地球科学进展 ›› 2024, Vol. 39 ›› Issue (3): 221 -231. doi: 10.11867/j.issn.1001-8166.2024.018

综述与评述 上一篇    下一篇

对流边界层灰区尺度数值模拟研究进展
魏伟 1 , 2 , 3( ), 白嘉怡 1   
  1. 1.中国气象科学研究院 灾害天气国家重点实验室,北京 100081
    2.中国气象局地球系统数值预报中心,北京 100081
    3.中国气象局地球系统数值预报中心 重点开放实验室,北京 100081
  • 收稿日期:2024-01-15 修回日期:2024-02-21 出版日期:2024-03-10
  • 基金资助:
    国家自然科学基金(42375185);中国气象科学研究院科技发展基金(2022KJ017)

Research Progress on the Numerical Simulation at Gray-zone Scales of the Convective Boundary Layer

Wei WEI 1 , 2 , 3( ), Jiayi BAI 1   

  1. 1.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
    2.Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing 100081, China
    3.Key Laboratory of Earth System Modeling and Prediction China Meteorological Administration, Beijing 100081, China
  • Received:2024-01-15 Revised:2024-02-21 Online:2024-03-10 Published:2024-04-01
  • About author:WEI Wei, Associate professor, research areas include numerical simulations of atmospheric boundary layers. E-mail: weiw@cma.gov.cn
  • Supported by:
    the National Natural Science Foundation of China(42375185);The Science and Technology Development Foundation of Chinese Academy of Meteorological Sciences(2022KJ017)

随着计算能力的不断提高,数值天气预报模式的水平网格分辨率已经达到公里—次公里量级,这一网格尺度与对流边界层中的湍流特征尺度相当,数值模式可以对有组织对流结构进行解析计算。传统的一维边界层参数化方案(适用于几公里或更粗水平分辨率)和大涡模拟三维湍流闭合方案(适用于几十米以下水平分辨率)的假设条件在这一尺度上均不成立,称为对流边界层的灰区尺度。在讨论传统参数化方法的适用性和局限性的基础上,从理论、方案方法和影响3个方面介绍了对流边界层灰区尺度的研究进展,总结了近20年来国内外发展的各对流边界层灰区尺度模拟方法的特点,探讨了该尺度上边界层过程对数值模式中其他物理过程(如浅/深对流等)的影响,最后展望了未来可能的研究方向和思路。

As computing power continues to improve, the horizontal grid resolution of numerical weather prediction models has reached the kilometer-to-sub-kilometer scale. This grid scale is comparable to the characteristic turbulent scales in the convective boundary layer, allowing the numerical models to resolve the organized convective structures. The assumptions of traditional one-dimensional boundary layer parameterization schemes (suitable for horizontal resolutions of several kilometers or coarser) and large eddy simulation three-dimensional turbulent closure schemes (suitable for horizontal resolutions below several tens of meters) do not hold at this scale, which is referred to as the gray zone. This study discusses the applicability and limitations of traditional parameterization methods and introduces the gray zone of the convective boundary layer from three perspectives: theory, methodological approaches, and impact. It summarizes the characteristics of the simulation methods at the CBL gray zone scale developed over the past two decades and explores the impact of the boundary layer process simulation at this scale on other physical processes (e.g., shallow/deep convection) in numerical models. Further, we anticipate future research directions and approaches.

中图分类号: 

