地球科学进展 ›› 2024, Vol. 39 ›› Issue (9): 945 -956. doi: 10.11867/j.issn.1001-8166.2024.070

研究论文 上一篇    下一篇

滇西南澜沧断裂带温泉溶解无机碳释放通量与成因
靳宇飞 1( ), 刘伟 2, 刘燚 1, 张茂亮 1( ), 徐胜 1   
  1. 1.天津大学 地球系统科学学院,天津 300072
    2.内蒙古工业大学 资源与环境工程学院,内蒙古 呼和浩特 010051
  • 收稿日期:2024-06-11 修回日期:2024-08-22 出版日期:2024-09-10
  • 通讯作者: 张茂亮 E-mail:1342510847@qq.com;mzhang@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(42072327);国家重点研发计划项目(2020YFA0607700)

Flux and Genesis of Dissolved Inorganic Carbon in Thermal Springs from the Lancang Fault Zone, Southwestern Yunnan

Yufei JIN 1( ), Wei LIU 2, Yi LIU 1, Maoliang ZHANG 1( ), Sheng XU 1   

  1. 1.School of Earth System Science, Tianjin University, Tianjin 300072, China
    2.School of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
  • Received:2024-06-11 Revised:2024-08-22 Online:2024-09-10 Published:2024-11-22
  • Contact: Maoliang ZHANG E-mail:1342510847@qq.com;mzhang@tju.edu.cn
  • About author:JIN Yufei, research area includes fluid geochemistry. E-mail: 1342510847@qq.com
  • Supported by:
    the National Natural Science Foundation of China(42072327);The National Key Research and Development Program of China(2020YFA0607700)

以青藏高原及其周边地区为代表的大陆碰撞带是现今全球最为典型的构造活跃区之一,但该地区活动断裂深部碳来源和释放通量的总体研究程度仍然不足。滇西南地区位于青藏高原东南缘,内部发育一系列左旋和右旋走滑断层,地震活动频发,水热活动丰富。对滇西南澜沧断裂带及其周边12个温泉的水化学组成和氢—氧同位素组成分析结果表明,温泉水为HCO3-Na型,补给来源主要为大气降水,并受到围岩矿物溶解和离子交换反应的影响。基于溶解无机碳浓度与碳同位素组成的质量平衡模型揭示了深部碳对溶解无机碳的贡献比例为46.9%~78.0%,结合温泉水流量估算得到澜沧断裂带深部碳释放通量约为440 t/a,进而推算得到滇西南地区溶解无机碳深部碳释放通量约为3×104 t/a。澜沧断裂带附近温泉的深部碳比例和释放通量均明显高于远离断裂带的温泉,证实走滑断层对深源含碳流体的形成和释放起到主要控制作用,为进一步理解滇西南地区活动断裂带深部碳释放的机制与规模提供了参考资料。

Degassing of CO2 from the solid Earth significantly influences the surface carbon cycle. In addition to volcanic activity, various types of active faults in nonvolcanic regions serve as crucial pathways for the migration and release of deep carbon to the surface. The continental collision zone, exemplified by the Tibetan Plateau and its surroundings, is one of the most tectonically active regions in the world. However, general research on deep carbon origins and outgassing rates of active faults remains limited. Southwestern Yunnan lies on the southeastern margin of the Tibetan Plateau and is characterized by a network of left- and right-lateral strike-slip faults. The area experiences frequent seismic events and abundant hydrothermal activity. The hydrochemical, hydrogen, and oxygen isotope compositions of 12 hot springs in the Lancang fault zone of southwestern Yunnan indicate that the hot spring water exhibits an HCO3-Na type composition, primarily sourced from atmospheric precipitation, and shows no significant contamination from magmatic or metamorphic fluids. During subsurface fluid circulation, it undergoes mineral dissolution and ion exchange reactions with the surrounding rock minerals, which are influenced by the dissolution of minerals, such as silicates, carbonates, and evaporites. A mass balance model based on the concentrations of Dissolved Inorganic Carbon (DIC) and its carbon isotopic compositions shows that the contribution of deep carbon to DIC is approximately 46.9%~78.0%, which, together with the flow rates of thermal spring water, yield an estimated deep carbon outflux of approximately 440 t/a for the Lancang fault zone. The total deep carbon outflux of the thermal springs in southwestern Yunnan was estimated to be approximately 3×104 t/a. The higher deep carbon fluxes and contributions observed in the thermal springs near the Lancang fault zone demonstrate the predominant influence of strike-slip faults on the origin and release of deeply sourced carbon-bearing fluids. Considering the tectonic context of the strike-slip movement, we suggest that the deformation and fracturing of deep rocks within the Lancang fault zone facilitated the migration of a significant volume of metamorphic CO2 and a minor portion of mantle-derived carbon to the shallow geothermal system. This process might have resulted in the formation of a reservoir enriched in CO2 fluids that could transfer carbon to the surface. These findings provide observational evidence that enhances our understanding of the mechanisms of deep carbon release in the active fault zones of southwestern Yunnan.

