1 |
IPCC. Climate change 2021: the physical science basis. working group I contribution to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021.
|
2 |
YANG Weidong, ZENG Lianbo, LI Xiang. Advances in research of carbon sinks and their influencing factors evaluation[J]. Advances in Earth Science, 2023, 38(2): 151-167.
|
|
杨卫东,曾联波,李想.碳汇效应及其影响因素研究进展[J].地球科学进展, 2023, 38(2): 151-167.
|
3 |
ISSON T T, PLANAVSKY N J, COOGAN L A, et al. Evolution of the global carbon cycle and climate regulation on Earth[J]. Global Biogeochemical Cycles, 2020, 34(2). DOI: 10.1029/2018GB006061 .
|
4 |
DEPAOLO D J. Sustainable carbon emissions: the geologic perspective[J]. MRS Energy Sustain, 2015, 2. DOI: 10.1557/mre.2015.10 .
|
5 |
FISCHER T P, AIUPPA A. AGU centennial grand challenge: volcanoes and deep carbon global CO2 emissions from subaerial volcanism—recent progress and future challenges[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(3). DOI: 10.1029/2019GC008690 .
|
6 |
WERNER C, FISCHER T P, AIUPPA A, et al. Carbon dioxide emissions from subaerial volcanic regions[M]// Deep carbon. Cambridge: Cambridge University Press, 2019: 188-236.
|
7 |
ZHANG M L, XU S, SANO Y. Deep carbon recycling viewed from global plate tectonics[J]. National Science Review, 2024, 11(6). DOI: 10.1093/nsr/nwae089 .
|
8 |
XU Sheng, GUAN Lufeng, ZHANG Maoliang, et al. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(1): 139-155.
|
|
徐胜,管芦峰,张茂亮,等.青藏高原东缘鲜水河—安宁河断裂带深源气体释放[J].中国科学: 地球科学, 2022, 52(2): 291-308.
|
9 |
TAMBURELLO G, PONDRELLI S, CHIODINI G, et al. Global-scale control of extensional tectonics on CO2 Earth degassing[J]. Nature Communications, 2018, 9. DOI: 10.1038/s41467-018-07087-z .
|
10 |
CROSSEY L J, KARLSTROM K E, SPRINGER A E, et al. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—neotectonic connections and implications for groundwater systems[J]. GSA Bulletin, 2009, 121(7/8): 1 034-1 053.
|
11 |
LEE H, KIM H, KAGOSHIMA T, et al. Mantle degassing along strike-slip faults in the Southeastern Korean Peninsula[J]. Scientific Reports, 2019, 9. DOI:10.1038/s41598-019-51719-3 .
|
12 |
TAPPONNIER P, ZHIQIN X, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
|
13 |
LIU W, GUAN L F, LIU Y, et al. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: implications for regional seismic activity[J]. Journal of Hydrology, 2022, 607. DOI:10.1016/j.jhydrol.2022.127554 .
|
14 |
XIE X G, ZHANG M L, LIU W, et al. Active CO2 emissions from thermal springs in the Karakoram fault system and adjacent regions, western Tibetan Plateau[J]. Applied Geochemistry, 2024, 161. DOI: 10.1016/j.apgeochem.2024.105896 .
|
15 |
YANG Yexin, MENG Guojie, WU Weiwei, et al. Characteristics of deep and shallow tectonic deformation in southwest Yunnan[J]. Earthquake, 2023, 43 (1): 74-92.
|
|
杨业鑫,孟国杰,吴伟伟,等.滇西南地区深浅部构造变形特征[J].地震, 2023, 43(1): 74-92.
|
16 |
LIU Xingwang, YUAN Daoyang, ZHANG Bo, et al. Study of holocene slip rate and strike-slip initial time along the Lancang fault, southwestern Yunnan [J]. China Earthquake Engineering Journal, 2016, 38(3): 413-422.
|
|
刘兴旺,袁道阳,张波,等.滇西南地区澜沧断裂全新世滑动速率与走滑起始时间探讨[J].地震工程学报, 2016, 38(3): 413-422.
|
17 |
GAO Xiaodong, WANG Aiguo, YUAN Daoyang, et al. Characteristics of Late Quaternary activity along the Daluo fault in southwest Yunnan Province[J]. China Earthquake Engineering Journal, 2020, 42(1): 157-167.
|
|
高效东,王爱国,袁道阳,等.滇西南打洛断裂晚第四纪活动特征[J].地震工程学报, 2020, 42(1): 157-167.
|
18 |
ZHANG M L, GUO Z F, XU S, et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau[J]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-24415-y .
|
19 |
CHENG Zhihui, GUO Zhengfu, ZHANG Maoliang, et al. CO2 flux estimations of hot springs in the Tengchong Cenozoic volcanic field[J]. Acta Petrologica Sinica, 2012, 28(4): 1 217-1 224.
