地球科学进展 ›› 2024, Vol. 39 ›› Issue (9): 930 -944. doi: 10.11867/j.issn.1001-8166.2024.016

研究论文 上一篇    下一篇

水汽内外循环对黄河流域上中游夏季降水的影响
韦馨杰 1( ), 黄小倩 2 , 3, 管晓丹 1 , 3( ), 马婷婷 1, 杨坤 1   
  1. 1.兰州大学 大气科学学院,甘肃 兰州 730000
    2.福建省泉州市气象局,福建 泉州 362000
    3.西部生态安全省部共建协同创新中心,甘肃 兰州 730000
  • 收稿日期:2023-06-29 修回日期:2024-02-24 出版日期:2024-09-10
  • 通讯作者: 管晓丹 E-mail:weixj20@lzu.edu.cn;guanxd@lzu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2024YFE0103200);秦惠 与李政道中国大学生见习进修基金(LZU-JZH2637);国家重大科技基础设施项目(2023-EL-PT-000320)

Influence of Internal and External Circulation of Water Vapor on Summer Precipitation in the Upper and Middle Reaches of the Yellow River Basin

Xinjie WEI 1( ), Xiaoqian HUANG 2 , 3, Xiaodan GUAN 1 , 3( ), Tingting MA 1, Kun YANG 1   

  1. 1.College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
    2.Quanzhou Meteorological Bureau of Fujian, Quanzhou Fujian 362000, China
    3.Collaborative Innovation Center for Western Ecological Safety, Lanzhou 730000, China
  • Received:2023-06-29 Revised:2024-02-24 Online:2024-09-10 Published:2024-11-22
  • Contact: Xiaodan GUAN E-mail:weixj20@lzu.edu.cn;guanxd@lzu.edu.cn
  • About author:WEI Xinjie, research areas include changes in the water cycle in the Yellow River Basin. E-mail: weixj20@lzu.edu.cn
  • Supported by:
    National Key Research & Development Program of China(2024YFE0103200);Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment(LZU-JZH2637);National Key Scientific and Technological Infrastructure Project(2023-EL-PT-000320)

黄河流域是中国重要的生态文明建设中心,其上中游水循环过程对流域整体水资源变化和分配影响显著。过去40年,黄河上中游夏季降水呈年际变化,与区域上空水汽含量密切相关。相较于1982—2002年,2003—2019年净水汽输入明显增加,局地蒸散发显著减少,大气水汽含量受二者的共同影响,因此没有明显的年代际变化。进一步利用动态降水再循环模型和水汽源地贡献定量分析方法探究水汽来源及其贡献,结果表明黄河上中游的水汽主要来源于外界输入(83.4%)和局地供应(11.4%),其中外界输入的水汽源地分别为亚欧大陆中部地区(32.5%)、青藏高原地区(23.6%)、中国南海—西太平洋地区(12.3%)、南亚—北印度洋地区(10.7%)和北非—西亚地区(4.3%)。各水汽源地子区域水汽贡献的年代际变化与局地蒸发降水差(E-P)的年代际变化一致。与1982—2002年相比,2003—2019年亚欧大陆中部地区、北非—西亚地区和中国南海—西太平洋地区的水汽供应能力增强,水汽贡献呈年代际增加,为黄河上中游提供更多的水汽,是促进黄河上中游降水增加的主要水汽源地。而黄河上中游局地蒸散发呈显著年代际减少,局地水汽供应能力减弱。探究2 m温度、风速、归一化植被指数以及浅层土壤(0~7 cm)湿度对局地蒸散发的影响,结果表明局地蒸散发与2 m温度、风速和归一化植被指数呈负相关,而与浅层土壤湿度呈正相关,其中浅层土壤湿度相关性最高。浅层土壤湿度变干导致黄河上中游大部分地区局地蒸散发显著下降,进而抵消了部分水汽输入的增加,降水主要呈年际变化。

The Yellow River Basin is an important center of ecological civilization in China and its upstream and midstream water circulation processes have a notable impact on the overall water resource changes and distribution in the basin. Over the past 40 years, summer precipitation in the upper and middle reaches of the Yellow River has shown interannual variability, which is closely related to the water vapor content in the region. Compared with that in 1982-2002, the net water vapor input increased and evapotranspiration decreased significantly in 2003-2019 and the atmospheric water vapor content did not show significant interdecadal variability owing to the combined effect of both. Dynamic precipitation recycling model and moisture source attribution method were further used to investigate the moisture sources and contribution. Results show that the water vapor in the upper and middle reaches of the Yellow River mainly came from external input (83.4%) and local supply (11.4%), of which the sources of external input were the central Eurasian (32.5%), the Tibetan Plateau (23.6%), the South China Sea-western Pacific (12.3%), the South Asia-northern Indian Ocean (10.7%), and the North Africa-West Asian areas (4.3%). The interdecadal variation in the moisture contribution of each moisture source subregion were consistent with that in the local difference between evaporation and precipitation. Compared with that in 1982-2002, the water vapor supply capacity of the central Eurasian, North Africa-West Asian, and South China Sea-western Pacific areas increased in 2003-2019 and the moisture contribution showed an interdecadal increase, providing more water vapor to the upper and middle reaches of the Yellow River, which were the major moisture sources contributing to the increase in precipitation in the upper and middle reaches of the Yellow River. Conversely, evapotranspiration in the upper and middle reaches of the Yellow River showed a significant decrease. The results showed that evapotranspiration was negatively correlated with two-meter temperature, wind speed, and normalized difference vegetation index and positively correlated with shallow soil moisture (0~7 cm), with shallow soil moisture having the highest correlation. The drying of shallow soil moisture caused a significant decrease in evapotranspiration in most of the upper and middle reaches of the Yellow River, which, in turn, offset some of the increase in water vapor input, with precipitation showing mainly interannual variability.

中图分类号: 

图1 19822019年黄河上中游夏季平均降水的空间分布(a)和时间序列(b
Fig. 1 Spatial distributionaand time seriesbof mean summer precipitation in the upper and middle reaches of the Yellow River during 1982-2019
图2 19822019年黄河上中游夏季平均水汽含量、外界净水汽输入和局地蒸散发的时间序列
Fig. 2 Time series of mean summer water vapor contentnet water vapor influxand local evapotranspiration in the upper and middle reaches of the Yellow River during 1982-2019
图3 19822019年夏季空气块到达黄河上中游前1天(a)、前5天(b)和前10天(c)平均水汽轨迹数的空间分布
Fig. 3 Spatial distribution of the mean amount of moisture trajectory 1 daya), 5 daysb), and 10 dayscbefore the water vapor arrived at the upper and middle reaches of the Yellow River in summer during 1982-2019
图4 19822019年夏季黄河上中游水汽源地的水汽贡献率空间分布及占比
(a)黄河上中游夏季降水的水汽源地及其平均水汽贡献率的空间分布;(b)各水汽源地子区域对黄河上中游夏季降水的平均水汽贡献率。水汽源地分区为:区域Ⅰ(青藏高原地区:73°~104°E,26°~39°N),区域Ⅱ(亚欧大陆中部地区:0°~120°E,35°~60°N,黄土高原地区和青藏高原地区除外),区域Ⅲ(北非—西亚地区:0°~60°E,10°~35°N),区域Ⅳ(南亚—北印度洋地区:60°~100°E,0°~35°N,青藏高原地区除外),区域Ⅴ(中国南海—西太平洋地区:100°~140°E,0°~35°N,青藏高原地区除外)
Fig. 4 Spatial distribution and percentage of moisture contribution from moisture sources in the upper and middle reaches of the Yellow River in summer during 1982-2019
(a) Spatial distribution of moisture sources and their mean moisture contribution rates for summer precipitation in the upper and middle reaches of the Yellow River; (b) Mean moisture contribution rates of each moisture source subregion to summer precipitation in the upper and middle reaches of the Yellow River. Defined geographic subregions: I (the Tibetan Plateau area: 73°~104°E, 26°~39°N), II (Central Eurasian area: 0°~120°E, 35°~60°N, except the Loess Plateau and the Tibetan Plateau area), III (North Africa-West Asia area: 0°~60°E, 10°~35°N), IV (South Asia-northern Indian Ocean area: 60°~100 °E, 0°~35°N, except the Tibetan Plateau area), V (South China Sea-western Pacific area: 100°~140°E, 0°~35°N, except the Tibetan Plateau area)
图5 19822002年与20032019年夏季黄河上中游水汽源地的水汽供应差异
黄河上中游夏季降水的各水汽源地子区域(a)平均水汽贡献率的差值以及(b)局地蒸发降水差(E-P)的差值。差值为后一时段减前一时段;红星表示2003—2019年各水汽源地子区域E-P与1982—2002年相比的相对增长率;区域Ⅰ为青藏高原地区:73°~104°E,26°~39°N,区域Ⅱ为亚欧大陆中部地区:0°~120°E,35°~60°N,黄土高原地区和青藏高原地区除外,区域Ⅲ为北非—西亚地区:0°~60°E,10°~35°N,区域Ⅳ为南亚—北印度洋地区:60°~100°E,0°~35°N,青藏高原地区除外,区域Ⅴ为中国南海—西太平洋地区:100°~140°E,0°~35°N,青藏高原地区除外