中图分类号: 

图1 滇西南澜沧断裂带地质简图
(a)滇西南及周边地区活动构造分布示意图;(b)澜沧断裂带及样品分布示意图;(c)澜沧断裂带剖面示意图,澜沧断裂带剖面A-B位于勐海县西北侧 16 ;(d)打洛断裂带剖面示意图,打洛断裂带剖面C-D位于勐海县东南侧 17
Fig. 1 Simplified geological map of the Lancang fault zonesouthwestern Yunnan
(a) Simplified map of active tectonics in southwestern Yunnan and its surrounding areas; (b) Map of the Lancang fault zone and sample distribution; (c) Profile of the Lancang fault zone, the A-B section of the Lancang fault zone is located in the northwest of Menghai County 16 ; (d) Profile of the Daluo fault zone, the C-D section of the Daluo fault zone is located in the southeast of Menghai County 17
表1 澜沧断裂带采样点与温泉水物理化学参数
Table 1 Sampling sites and physical and chemical parameters of thermal spring water in the Lancang fault zone
表2 澜沧断裂带温泉水主要离子浓度与氢—氧—碳同位素组成
Table 2 Major ion concentrations and H-O-C isotopic compositions of thermal spring water in the Lancang fault zone
图2 澜沧断裂带温泉水Piper三角图
鲜水河断裂带数据来自参考文献[ 13 ],腾冲火山区数据来自参考文献[ 21 ],普洱火山区数据来自参考文献[ 23
Fig. 2 Piper triangle diagram of thermal spring water in the Lancang fault zone
Data of Xianshuihe fault zone from reference [ 13 ], data of Tengchong volcanic area from reference [ 21 ], data of Pu’er volcanic area from reference [ 23
图3 澜沧断裂带温泉水δD H 2 O 18O H 2 O 关系图
Fig. 3 δD H 2 O 18O H 2 O diagram of thermal spring water in the Lancang fault zone
图4 澜沧断裂带温泉水离子协变关系
Fig. 4 Ion co-variation diagram of thermal spring water in the Lancang fault zone
图5 澜沧断裂带温泉水Na-K-Mg三角图
Fig. 5 Na-K-Mg triangle diagram of thermal spring water in the Lancang fault zone
表3 澜沧断裂带温泉水 DIC碳通量估算结果
Table 3 Estimated DIC fluxes of thermal springs in the Lancang fault zone
图6 基于Cextδ13Cext 的同位素质量平衡模型
Fig. 6 Isotope mass balance model based on Cext and δ13Cext
图7 澜沧断裂带温泉DIC深部碳比例(a)与释放通量(b)的空间变化
Fig. 7 Spatial variations in deep carbon proportionaand DIC fluxesbof thermal springs in the Lancang fault zone
1 IPCC. Climate change 2021: the physical science basis. working group I contribution to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021.
2 YANG Weidong, ZENG Lianbo, LI Xiang. Advances in research of carbon sinks and their influencing factors evaluation[J]. Advances in Earth Science, 2023, 38(2): 151-167.
杨卫东,曾联波,李想.碳汇效应及其影响因素研究进展[J].地球科学进展, 2023, 38(2): 151-167.
3 ISSON T T, PLANAVSKY N J, COOGAN L A, et al. Evolution of the global carbon cycle and climate regulation on Earth[J]. Global Biogeochemical Cycles, 2020, 34(2). DOI: 10.1029/2018GB006061 .
4 DEPAOLO D J. Sustainable carbon emissions: the geologic perspective[J]. MRS Energy Sustain, 2015, 2. DOI: 10.1557/mre.2015.10 .
5 FISCHER T P, AIUPPA A. AGU centennial grand challenge: volcanoes and deep carbon global CO2 emissions from subaerial volcanism—recent progress and future challenges[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3). DOI: 10.1029/2019GC008690 .
6 WERNER C, FISCHER T P, AIUPPA A, et al. Carbon dioxide emissions from subaerial volcanic regions[M]// Deep carbon. Cambridge: Cambridge University Press, 2019: 188-236.
7 ZHANG M L, XU S, SANO Y. Deep carbon recycling viewed from global plate tectonics[J]. National Science Review, 2024, 11(6). DOI: 10.1093/nsr/nwae089 .
8 XU Sheng, GUAN Lufeng, ZHANG Maoliang, et al. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(1): 139-155.