|
|
成智慧,郭正府,张茂亮,等.腾冲新生代火山区温泉CO2气体排放通量研究[J].岩石学报, 2012, 28(4): 1 217-1 224.
|
20 |
CHENG Zhihui, GUO Zhengfu, ZHANG Maoliang, et al. Carbon dioxide emissions from Tengchong Cenozoic volcanic field, Yunnan Province, SW China[J]. Acta Petrologica Sinica, 2014, 30(12): 3 657-3 670.
|
|
成智慧,郭正府,张茂亮,等.腾冲新生代火山区CO2气体释放通量及其成因[J].岩石学报, 2014, 30(12): 3 657-3 670.
|
21 |
GUO Q H, LIU M L, LI J X, et al. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong volcanic area (China): formed via magmatic fluid absorption or geothermal steam heating?[J]. Bulletin of Volcanology, 2014, 76(10). DOI: 10.1007/s00445-014-0868-9 .
|
22 |
ZHANG M L, GUO Z F, SANO Y, et al. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: implications for deep carbon cycle at intra-continent subduction zone[J]. Journal of Asian Earth Sciences, 2016, 127: 76-90.
|
23 |
ZHANG Y Q, ZHOU X, LIU H S, et al. Hydrogeochemistry, geothermometry, and genesis of the hot springs in the Simao Basin in southwestern China[J]. Geofluids, 2019. DOI:10.1155/2019/7046320 .
|
24 |
FENG Qinglai, LIU Benpei, YE Mei, et al. Age and tectonic setting of the Nanduan Formation and the Laba Group in Southwestern Yunnan[J]. Journal of Stratigraphy, 1996, 20(3): 183-189.
|
|
冯庆来,刘本培,叶玫,等.滇西南南段组和拉巴群地质时代及构造背景[J].地层学杂志, 1996, 20(3): 183-189.
|
25 |
ZHANG Binhui, WANG Hong, NIU Haobin, et al. Genesis and tectonic significance of volcanic rocks in the Lancang group of the Lincang terrane in Sanjiang, Southwest China[J]. Geoscience, 2024,38(4): 1 162-1 176.
|
|
张斌辉,王宏,牛浩斌,等.西南三江临沧地体澜沧岩群火山岩成因与构造意义[J].现代地质,2024,38(4): 1 162-1 176.
|
26 |
LIU Deli, LIU Jishun, ZHANG Caihua, et al. Geological characteristics and tectonic setting of Yunxian granite in the northern part of South Lancangjiang convergent margin, western Yunnan Province[J]. Acta Petrologica et Mineralogica, 2008, 27(1): 23-31.
|
|
刘德利, 刘继顺, 张彩华, 等. 滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境[J]. 岩石矿物学杂志, 2008, 27(1): 23-31.
|
27 |
XU Xiwei, HE Changrong. Study on the formation of new fault and its foreshock activity[M]// National Seismological Bureau, Institute of Geology. Study on active faults (5). Beijing: Earthquake Press, 1996.
|
|
徐锡伟,何昌荣.新生断层的形成及其前震活动性研究[M]//国家地震局地质研究所编.活动断裂研究(5). 北京: 地震出版社,1996.
|
28 |
ZHANG Peizhen, DENG Qidong, ZHANG Guomin, et al. Strong earthquake activities and active blocks in Chinese mainland[J]. Science in China Earth Sciences, 2003, 33(): 12-20.
|
|
张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块[J]. 中国科学: 地球科学, 2003, 33(增刊Ⅰ): 12-20.
|
29 |
LIU Xingwang, YUAN Daoyang, ZHANG Bo, et al. Geological and geomorphological evidence of tectonic activity of the Hanmuba-Lancang fault at southwestern Yunnan in Late Quaternary[J]. Northwestern Seismological Journal, 2013, 35(B12): 108-115.
|
|
刘兴旺,袁道阳,张波,等.滇西南地区汉母坝—澜沧断裂晚第四纪构造活动的地质地貌证据[J].西北地震学报, 2013, 35(B12): 108-115.
|
30 |
SHAO Yanxiu, YUAN Daoyang, LIANG Mingjian, et al. Seismic risk assessment of Longling-Lancang fault zone, southwestern Yunnan[J]. Earthquake Science, 2015, 37(6): 1 011-1 023.
|
|
邵延秀,袁道阳,梁明剑,等.滇西南地区龙陵—澜沧断裂带地震危险性评价[J].地震学报, 2015, 37(6): 1 011-1 023.
|
31 |
Yunnan Local Chronicles Compilation Committee General Compilation. Yunnan Provincial annals: thermal springs annals [M]. Kunming: The Peoples Press of Yunnan, 1999.
|
|
云南省地方志编纂委员会总纂.云南省志:温泉志[M].昆明: 云南人民出版社, 1999.
|
32 |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3 465): 1 702-1 703.
|
33 |
ZHANG Guiling, Yuanmei JUE, HE Liping, et al. Hydrogen and oxygen isotopes in precipitation in southwest China: progress and prospects[J]. Geoscience, 2015, 37(4): 1 094-1 103.
