Please wait a minute...
img img
高级检索
地球科学进展  2007, Vol. 22 Issue (8): 842-850    DOI: 10.11867/j.issn.1001-8166.2007.08.0842
研究论文     
水汽输送对雅鲁藏布江流域降水中稳定同位素的影响
刘忠方1,田立德1,2,姚檀栋1,2,巩同梁3,尹常亮2
1.中国科学院青藏高原研究所,北京 100085;2.中国科学院寒区旱区环境与工程研究所冰冻圈与环境联合重点实验室,甘肃 兰州 730000; 3.西藏水利规划勘测设计研究院,西藏 拉萨 850000
Influence of Moisture Transport on Stable Isotope in Precipitation
LIU Zhong-fang1, TIAN Li-de1,2, YAO Tan-dong1,2, GONG Tong-liang3, YIN Chang-liang2
1.Institute of Tibetan Plateau Research, CAS, Beijing 100085,China;2.Key Laboratory of Cryosphere and Environment, CAREERI, CAS, Lanzhou 730000, China;3.Institute of Tibetan Water Resource Reconnaissance and Designing, Lhasa 850000,China
 全文: PDF(2935 KB)  
摘要:

利用NCEP/NCAR全球大气再分析格点资料和2005年西藏雅鲁藏布江流域4个站点(拉孜、奴各沙、羊村和奴下)降水中δ18O数据,分析了雅鲁藏布江流域降水中δ18O变化同水汽输送通量的关系。从空间上来看,雅鲁藏布江流域降水中δ18O同水汽输送通量呈明显的正相关,从下游至上游,随着水汽输送通量的减少,降水中的δ18O逐渐降低;从时间上来看,春季水汽通量较小,降水中的δ18O较高,而在夏季,水汽通量大,降水中的δ18O较低。在此基础上,又利用NCEP/NCAR气象数据建立水汽追踪模型,以羊村站为例对雅鲁藏布江流域降水的水汽输送过程进行了追踪模拟,并讨论了降水中δ18O变化同水汽源地以及输送过程的关系。结果发现,在季风降水之前的春季,降水中较高的δ18O主要受西风带水汽输送以及当地蒸发水汽的影响;在季风期间,降水中较低的δ18O主要受来自印度洋暖湿水汽输送的影响。

关键词: 水汽通量δ18O降水水汽输送过程雅鲁藏布江流域    
Abstract:

Relation between variation of δ18O in precipitation in Yarlungzangbo River basin and the moisture flux was analyzed with NCEP/NCAR reanalysis grid data and δ18O in precipitation at four stations ( Lazi, Nugesha, Yangcun and Nuxia ) of the region investigated. For the spatial variations, there is obviously positive correlation between them for the whole basin. With the decrease of moisture flux from the downstream to the upstream,δ18O in precipitation becomes lower gradually. However, for the temporal variations, higher δ18O in precipitation of spring is linked to small moisture flux and low δ18O in precipitation of summer is linked to large moisture flux. And then, a model involving meteorological data from NCEP/NCAR was established and successfully traced the moisture transport trajectories at Yangcun station. Based on the traced results and δ18O in precipitation at Yangcun station, the relation between δ18O in precipitation in Yarlungzangbo River basin and the moisture transport history was discussed. We found that humid marine air mass from the Indian Ocean in general had significantly lower δ18O values than continental air mass from north or local re-evaporation. The fluctuation of δ18O in precipitation during monsoon season is very pronounced and the lower values are usually related to far distance and multilayer of moisture transport, as well as moisture crossing the Himalaya Mountain.

Key words: δ18O    Moisture flux    Yarlungzangbo river basin.    Precipitation    Moisture transport
收稿日期: 2007-03-19 出版日期: 2007-08-10
:  P426.61+2  
基金资助:

国家自然科学基金项目“青藏高原大气水汽中稳定同位素与水汽输送过程研究”(编号:40671043);国家重点基础研究发展计划项目“青藏高原环境变化及其对全球变化的响应与适应对策”(编号:2005CB422002);国家自然科学基金创新群体科学基金项目“冰芯与寒区环境”(编号:40121101)资助.