Fig. 5 Difference in water vapor supply at moisture sources in the upper and middle reaches of the Yellow River in summer between 1982-2002 and 2003-2019
(a) Difference of mean moisture contribution and (b) difference of local E-P in each moisture source subregion for summer precipitation in the upper and middle reaches of the Yellow River. The difference is latter period minus former period; Red stars indicate the relative growth rate of E-P in each moisture source subregion during 2003-2019 compared to 1982-2002; I: the Tibetan Plateau area: 73°~104°E, 26°~39°N, II:Central Eurasian area: 0°~120°E, 35°~60°N, except the Loess Plateau and the Tibetan Plateau area, III: North Africa-West Asia area: 0°~60°E, 10°~35°N, IV: South Asia-northern Indian Ocean area: 60°~100 °E, 0°~35°N, except the Tibetan Plateau area, V: South China Sea-western Pacific area: 100°~140°E, 0°~35°N, except the Tibetan Plateau area
图6 19822002年与20032019年夏季水汽输送通量差异
差异为后一时段减前一时段;打点区域表示该区域的差异通过了90%显著性水平的 t检验。区域Ⅰ为青藏高原地区:73°~104°E,26°~39°N;区域Ⅱ为亚欧大陆中部地区:0°~120°E,35°~60°N,黄土高原地区和青藏高原地区除外;区域Ⅲ为北非—西亚地区:0°~60°E,10°~35°N;区域Ⅳ为南亚—北印度洋地区:60°~100°E,0°~35°N,青藏高原地区除外;区域Ⅴ为中国南海—西太平洋地区:100°~140°E,0°~35°N,青藏高原地区除外
Fig. 6 Difference in water vapor flux in summer between 1982-2002 and 2003-2019
The difference is latter period minus former period; Dotted areas indicate that the difference in the region passes the t-test at the 90% significance level. I: the Tibetan Plateau area: 73°~104°E, 26°~39°N; II: Central Eurasian area: 0°~120°E, 35°~60°N, except the Loess Plateau and the Tibetan Plateau area; III: North Africa-West Asia area: 0°~60°E, 10°~35°N; IV: South Asia-northern Indian Ocean area: 60°~100 °E, 0°~35°N, except the Tibetan Plateau area; V: South China Sea-western Pacific area: 100°~140°E, 0°~35°N, except the Tibetan Plateau area
图7 19822019年夏季黄河上中游各因子气候态的空间分布
Fig. 7 Spatial distribution of climatology of factors in the upper and middle reaches of the Yellow River in summer during 1982-2019
图8 19822002年与20032019年夏季黄河上中游各因子年代际差值的空间分布
Fig. 8 Spatial distribution of interdecadal differences of factors in the upper and middle reaches of the Yellow River in summer between 1982-2002 and 2003-2019
表1 19822019年夏季黄河上中游各因子与局地蒸散发的相关系数、回归系数和方差贡献率
Table 1 Correlation coefficientsregression coefficientsand variance contribution of each factor with local evapotranspiration in the upper and middle reaches of the Yellow River in summer during 1982-2019
图9 19822019年夏季黄河上中游局地蒸散发与浅层土壤(0~7 cm)湿度的相关程度
(a)局地蒸散发与浅层土壤(0~7 cm)湿度相关系数的空间分布,打点区域表示该区域的相关系数通过了95%显著性水平的 t检验;(b)局地蒸散发与浅层土壤(0~7 cm)湿度的时间序列
Fig. 9 Correlation between local evapotranspiration and shallow soil0~7 cmmoisture in the upper and middle reaches of the Yellow River in summer during 1982-2019
(a) Spatial distribution of the correlation coefficients between local evapotranspiration and shallow soil moisture (0~7 cm); Dotted areas indicate that the correlation coefficients of the region pass the t-test at the 95% significance level. (b) Time series of local evapotranspiration and shallow soil moisture (0~7 cm)
1 HUANG Jianping, ZHANG Guolong, YU Haipeng, et al. Characteristics of climate change in the Yellow River Basin during recent 40 years[J]. Journal of Hydraulic Engineering, 2020, 51(9): 1 048-1 058.
黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9): 1 048-1 058.
2 ZHAO Huixia, ZHUO Yingying, LIU Houfeng. Temporal and spatial variation characteristics of precipitation in the Yellow River Basin from 1961 to 2019[J]. Yellow River, 2022, 44(3): 26-31.
赵慧霞, 卓莹莹, 刘厚凤. 1961—2019年黄河流域降水量时空变化特征分析[J]. 人民黄河, 2022, 44(3): 26-31.
3 CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119.
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
4 IPCC. Climate change 2007. The physical science basis[M]// SOLOMON S, QIN D H, MANNING M, et al. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge,U. K.:Cambridge University Press, 2007.
5 ZHANG W X, FURTADO K, WU P L, et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world[J]. Science Advances, 2021, 7(31). DOI:10.1126/sciadv.abf8021 .
6 HELD I M, SODEN B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21): 5 686-5 699.
7 WANG L, D’ODORICO P, EVANS J P, et al. Dryland ecohydrology and climate change: critical issues and technical advances[J]. Hydrology and Earth System Sciences, 2012, 16(8): 2 585-2 603.
8 GONG Yongqi, YU Haipeng, ZHOU Jie, et al. Review on water vapor sources in drylands of East Asia[J]. Advances in Earth Science, 2023, 38(2): 168-182.
龚咏琪, 于海鹏, 周洁, 等. 东亚干旱半干旱区水汽来源研究进展[J]. 地球科学进展, 2023, 38(2): 168-182.
9 LU C, HUANG G H, WANG G Q, et al. Long-term projection of water cycle changes over China using RegCM[J]. Remote Sensing, 2021, 13(19). DOI: 10.3390/rs13193832 .
10 HE Xiaojia. Study on strategies of Yellow River water resources adapting to climate change[J]. Yellow River, 2017, 39(8): 44-48.
何霄嘉. 黄河水资源适应气候变化的策略研究[J]. 人民黄河, 2017, 39(8): 44-48.
11 WANG L, ZHU Q A, ZHANG J, et al. Vegetation dynamics alter the hydrological interconnections between upper and mid-lower reaches of the Yellow River Basin, China[J]. Ecological Indicators, 2023, 148. DOI:10.1016/j.ecolind.2023.110083 .
12 WANG Y P, ZHAO W W, WANG S, et al. Yellow River water rebalanced by human regulation[J]. Scientific Reports, 2019, 9. DOI:10.1038/s41598-019-46063-5 .
13 KONG D X, MIAO C Y, GOU J J, et al. Sediment reduction in the middle Yellow River Basin over the past six decades: attribution, sustainability, and implications[J]. The Science of the Total Environment, 2023, 882. DOI:10.1016/j.scitotenv.2023.163475 .
14 ZHAN C, LIANG C, ZHAO L, et al. Vegetation dynamics and its response to climate change in the Yellow River Basin, China[J]. Frontiers in Environmental Science, 2022, 10. DOI: 10.3389/fenvs.2022.892747 .
15 LI Zhi, LI Yupeng, LI Hongwei, et al. Analysis of drought change and its impact in central Asia[J]. Advances in Earth Science, 2022, 37(1): 37-50.
李稚, 李玉朋, 李鸿威, 等. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
16 MU Xingmin, CHEN Guoliang. Analysis on the space structure trend area of precipitation and geographical factors in the Loess Platear[J]. Arid Land Geography, 1993, 16(2): 71-76.
穆兴民, 陈国良. 黄土高原降水与地理因素的空间结构趋势面分析[J]. 干旱区地理, 1993, 16(2): 71-76.
17 WANG J J, CHI Y N, SHI B, et al. Long-term spatiotemporal variability of precipitation and its linkages with atmospheric teleconnections in the Yellow River Basin, China[J]. Journal of Water and Climate Change, 2023, 14(3): 900-915.
18 LIU Yinge. Analysis on the change trend of precipitation in North Shaanxi Province in the Loess Plateau[J]. Arid Zone Research, 2007, 24(1): 49-55.