|
|
张贵玲,角媛梅,何礼平,等.中国西南地区降水氢氧同位素研究进展与展望[J].冰川冻土, 2015, 37(4): 1 094-1 103.
|
34 |
HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer, 2009.
|
35 |
ROBINSON D, SCRIMGEOUR C M. The contribution of plant C to soil CO2 measured using δ13C[J]. Soil Biology and Biochemistry, 1995, 27(12): 1 653-1 656.
|
36 |
MENZIES C D, TEAGLE D A H, CRAW D, et al. Incursion of meteoric waters into the ductile regime in an active orogen[J]. Earth and Planetary Science Letters, 2014, 399: 1-13.
|
37 |
GIGGENBACH W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2 749-2 765.
|
38 |
TANG Hongfeng, LIU Congqiang. Elementary geochemical study on the roles of fluids during metamorphism[J]. Advances in Earth Science, 2001, 16(4): 508-513.
|
|
唐红峰,刘丛强.变质流体作用的元素地球化学研究[J].地球科学进展, 2001, 16(4): 508-513.
|
39 |
GIGGENBACH W F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin[J]. Earth and Planetary Science Letters, 1992, 113(4): 495-510.
|
40 |
EVANS M J, DERRY L A, FRANCE-LANORD C. Degassing of metamorphic carbon dioxide from the Nepal Himalaya[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4). DOI: 10.1029/2007GC001796 .
|
41 |
CHIODINI G, CARDELLINI C, AMATO A, et al. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy[J]. Geophysical Research Letters, 2004, 31(7). DOI: 10.1029/2004GL019480 .
|
42 |
BECKER J A, BICKLE M J, GALY A, et al. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs[J]. Earth and Planetary Science Letters, 2008, 265(3/4): 616-629.
|
43 |
CHIODINI G, FRONDINI F, CARDELLINI C, et al. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8 423-8 434.
|
44 |
PINEAU F, JAVOY M. Carbon isotopes and concentrations in mid-oceanic ridge basalts[J]. Earth and Planetary Science Letters, 1983, 62(2): 239-257.
|
45 |
WANG Y C, ZHOU X C, TIAN J, et al. Volatile characteristics and fluxes of He-CO2 systematics in the southeastern Tibetan Plateau: constraints on regional seismic activities[J]. Journal of Hydrology, 2023, 617. DOI: 10.1016/j.jhydrol.2022.129042 .
|
46 |
XU Qisheng, WANG Rui, ZHANG Shengze, et al. Characteristics of metamorphic rock types and original rock restoration of the Lancang rock group in Lancang area, Yunnan Province[J]. Yunnan Geology, 2024, 43(2): 178-184.
|
|
徐启胜,王瑞,张生泽,等.云南澜沧地区澜沧岩群变质岩石类型特征与原岩恢复[J].云南地质, 2024, 43(2): 178-184.
|
47 |
PITCAIRN I K, TEAGLE D A H, CRAW D, et al. Sources of metals and fluids in orogenic gold deposits: insights from the otago and alpine schists, New Zealand[J]. Economic Geology, 2006, 101(8): 1 525-1 546.
|
48 |
EBERHARD L, PETTKE T. Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens[J]. Geochimica et Cosmochimica Acta, 2021, 300: 192-214.
|
49 |
ZHANG M L, XU S, ZHOU X C, et al. Deciphering a mantle degassing transect related with India-Asia continental convergence from the perspective of volatile origin and outgassing[J]. Geochimica et Cosmochimica Acta, 2021, 310: 61-78.
|
50 |
LIU W, ZHANG M L, CHEN B Y, et al. Hydrothermal He and CO2 degassing from a Y-shaped active fault system in eastern Tibetan Plateau with implications for seismogenic processes[J]. Journal of Hydrology, 2023, 620. DOI:10.1016/j. jhydrol. 2023.129482 .
|
51 |
STEWART E M, AGUE J J, FERRY J M, et al. Carbonation and decarbonation reactions: implications for planetary habitability[J]. American Mineralogist, 2019, 104(10): 1 369-1 380.
|
52 |
CARACAUSI A, BUTTITTA D, PICOZZI M, et al. Earthquakes control the impulsive nature of crustal helium degassing to the atmosphere[J]. Communications Earth & Environment, 2022, 3. DOI: 10.1038/s43247-022-00549-9 .
|
53 |
COLLETTINI C, VITI C, TESEI T, et al. Thermal decomposition along natural carbonate faults during earthquakes[J]. Geology, 2013, 41(8): 927-930.
|
54 |
ZHANG M L, XIE X G, LIU W, et al. Hydrothermal degassing through the Karakoram fault, western Tibet: insights into active deformation driven by continental strike‐slip faulting[J]. Geophysical Research Letters, 2024, 51(4). DOI: 10.1029/2023GL106647 .
|