通讯作者: 刘忠方(1975-),男,山西临汾人,在读博士生, 主要从事青藏高原稳定同位素水文方面研究.E-mail:liuzf406@126.com     E-mail: liuzf406@126.com
作者简介: 刘忠方(1975-),男,山西临汾人,在读博士生, 主要从事青藏高原稳定同位素水文方面研究.E-mail:liuzf406@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
巩同梁
刘忠方
姚檀栋
尹常亮
田立德

引用本文:

刘忠方,田立德,姚檀栋,巩同梁,尹常亮. 水汽输送对雅鲁藏布江流域降水中稳定同位素的影响[J]. 地球科学进展, 2007, 22(8): 842-850.

LIU Zhong-fang, TIAN Li-de, YAO Tan-dong, GONG Tong-liang, YIN Chang-liang. Influence of Moisture Transport on Stable Isotope in Precipitation. Advances in Earth Science, 2007, 22(8): 842-850.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2007.08.0842        http://www.adearth.ac.cn/CN/Y2007/V22/I8/842

[1]Dansgarrd W. Stable isotopes in precipitation[J].Tellus,1964,16(4):436-468.
[2]Lawrence J R, White J W C. The elusive climate signal in the isotopic composition of  precipitation[C]//Taylor H P, O'Neil J R, Kaplan I R. Stable Isotope Geochemistry: A Tribute to Samuel Epstein.The Geochemical Society Special Publication,1991,3:169-185.
[3]Joussaume S, Sadourny R, Vignal C. Origin of precipitating water in a numerical simulation of the July climate[J].Ocean Air Interaction,1986,1:43-56.
[4]Koster R D, Jouzel J, Suozzo R, et al. Global sources of local precipitation as determined by the NASA/GISS GCM[J].Geophysical Research Letters, 1986,13:121-124.
[5]Druyan L M, Koster R D.Sources of Sahel precipitation for simulated drought and rainy seasons[J].Journal of Climate,1989, 2: 1 438-1 446.
[6]Numaguti A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model[J].Journal of Geophysical Research,1999,104:1 957-1 972.
[7]Yamanaka T,Shimada J,Hamada Y, et al. Hydrogen and oxygen isotopes in precipitation in the northern part of the north China plain:Climatology and inter-storm variability[J].Hydrology Processes,2004,18:2 211-2 222.
[8]Gat J R, Carmi I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean sea area[J].Journal of Geophysical Research,1970,75:3 039-3 048.
[9]Lawrence J R, Gedzelman S D, White J W C,et al. Storm trajectories in eastern US D/H isotopic composition of precipitation[J].Nature,1982,296:638-640.
[10]Rindsberger M, Magaritz M, Carmi I, et al.The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean sea area[J].Geophysical  Research Letters,1983,10:43-46.
[11]Covey C, Haagenson P L. A model of oxygen isotope composition of precipitation: Implications for paleoclimate data[J]. Journal of Geophysical Research,1984,89:4 647-4 655.
[12]Hubner H, Kowski P, Hermichen W D,et al.Regional and temporal variations of Deuterium in the precipitation and atmospheric moisture of central Europe[C]//Isotope Hydrology 1978.Vienna:International Atomic Energy Agency, 1979.
[13]Schoch-Fisher, H,et al.Hydrometeorological factors controlling the time variation of D, δ18O and 3H in atmospheric water vapor and precipitation in the northern westwind belt[C]//Isotope Hydrology 1983. Vienna:International Atomic Energy Agency,1984.
[14]Rozanski K, Arguas L,Gongiantini R. Isotope patterns in modern global precipitation, Geophysical Monograph 78[C]//Climate Change in Continental Isotope Records. Washington DC:AGU,1993:1-36.
[15]Aravena R, Suzuki O,et al.Isotopic composition and origin of the precipitation in Northern Chile[J].Applied Geochemistry,1999, 14:411-422.
[16]Yao Tandong, Masson V, Jouzel J, et al.Relationship between δ18O  in precipitation and surface air temperature in the Urumqi river basin, east Tianshan mountain, China [J].Geophysical Research Letters,1999,26(23):3 473-3 480.