刘引鸽. 陕北黄土高原降水的变化趋势分析[J]. 干旱区研究, 2007, 24(1): 49-55.
19 WANG Chenghai, ZHANG Shengning, ZHANG Feimin, et al. On the increase of precipitation in the northwestern China under the global warming[J]. Advances in Earth Science, 2021, 36(9): 980-989.
王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
20 LIU Xiaodong, AN Zhisheng, FANG Jiangang, et al. Possible variations of precipitation over the Yellow River valley under the global-warming conditions[J]. Scientia Geographica Sinica, 2002, 22(5): 513-519.
刘晓东, 安芷生, 方建刚, 等. 全球气候变暖条件下黄河流域降水的可能变化[J]. 地理科学, 2002, 22(5): 513-519.
21 LI Chongyin, ZHU Jinhong, SUN Zhaobo. The study interdecadel climate variation[J]. Climatic and Environmental Research, 2002, 7(2): 209-219.
李崇银, 朱锦红, 孙照渤. 年代际气候变化研究[J]. 气候与环境研究, 2002, 7(2): 209-219.
22 SHAO Pengcheng, LI Dongliang, WANG Chunxue. Spatial and temporal changes of summer rain in the Yellow River Basin and its relation to the East Asia subtropical westerly jet in last 50 years[J]. Plateau Meteorology, 2015, 34(2): 347-356.
邵鹏程, 李栋梁, 王春学. 近50年黄河流域夏季降水的时空变化及其与东亚副热带西风急流的关系[J]. 高原气象, 2015, 34(2): 347-356.
23 LI X Y, LU R Y, LI G. Different configurations of interannual variability of the western North Pacific subtropical high and East Asian westerly jet in summer[J]. Advances in Atmospheric Sciences, 2021, 38(6): 931-942.
24 JIN L J, LIU G, WEI X C, et al. Joint contribution of preceding Pacific SST and Yunnan-Guizhou Plateau soil moisture to September precipitation over the middle reaches of the Yellow River[J]. Atmosphere, 2022, 13(10). DOI:10.3390/atmos13101737 .
25 XING Feng, HAN Rongqing, LI Weijing. Spatio-temporal variations of summer rainfall over Yellow River valley and its association with atmospheric circulation[J]. Meteorological Monthly, 2018, 44(10): 1 295-1 305.
邢峰, 韩荣青, 李维京. 夏季黄河流域降水气候特征及其与大气环流的关系[J]. 气象, 2018, 44(10): 1 295-1 305.
26 LIU Jing, WANG Chunqing, JIN Lijun, et al. Analysis of precipitation anomaly and its causes of the Yellow River Basin in July 2018[J]. Yellow River, 2022, 44(6): 28-33.
刘静, 王春青, 靳莉君, 等. 2018年7月黄河流域降水异常特征及其成因分析[J]. 人民黄河, 2022, 44(6): 28-33.
27 HAN Zuoqiang, ZHANG Xianzhi, LU Lu, et al. Influence analysis of El Niño on precipitation in main flood season of the Yellow River Basin[J]. Meteorological and Environmental Sciences, 2019, 42(1): 73-78.
韩作强, 张献志, 芦璐, 等. 厄尔尼诺现象对黄河流域汛期降水的影响分析[J]. 气象与环境科学, 2019, 42(1): 73-78.
28 ZHANG M J, CAO Q, ZHU F L, et al. The asymmetric effect of different types of ENSO and ENSO Modoki on rainy season over the Yellow River Basin, China[J]. Theoretical and Applied Climatology, 2022, 149(3): 1 567-1 581.
29 JIANG Dabang, WANG Na. Water cycle changes: interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699-704.
姜大膀, 王娜. IPCC AR6报告解读:水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704.
30 BADOR M, ALEXANDER L V. Future seasonal changes in extreme precipitation scale with changes in the mean[J]. Earth’s Future, 2022, 10(12). DOI:10.1029/2022EF002979 .
31 SUN B, ZHU Y L, WANG H J. The recent interdecadal and interannual variation of water vapor transport over eastern China[J]. Advances in Atmospheric Sciences, 2011, 28(5): 1 039-1 048.
32 ZHU Yali, WANG Huijun, ZHOU Wen,et al. Recent changes in the summer precipitation pattern in East China and the background circulation[J]. Climate Dynamics,2011,36(7/8):1 463-1 473.