图1 大气运动的湍流能谱(据参考文献[ 3 ]修改)
Φ(κ)为能谱密度,横坐标κ为波数, Δ MESO Δ LES分别为中尺度模式和大涡模拟水平网格分辨率
物理量的系综平均值(也称期望)定义为样本数足够大时平均值的极限。雷诺在1985年采用的是体积平均,但假设其符合系综平均运算法则,所以湍流界以他的名字命名。雷诺平均(或系综平均)去除了所有的涡旋;空间平均去除了有限空间体积内的小涡旋、不影响尺度更大的涡旋。因此,在粗分辨率的中尺度模式和全球模式中( l<< Δ ),空间平均收敛到雷诺平均 6
Fig. 1 Turbulence spectrum in the atmospheremodified after reference 3 ])
The ordinate Φ(κ) is energy spectral density, the abscissa κ is wave number; Δ MESO and Δ LES are the horizontal gird resolution in the mesoscale models and LES, respectively
图2 对流边界层湍流特征长度 l 与模式网格分辨率 Δ 相对大小和参数化假设条件示意图(据参考文献[ 25 ]修改)
Fig. 2 Sketch showing comparison between CBL turbulent characteristic length l and model resolution Δ as well as the hypotheses for parametrizationmodified after reference 25 ])
图3 对流边界层中层500 m高度垂直速度水平分布大涡模拟(据参考文献[ 28 ]修改)
水平分辨率 Δ = 62.5 m;其他网格分辨率结果由空间滤波得到( Δ = 125 ~ 8 ? 000 m)
Fig. 3 Horizontal cross section of LES vertical velocity at 500 m altitudemodified after reference 28 ])
With a horizontal resolution Δ = 62.5 m,coarse graining of that data ( Δ = 125 ~ 8 ? 000 m)
表1 对流边界层灰区尺度自适应边界层参数化方案
Table 1 Summary of scale-adaptive planetary boundary layer parameterization schemes developed for the CBL gray zone

方案

分类

方案名称及出处 基础方案或模式 验证实验、适用性及应用情况

降尺度

方案

ShinHong, Shin和Hong,2015 40 YSU方案 12 干燥CBL理想实验和实际个例
与传统中尺度一维边界层方案相比,ShinHong方案具备从中尺度到灰区尺度的模拟连续性;在灰区尺度上可以很好地模拟出对流卷结构。已应用于WRF V3.7

—,

Ito等,2015 41

MYNN3方案 44 干燥CBL理想实验
与原MYNN3方案相比,新方案模拟的次网格—解析湍流强度比例更准确。已应用于WRF V3.8

SA-UW,

Wei等,2022 45

UW方案 11 干燥CBL理想实验和实际个例
在灰区尺度上,SA-UW方案对边界层平均场和高阶量的模拟显著优于传统一维边界层参数化方案,具备从中尺度到灰区尺度的模拟连续性

升尺度

方案

—,

Kitamura,2016 46

3DTKE方案 10 干燥CBL理想实验
与传统3DTKE方案相比,新方案考虑了湍流各向异性,在灰区尺度对热通量和速度方差垂直廓线的模拟准确性显著提升;但在大涡尺度上会高估次网格分量

DRM-Pr,

Shi等,2018 47

DRM模式 48 层积云顶边界层理想实验
DRM-Pr耦合了湍流Pr数参数化 49 。在大涡尺度上,对层积云顶边界层湍流动/势能后向散射的模拟优于传统大涡湍流闭合方案;在灰区尺度上,对云水、总水和位温的模拟具有优势

—,

Efstathiou等,2018 29

动力SMAG方案 50 干燥CBL理想实验
与标准SMAG方案相比,尺度依赖的动力SMAG方案对CBL灰区尺度一阶和二阶量垂直廓线以及对流启动过程的模拟均有所改进;但在近地层存在能量堆积

—,

Simon等,2019 51

DRM模式 48 干燥CBL理想实验
DRM模式在灰区尺度对位温廓线、热/动量通量和能谱的模拟显著优于传统SMAG和3DTKE方案

混合

方案

—,

Boutle等,

2014 37

Lock方案 38 52 ;SMAG 方案 8 - 9 层积云顶边界层实际个例
新方案改进了CBL灰区尺度上解析湍流向次网格湍流的转换过程。已应用于英国气象局业务预报模式

SMS-3DTKE,

Zhang等,

2018 43

考虑非局地热量 32 和动量通量 53 ;3DTKE方案 10 干燥CBL理想实验和实际个例
SMS-3DTKE方案包含了热/动量非局地项和水平扩散的尺度自适应性,在灰区尺度理想模拟和干燥CBL实际模拟中表现优于非自适应方案。已应用于WRF V4.2

DNB,

Efstathiou和Plant,

2019 54

YSU方案 12 ;动力SMAG方案 50 干燥CBL理想实验
与Boutle 37 方案相比,DNB方案采用了动力SMAG方案,可以更好地模拟湍流启动过程;与只采用动力SMAG方案相比 29 ,DNB方案包含了中尺度的非局地方案,在近中尺度上模拟连续性更好