徐胜,管芦峰,张茂亮,等.青藏高原东缘鲜水河—安宁河断裂带深源气体释放[J].中国科学: 地球科学, 2022, 52(2): 291-308.
9 TAMBURELLO G, PONDRELLI S, CHIODINI G, et al. Global-scale control of extensional tectonics on CO2 Earth degassing[J]. Nature Communications, 2018, 9. DOI: 10.1038/s41467-018-07087-z .
10 CROSSEY L J, KARLSTROM K E, SPRINGER A E, et al. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—neotectonic connections and implications for groundwater systems[J]. GSA Bulletin, 2009, 121(7/8): 1 034-1 053.
11 LEE H, KIM H, KAGOSHIMA T, et al. Mantle degassing along strike-slip faults in the Southeastern Korean Peninsula[J]. Scientific Reports, 2019, 9. DOI:10.1038/s41598-019-51719-3 .
12 TAPPONNIER P, ZHIQIN X, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
13 LIU W, GUAN L F, LIU Y, et al. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: implications for regional seismic activity[J]. Journal of Hydrology, 2022, 607. DOI:10.1016/j.jhydrol.2022.127554 .
14 XIE X G, ZHANG M L, LIU W, et al. Active CO2 emissions from thermal springs in the Karakoram fault system and adjacent regions, western Tibetan Plateau[J]. Applied Geochemistry, 2024, 161. DOI: 10.1016/j.apgeochem.2024.105896 .
15 YANG Yexin, MENG Guojie, WU Weiwei, et al. Characteristics of deep and shallow tectonic deformation in southwest Yunnan[J]. Earthquake, 2023, 43 (1): 74-92.
杨业鑫,孟国杰,吴伟伟,等.滇西南地区深浅部构造变形特征[J].地震, 2023, 43(1): 74-92.
16 LIU Xingwang, YUAN Daoyang, ZHANG Bo, et al. Study of holocene slip rate and strike-slip initial time along the Lancang fault, southwestern Yunnan [J]. China Earthquake Engineering Journal, 2016, 38(3): 413-422.
刘兴旺,袁道阳,张波,等.滇西南地区澜沧断裂全新世滑动速率与走滑起始时间探讨[J].地震工程学报, 2016, 38(3): 413-422.
17 GAO Xiaodong, WANG Aiguo, YUAN Daoyang, et al. Characteristics of Late Quaternary activity along the Daluo fault in southwest Yunnan Province[J]. China Earthquake Engineering Journal, 2020, 42(1): 157-167.
高效东,王爱国,袁道阳,等.滇西南打洛断裂晚第四纪活动特征[J].地震工程学报, 2020, 42(1): 157-167.
18 ZHANG M L, GUO Z F, XU S, et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau[J]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-24415-y .
19 CHENG Zhihui, GUO Zhengfu, ZHANG Maoliang, et al. CO2 flux estimations of hot springs in the Tengchong Cenozoic volcanic field[J]. Acta Petrologica Sinica, 2012, 28(4): 1 217-1 224.
成智慧,郭正府,张茂亮,等.腾冲新生代火山区温泉CO2气体排放通量研究[J].岩石学报, 2012, 28(4): 1 217-1 224.
20 CHENG Zhihui, GUO Zhengfu, ZHANG Maoliang, et al. Carbon dioxide emissions from Tengchong Cenozoic volcanic field, Yunnan Province, SW China[J]. Acta Petrologica Sinica, 2014, 30(12): 3 657-3 670.
成智慧,郭正府,张茂亮,等.腾冲新生代火山区CO2气体释放通量及其成因[J].岩石学报, 2014, 30(12): 3 657-3 670.
21 GUO Q H, LIU M L, LI J X, et al. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): formed via magmatic fluid absorption or geothermal steam heating?[J]. Bulletin of Volcanology, 2014, 76(10). DOI: 10.1007/s00445-014-0868-9 .
22 ZHANG M L, GUO Z F, SANO Y, et al. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: implications for deep carbon cycle at intra-continent subduction zone[J]. Journal of Asian Earth Sciences, 2016, 127: 76-90.
23 ZHANG Y Q, ZHOU X, LIU H S, et al. Hydrogeochemistry, geothermometry, and genesis of the hot springs in the Simao Basin in southwestern China[J]. Geofluids, 2019. DOI:10.1155/2019/7046320 .
