Soil, 2017, 413: 243-260.
|
59 |
WEI Y, WU J, HUANG J, et al. Declining oxygen level as an emerging concern to global cities [J]. Environmental Science and Technology, 2021, 55: 7 808-7 817.
|
60 |
VINGRYS A J, GARNER L F. The effect of a moderate level of hypoxia on human color vision [J]. Documenta Ophthalmologica, 1987, 66(2): 171-185.
|
61 |
HOBKIRK J P, DAMY T, WALTERS M, et al. Effects of reducing inspired oxygen concentration for one hour in patients with chronic heart failure: implications for air travel [J]. European Journal of Heart Failure, 2013, 15(5): 505-510.
|
62 |
LUTTMANN-GIBSON H, SARNAT S E, SUH H H, et al. Short-term effects of air pollution on oxygen saturation in a cohort of senior adults in Steubenville, Ohio [J]. Journal of Occupational and Environmental Medicine, 2014, 56(2): 149-154.
|
63 |
DART T, GALLO M, BEER J, et al. Hyperoxia and hypoxic hypoxia effects on simple and choice reaction times [J]. Aerospace Med Human Performance, 2017, 88: 1 073-1 080.
|
64 |
CAI Yunlong. Socioeconomic perspectives on ecological problems [J]. Advances in Earth Science,2020,35(7): 742-749.
|
|
蔡运龙. 生态问题的社会经济检视 [J]. 地球科学进展, 2020, 35(7): 742-749.
|
65 |
QIU Guoyu, ZHANG Xiaonan. China's urbanization and its ecological environment challenges in the 21st century [J]. Advances in Earth Science, 2019, 34(6): 640-649.
|
|
邱国玉, 张晓楠. 21世纪中国的城市化特点及其生态环境挑战 [J]. 地球科学进展, 2019, 34(6): 640-649.
|
66 |
RYAN C, ELSNER P. The potential for sand dams to increase the adaptive capacity of East African drylands to climate change [J]. Regional Environment Change, 2016, 16: 2 087-2 096.
|
67 |
JI F, WU Z H, HUANG J P, et al. Evolution of land surface air temperature trend [J]. Nature Climate Change, 2014, 4: 462-466.
|
68 |
SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review [J]. Earth Science Reviews, 2010, 99: 125-161.
|
69 |
SHERWOOD S, FU Q. A drier future [J]. Science, 2014, 343: 737-739.
|
70 |
SENEVIRATNE S I, DONAT M G, MUELLER B, et al. No pause in the increase of hot temperature extremes [J]. Nature Climate Change, 2014, 4: 161-163.
|
71 |
VOGEL M M, ORTH R, CHERUY F, et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks [J]. Geophysical Research Letters, 2017, 44: 1 511-1 519.
|
72 |
EFFLER S W, O'DONNELL D M, OWEN C J. America's most polluted lake: monitoring rehabilitation with computer-driven robots [J]. Journal of Urban Technology, 2002, 9: 21-44.
|
73 |
BERNER R A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2 [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5 653-5 664.
|