33 SUN Bo, WANG Huijun, ZHOU Botao, et al. A review on the interannual and interdecadal variations of water vapor transport over China during past decades[J]. Advances in Water Science, 2020, 31(5): 644-653.
孙博, 王会军, 周波涛, 等. 中国水汽输送年际和年代际变化研究进展[J]. 水科学进展, 2020, 31(5): 644-653.
34 ZHOU Xiaoxia, DING Yihui, WANG Panxing. Moisture transpotr in Asian summer monsoon region and its relationship with summer precipitation in China[J]. Acta Meteorologica Sinica, 2008, 66(1): 59-70.
周晓霞, 丁一汇, 王盘兴. 夏季亚洲季风区的水汽输送及其对中国降水的影响[J]. 气象学报, 2008, 66(1): 59-70.
35 LI J, ZHAO Y, TANG Z F. Projection of future summer precipitation over the Yellow River Basin: a moisture budget perspective[J]. Atmosphere, 2020, 11(12). DOI:10.3390/atmos11121307 .
36 FU Guanghua. Mechanism and intervention mode of vegetation on the underlying surface affecting water cycle in arid and semi-arid watershed[J]. Journal of Green Science and Technology, 2022, 24(8): 1-6.
傅光华. 干旱半干旱流域下垫面植被影响水循环机理及干预方式[J]. 绿色科技, 2022, 24(8): 1-6.
37 LI Tiejian, SHI Kaifang, SU Yang, et al. Precipitation recycling characteristics of the upper and middle Yellow River Basin[J]. Yellow River, 2022, 44(2): 21-26.
李铁键, 史凯方, 苏洋, 等. 黄河中上游地区的水汽再循环特征[J]. 人民黄河, 2022, 44(2): 21-26.
38 YANG Yang, WANG Lijuan, HUANG Xiaoyan, et al. Analysis on spatio-temporal variation of evapotranspiration in the Yellow River Basin based on ERA5-Land products[J]. Journal of Arid Meteorology, 2023, 41(3): 390-402.
杨扬, 王丽娟, 黄小燕, 等. 基于ERA5-Land产品的黄河流域蒸散时空变化特征[J]. 干旱气象, 2023, 41(3): 390-402.
39 SUN B, WANG H J. Analysis of the major atmospheric moisture sources affecting three sub-regions of East China[J]. International Journal of Climatology, 2015, 35(9): 2 243-2 257.
40 SUN B, WANG H J. Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART[J]. Journal of Climate, 2014, 27(6): 2 457-2 474.
41 ZHANG S L, YANG D W, YANG Y T, et al. Excessive afforestation and soil drying on China’s Loess Plateau[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(3): 923-935.
42 GU Tonghui, GUAN Xiaodan, GAO Zhaokui, et al. Correlation analysis of evapotranspiration with air temperature, precipitation, and wind speed over the Yellow River Basin[J]. Journal of Meteorology and Environment, 2022, 38(1): 48-56.
谷同辉, 管晓丹, 高照逵, 等. 黄河流域蒸散发与气温和降水以及风速的相关性分析[J]. 气象与环境学报, 2022, 38(1): 48-56.
43 WANG Chenghai, YANG Jintao, YANG Kai, et al. Changing precipitation characteristics in the Yellow River Basin in the last 60 years and tendency prediction for next 30 years[J]. Arid Zone Research, 2022, 39(3): 708-722.
王澄海, 杨金涛, 杨凯, 等. 过去近60 a黄河流域降水时空变化特征及未来30 a变化趋势[J]. 干旱区研究, 2022, 39(3): 708-722.
44 WANG Dan, WANG Aihui. Applicability assessment of GPCC and CRU precipitation products in China during 1901 to 2013[J]. Climatic and Environmental Research, 2017, 22(4): 446-462.
王丹, 王爱慧. 1901—2013年GPCC和CRU降水资料在中国大陆的适用性评估[J]. 气候与环境研究, 2017, 22(4): 446-462.
45 SCHNEIDER U, BECKER A, FINGER P, et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle[J]. Theoretical and Applied Climatology, 2014, 115(1): 15-40.