24 FENG Qinglai, LIU Benpei, YE Mei, et al. Age and tectonic setting of the Nanduan Formation and the Laba Group in Southwestern Yunnan[J]. Journal of Stratigraphy, 1996, 20(3): 183-189.
冯庆来,刘本培,叶玫,等.滇西南南段组和拉巴群地质时代及构造背景[J].地层学杂志, 1996, 20(3): 183-189.
25 ZHANG Binhui, WANG Hong, NIU Haobin, et al. Genesis and tectonic significance of volcanic rocks in the Lancang group of the Lincang terrane in Sanjiang, Southwest China[J]. Geoscience, 2024,38(4): 1 162-1 176.
张斌辉,王宏,牛浩斌,等.西南三江临沧地体澜沧岩群火山岩成因与构造意义[J].现代地质,2024,38(4): 1 162-1 176.
26 LIU Deli, LIU Jishun, ZHANG Caihua, et al. Geological characteristics and tectonic setting of Yunxian granite in the northern part of South Lancangjiang convergent margin, western Yunnan Province[J]. Acta Petrologica et Mineralogica, 2008, 27(1): 23-31.
刘德利, 刘继顺, 张彩华, 等. 滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境[J]. 岩石矿物学杂志, 2008, 27(1): 23-31.
27 XU Xiwei, HE Changrong. Study on the formation of new fault and its foreshock activity[M]// National Seismological Bureau, Institute of Geology. Study on active faults (5). Beijing: Earthquake Press, 1996.
徐锡伟,何昌荣.新生断层的形成及其前震活动性研究[M]//国家地震局地质研究所编.活动断裂研究(5). 北京: 地震出版社,1996.
28 ZHANG Peizhen, DENG Qidong, ZHANG Guomin, et al. Strong earthquake activities and active blocks in Chinese mainland[J]. Science in China Earth Sciences, 2003, 33(): 12-20.
张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J]. 中国科学: 地球科学, 2003, 33(增刊Ⅰ): 12-20.
29 LIU Xingwang, YUAN Daoyang, ZHANG Bo, et al. Geological and geomorphological evidence of tectonic activity of the Hanmuba-Lancang fault at southwestern Yunnan in Late Quaternary[J]. Northwestern Seismological Journal, 2013, 35(B12): 108-115.
刘兴旺,袁道阳,张波,等.滇西南地区汉母坝—澜沧断裂晚第四纪构造活动的地质地貌证据[J].西北地震学报, 2013, 35(B12): 108-115.
30 SHAO Yanxiu, YUAN Daoyang, LIANG Mingjian, et al. Seismic risk assessment of Longling-Lancang fault zone, southwestern Yunnan[J]. Earthquake Science, 2015, 37(6): 1 011-1 023.
邵延秀,袁道阳,梁明剑,等.滇西南地区龙陵—澜沧断裂带地震危险性评价[J].地震学报, 2015, 37(6): 1 011-1 023.
31 Yunnan Local Chronicles Compilation Committee General Compilation. Yunnan Provincial annals: thermal springs annals [M]. Kunming: The Peoples Press of Yunnan, 1999.
云南省地方志编纂委员会总纂.云南省志:温泉志[M].昆明: 云南人民出版社, 1999.
32 CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3 465): 1 702-1 703.
33 ZHANG Guiling, Yuanmei JUE, HE Liping, et al. Hydrogen and oxygen isotopes in precipitation in southwest China: progress and prospects[J]. Geoscience, 2015, 37(4): 1 094-1 103.
张贵玲,角媛梅,何礼平,等.中国西南地区降水氢氧同位素研究进展与展望[J].冰川冻土, 2015, 37(4): 1 094-1 103.
34 HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer, 2009.
35 ROBINSON D, SCRIMGEOUR C M. The contribution of plant C to soil CO2 measured using δ13C[J]. Soil Biology and Biochemistry, 1995, 27(12): 1 653-1 656.
36 MENZIES C D, TEAGLE D A H, CRAW D, et al. Incursion of meteoric waters into the ductile regime in an active orogen[J]. Earth and Planetary Science Letters, 2014, 399: 1-13.
37 GIGGENBACH W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2 749-2 765.
38 TANG Hongfeng, LIU Congqiang. Elementary geochemical study on the roles of fluids during metamorphism[J]. Advances in Earth Science, 2001, 16(4): 508-513.
唐红峰,刘丛强.变质流体作用的元素地球化学研究[J].地球科学进展, 2001, 16(4): 508-513.