[17]Zhang Xinping, Shi Yafeng, Yao Tandong. Relation between δ18O  in atmospheric precipitation and temperature and precipitation[J].Chinese Geographical Science,1995,5(4):289-299.
[18]Yao Tandong, Thompson L G, Ellen Mosley-Thompson, et al.Climatological significance of δ18O  in north Tibetan ice cores [J].Journal of  Geophysical Research,1996,101(D23):29 531-29 537.
[19]Zhang Xinping, Shi Yafeng, Yao Tandong. Variational features of precipitation δ18O  in  northeast Qinghai-Tibet plateau[J].Science in China (Series B),1995, 25(5): 540-547.
[20]Wei Keqin, Lin Ruifen. Discuss on the impact of monsoon climate on isotope of precipitation in China [J].Geochemistry,1994,23 (1): 33-41.[卫克勤,林瑞芬.论季风气候对我国雨水同位素组成的影响[J].地球化学,1994,23(1):33-41.]
[21]Araguas-Araguas L, Rozanski K, Yurtsever Y, et al.Isotopes in Water Resources Management (Vol.1)[M]. Vienna: IAEA, Publication, 1995:355-357.
[22]Tian Lide, Yao Tandong, Pu Jianchen, et al.Characteristics of δ18O  in summer precipitation at Lhasa[J].Journal of Glaciology and Geocryology,1997,19(4): 33-40.[田立德,姚檀栋,蒲健辰,等.拉萨夏季降水中氧稳定同位素的变化特征[J].冰川冻土,1997,19(4): 33-40.]
[23]Tian Lide, Yao Tandong, Sun Weizhen. Stable isotope variation of precipitation in the middle of Qinghai-Tibetan plateau and monsoon activity[J].Geochimica,2001, 30(3): 2l7-222.[田立德,姚檀栋,孙维贞.青藏高原中部降水稳定同位素变化与季风活动[J].地球化学,2001,30(3):2l7-222.]
[24]Tian Lide, Yao Tandong, Numaguti A,et al.Relation between stable isotope in monsoon precipitation in southern Tibetan plateau and moisture transport history [J].Science in China(Series D),2001, 44(suppl.):267-274.
[25]Lin Z, Wu X.A preliminary analysis about the tracks of moisture transportation onthe Qinghai-Xizang plateau[J].Geograph Research,1990, 9 (3):30-49. 
[26]Gao Dengyi, Zou Han, Wang Wei, et al.Influence of water vapor pass along the Yarlungzangbo river on precipitation[J].Journal of Mountain Research,1985,3(4):239-249.[高登义,邹捍,王维,等.雅鲁藏布江水汽通道对降水的影响[J].山地研究,1985, 3(4): 239-249.]
[27]Liu Zhongfang, Tian Lide, Yao Tandong, et al.The temporal and spatial variations of δ18O  in precipitation of the Yarlungzangbo river basin[J].Acta Geographica Sinica,2007, 62(5):510-517.[刘忠方,田立德,姚檀栋,等. 雅鲁藏布江流域降水中δ18O 的时空变化[J].地理学报,2007,62(5):510-517.]
[28]Zhang Xinping, Masayoshi Nakawo, Koji Fujita,et al.The variation of precipitation δ18O  in Langtang Valley, Himalayas[J].Science in China (Series D), 2001, 31(3): 206-213.[章新平,中尾正义,藤田耕史,等.喜马拉雅山朗塘流域降水中δ18O 的变化[J].中国科学:D辑,2001, 31(3): 206-213.]
[29]Posmentier E S, Feng X H, Zhao M X. Seasonal variations of precipitation δ18O  in eastern  Asia[J].Journal of Geophysical Research,2004, 109, D23106, doi:10.1029/2004JD004510.

[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[3] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[4] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[5] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[6] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[7] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[8] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.
[9] 胡凯, 方小敏, 赵志军. 宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
[10] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[11] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[12] 张红梅, 吴炳方, 闫娜娜. 饱和水汽压差的卫星遥感研究综述[J]. 地球科学进展, 2014, 29(5): 559-568.
[13] 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.
[14] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[15] 李霞, 高艳红, 王婉昭, 蓝永超, 许建伟, 李凯. 黄河源区气候变化与GLDAS数据适用性评估[J]. 地球科学进展, 2014, 29(4): 531-540.