46 SCHNEIDER U, FINGER T, RUSTEMEIER E, et al. Global precipitation analysis products of the GPCC[Z]. 2005.
47 XUE C D, WU H, JIANG X G. Temporal and spatial change monitoring of drought grade based on ERA5 analysis data and BFAST method in the Belt and Road area during 1989-2017[J]. Advances in Meteorology, 2019(428). DOI:10.1155/2019/4053718 .
48 MENG Xiangui, GUO Junjian, HAN Yongqing. Preliminarily assessment of ERA5 reanalysis data[J]. Journal of Marine Meteorology, 2018, 38(1): 91-99.
孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99.
49 DU Jiaqiang, SHU Jianmin, WANG Yuehui, et al. Comparison of GIMMS and MODIS normalized vegetation index composite data for Qinghai-Tibet Plateau[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 533-544.
杜加强, 舒俭民, 王跃辉, 等. 青藏高原MODIS NDVI与GIMMS NDVI的对比[J]. 应用生态学报, 2014, 25(2): 533-544.
50 FENSHOLT R, LANGANKE T, RASMUSSEN K, et al. Greenness in semi-arid areas across the globe 1981-2007—an Earth observing satellite based analysis of trends and drivers[J]. Remote Sensing of Environment, 2012, 121: 144-158.
51 CHEN Yanli, LONG Buju, PAN Xuebiao, et al. Differences between MODIS NDVI and AVHRR NDVI in monitoring grasslands change[J]. Journal of Remote Sensing, 2011, 15(4): 831-845.
陈燕丽, 龙步菊, 潘学标, 等. MODIS NDVI和AVHRR NDVI对草原植被变化监测差异[J]. 遥感学报, 2011, 15(4): 831-845.
52 ZHAO X, TAN K, ZHAO S, et al. Changing climate affects vegetation growth in the arid region of the northwestern China[J]. Journal of Arid Environments, 2011, 75(10): 946-952.
53 ZHOU S W, WU P, WANG C H, et al. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J]. Journal of Geographical Sciences, 2012, 22(5): 795-809.
54 TRENBERTH K E. Climate diagnostics from global analyses: conservation of mass in ECMWF analyses[J]. Journal of Climate, 1991, 4(7): 707-722.
55 HUANG X Q, GUAN X D, ZHU K W, et al. Influence of water vapor influx on interdecadal change in summer precipitation over the source area of the Yellow River Basin[J]. Atmospheric Research, 2022, 276. DOI:10.1016/j.atmosres.2022.106270 .
56 SUN B, ZHU Y L, WANG H J. The recent interdecadal and interannual variation of water vapor transport over eastern China[J]. Advances in Atmospheric Sciences, 2011, 28(5): 1 039-1 048.
57 DOMINGUEZ F, KUMAR P, LIANG X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate, 2006, 19(8): 1 513-1 530.
58 SODEMANN H, SCHWIERZ C, WERNLI H. Interannual variability of greenland winter precipitation sources: lagrangian moisture diagnostic and North Atlantic Oscillation influence[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D3). DOI: 10.1029/2007JD008503 .
59 REN Y, YU H P, LIU C X, et al. Attribution of dry and wet climatic changes over central Asia[J]. Journal of Climate, 2022, 35(5): 1 399-1 421.
60 BOLIN B, RODHE H. A note on the concepts of age distribution and transit time in natural reservoirs[J]. Tellus, 1973, 25(1): 58-62.
61 HUANG Ronghui, CHEN Jilong, ZHOU Liantong, et al. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 770-787.
黄荣辉, 陈际龙, 周连童, 等. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 2003, 27(4): 770-787.
62 SONG Lulu, YIN Yunhe, WU Shaohong. Advancements of the metrics of evapotranspiration[J]. Progress in Geography, 2012, 31(9): 1 186-1 195.
宋璐璐, 尹云鹤, 吴绍洪. 蒸散发测定方法研究进展[J]. 地理科学进展, 2012, 31(9): 1 186-1 195.
63 GU Jiahe, XUE Huazhu, DONG Guotao, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158-167.
谷佳贺, 薛华柱, 董国涛, 等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167.
64 CHEN Yixuan, WEN Jun, LIU Rong, et al. Study on the spatial-temporal distribution pattern of land surface evapotranspiration over the source region of the Yellow River[J]. Plateau and Mountain Meteorology Research, 2021, 41(4): 35-42.
陈怡璇, 文军, 刘蓉, 等. 黄河源区陆面蒸散量的时空分布特征研究[J]. 高原山地气象研究, 2021, 41(4): 35-42.