39 GIGGENBACH W F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin[J]. Earth and Planetary Science Letters, 1992, 113(4): 495-510.
40 EVANS M J, DERRY L A, FRANCE-LANORD C. Degassing of metamorphic carbon dioxide from the Nepal Himalaya[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4). DOI: 10.1029/2007GC001796 .
41 CHIODINI G, CARDELLINI C, AMATO A, et al. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy[J]. Geophysical Research Letters, 2004, 31(7). DOI: 10.1029/2004GL019480 .
42 BECKER J A, BICKLE M J, GALY A, et al. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 616-629.
43 CHIODINI G, FRONDINI F, CARDELLINI C, et al. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8 423-8 434.
44 PINEAU F, JAVOY M. Carbon isotopes and concentrations in mid-oceanic ridge basalts[J]. Earth and Planetary Science Letters, 1983, 62(2): 239-257.
45 WANG Y C, ZHOU X C, TIAN J, et al. Volatile characteristics and fluxes of He-CO2 systematics in the southeastern Tibetan Plateau: constraints on regional seismic activities[J]. Journal of Hydrology, 2023, 617. DOI: 10.1016/j.jhydrol.2022.129042 .
46 XU Qisheng, WANG Rui, ZHANG Shengze, et al. Characteristics of metamorphic rock types and original rock restoration of the Lancang rock group in Lancang area, Yunnan Province[J]. Yunnan Geology, 2024, 43(2): 178-184.
徐启胜,王瑞,张生泽,等.云南澜沧地区澜沧岩群变质岩石类型特征与原岩恢复[J].云南地质, 2024, 43(2): 178-184.
47 PITCAIRN I K, TEAGLE D A H, CRAW D, et al. Sources of metals and fluids in orogenic gold deposits: insights from the otago and alpine schists, New Zealand[J]. Economic Geology, 2006, 101(8): 1 525-1 546.
48 EBERHARD L, PETTKE T. Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens[J]. Geochimica et Cosmochimica Acta, 2021, 300: 192-214.
49 ZHANG M L, XU S, ZHOU X C, et al. Deciphering a mantle degassing transect related with India-Asia continental convergence from the perspective of volatile origin and outgassing[J]. Geochimica et Cosmochimica Acta, 2021, 310: 61-78.
50 LIU W, ZHANG M L, CHEN B Y, et al. Hydrothermal He and CO2 degassing from a Y-shaped active fault system in eastern Tibetan Plateau with implications for seismogenic processes[J]. Journal of Hydrology, 2023, 620. DOI:10.1016/j. jhydrol. 2023.129482 .
51 STEWART E M, AGUE J J, FERRY J M, et al. Carbonation and decarbonation reactions: implications for planetary habitability[J]. American Mineralogist, 2019, 104(10): 1 369-1 380.
52 CARACAUSI A, BUTTITTA D, PICOZZI M, et al. Earthquakes control the impulsive nature of crustal helium degassing to the atmosphere[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00549-9 .
53 COLLETTINI C, VITI C, TESEI T, et al. Thermal decomposition along natural carbonate faults during earthquakes[J]. Geology, 2013, 41(8): 927-930.
54 ZHANG M L, XIE X G, LIU W, et al. Hydrothermal degassing through the Karakoram fault, western Tibet: insights into active deformation driven by continental strike‐slip faulting[J]. Geophysical Research Letters, 2024, 51(4). DOI: 10.1029/2023GL106647 .
[1] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[2] 赵军,郑国东,付碧宏. 活动断层的构造地球化学研究现状[J]. 地球科学进展, 2009, 24(10): 1130-1137.
[3] 倪师军,滕彦国,张成江,吴香尧. 成矿流体活动的地球化学示踪研究综述[J]. 地球科学进展, 1999, 14(4): 346-352.
[4] 张德会. 流体的沸腾和混合在热液成矿中的意义[J]. 地球科学进展, 1997, 12(6): 546-552.
阅读次数
全文


摘要