65 DONG J Z, AKBAR R, SHORT G D J, et al. Can surface soil moisture information identify evapotranspiration regime transitions?[J]. Geophysical Research Letters, 2022, 49(7). DOI: 10.1029/2021GL097697 .
66 LOIK M E, BRESHEARS D D, LAUENROTH W K, et al. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA[J]. Oecologia, 2004, 141(2): 269-281.
67 JIAN S Q, WANG A X, HU C H, et al. Effect of landscape restoration on evapotranspiration and water use in the Yellow River Basin, China[J]. Acta Geophysica, 2023. DOI:10.1007/s11600-023-01034-3 .
68 CHEN L D, WANG J P, WEI W, et al. Effects of landscape restoration on soil water storage and water use in the Loess Plateau Region, China[J]. Forest Ecology and Management, 2010, 259(7): 1 291-1 298.
69 ZHANG K X, JI Y, PENG J T, et al. Spatiotemporal variations in light precipitation events in the Yellow River Basin, China, and relationships with large-scale atmospheric circulation patterns[J]. Sustainability, 2022, 14(12). DOI:10.3390/su14126969 .
70 HU Zuheng, XU Zhongfeng, MA Zhuguo. Impact of increased greenhouse gas concentration and land use/land cover changes on diurnal temperature range in northern hemisphere[J]. Meteorological Monthly, 2017, 43(12): 1 453-1 460.
胡祖恒, 徐忠峰, 马柱国. 北半球温室气体和土地利用/覆盖变化对地面气温日较差的影响[J]. 气象, 2017, 43(12): 1 453-1 460.
71 WANG Q L, HUANG G, WANG L, et al. Mechanism of the summer rainfall variation in transitional climate zone in East Asia from the perspective of moisture supply during 1979-2010 based on the Lagrangian method[J]. Climate Dynamics, 2023, 60(3): 1 225-1 238.
72 WANG Nana, HAN Lei, LIU Lili, et al. Water vapor transport mechanisms for varied precipitation grades during the summer half-year in Yinchuan Plain[J]. Arid Zone Research, 2023, 40(9): 1 404-1 413.
王娜娜, 韩磊, 柳利利, 等. 银川平原夏半年不同等级降雨水汽输送机制[J]. 干旱区研究, 2023, 40(9): 1 404-1 413.
73 SHI Jiancheng, ZHAO Tianjie, YANG Xiaofeng. Global water cycle studies from the perspective of space Earth science[J]. National Remote Sensing Bulletin, 2021, 25(4): 847-855.
施建成, 赵天杰, 杨晓峰. 空间地球科学视角下的全球水循环研究[J]. 遥感学报, 2021, 25(4): 847-855.
74 LIU X F, FENG X M, FU B J. Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture[J]. The Science of the Total Environment, 2020, 698. DOI:10.1016/j.scitotenv.2019.134165 .
75 DENG Y H, WANG S J, BAI X Y, et al. Variation trend of global soil moisture and its cause analysis[J]. Ecological Indicators, 2020, 110. DOI:10.1016/j.ecolind.2019.105939 .
76 LI M X, MA Z G. Soil moisture drought detection and multi-temporal variability across China[J]. Science China Earth Sciences, 2015, 58(10): 1 798-1 813.
[1] 龚咏琪, 于海鹏, 周洁, 任钰, 魏韵, 程姗岭, 杨耀先, 罗红羽. 东亚干旱半干旱区水汽来源研究进展[J]. 地球科学进展, 2023, 38(2): 168-182.
[2] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[3] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[4] 况雪源, 韩跃超. 中全新世背景下中国区域气候对植被变化响应的降尺度模拟研究[J]. 地球科学进展, 2021, 36(12): 1301-1312.
[5] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[6] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[7] 刘忠方,田立德,姚檀栋,巩同梁,尹常亮. 水汽输送对雅鲁藏布江流域降水中稳定同位素的影响[J]. 地球科学进展, 2007, 22(8): 842-850.
[8] 刘昌明. “黄河流域水资源演化规律与可再生性维持机理”研究进展[J]. 地球科学进展, 2006, 21(10): 991-998.
[9] 王浩;严登华;秦大庸;王建华. 近50年来黄河流域400 mm等雨量线空间变化研究[J]. 地球科学进展, 2005, 20(6): 649-655.
阅读次数
全文


摘要