Kurowski和Teixeira2018 55

Teixeira方案 56 3DTKE方案 10 干燥CBL理想实验
新方案在全尺度上的模拟具备连续性与传统3DTKE方案相比,在大涡尺度上模拟的湍流廓线系数更合理

Zhou等2021 57

改进的BouLac方案 58 - 59 ;TKE方案 60 干燥CBL理想实验
新方案对强不稳定CBL的模拟效果与ShinHong和SMS-3DTKE方案相当对弱不稳定和近中性CBL的模拟更具优势
1 STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Springer Netherlands, 1988.
2 SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmospheric physics[M]. 2nd ed. Beijing: Peking University Press, 2013.
盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 2版. 北京: 北京大学出版社, 2013.
3 WYNGAARD J C. Toward numerical modeling in the “Terra incognita”[J]. Journal of the Atmospheric Sciences, 2004, 61(14): 1 816-1 826.
4 ZHOU B W, SIMON J S, CHOW F K. The convective boundary layer in the Terra incognita[J]. Journal of the Atmospheric Sciences, 2014, 71(7): 2 545-2 563.
5 GERMANO M. Turbulence: the filtering approach[J]. Journal of Fluid Mechanics, 1992, 238: 325-336.
6 WYNGAARD J C. Turbulence in the atmosphere[M]. Cambridge, UK: Cambridge University Press, 2010.
7 SULLIVAN P P, PATTON E G. The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation[J]. Journal of the Atmospheric Sciences, 2011, 68(10): 2 395-2 415.
8 SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164.
9 LILLY D K. The representation of small-scale turbulence in numerical simulation experiments[C]. Pre-publication Review Copy, 1966. DOI:10.5065/D62R3PMM .
10 DEARDORFF J W. Stratocumulus-capped mixed layers derived from a three-dimensional model[J]. Boundary-Layer Meteorology, 1980, 18(4): 495-527.
11 BRETHERTON C S, PARK S. A new moist turbulence parameterization in the community atmosphere model[J]. Journal of Climate, 2009, 22(12): 3 422-3 448.
12 HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2 318-2 341.
13 COHEN A E, CAVALLO S M, CONIGLIO M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments[J]. Weather and Forecasting, 2015, 30(3): 591-612.
14 TROEN I B, MAHRT L. A simple model of the atmospheric boundary layer: sensitivity to surface evaporation[J]. Boundary-Layer Meteorology, 1986, 37(1): 129-148.
15 DEARDORFF J W. The counter-gradient heat flux in the lower atmosphere and in the laboratory[J]. Journal of the Atmospheric Sciences, 1966, 23(5): 503-506.
16 DEARDORFF J W. Parameterization of the planetary boundary layer for use in general circulation models[J]. Monthly Weather Review, 1972, 100(2): 93-106.
17 SIEBESMA A, TEIXEIRA J. An advection-diffusion scheme for the convective boundary layer: description and 1D results[C]// Physics, Engineering, Environmental Science, 2000.
18 SOARES P M M, MIRANDA P M A, SIEBESMA A P, et al. An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(604): 3 365-3 383.
19 SIEBESMA A P, SOARES P M M, TEIXEIRA J. A combined eddy-diffusivity mass-flux approach for the convective boundary layer[J]. Journal of the Atmospheric Sciences, 2007, 64(4): 1 230-1 248.
20 PERGAUD J, MASSON V, MALARDEL S, et al. A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction[J]. Boundary-Layer Meteorology, 2009, 132(1): 83-106.
21 CHING J, ROTUNNO R, LEMONE M, et al. Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models[J]. Monthly Weather Review, 2014, 142(9): 3 284-3 302.
22 SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3 [C]. NCAR Technical Note, 2008, 475: 113.
23 SHIN H H, DUDHIA J. Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: turbulence statistics in the dry convective boundary layer[J]. Monthly Weather Review, 2016, 144(3): 1 161-1 177.
24 LIU Mengjuan, ZHANG Xu, CHEN Baode. Assessment of the suitability of planetary boundary layer schemes at “grey zone” resolutions[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(1): 52-69.
刘梦娟, 张旭, 陈葆德. 边界层参数化方案在“灰色区域” 尺度下的适用性评估[J]. 大气科学, 2018, 42(1): 52-69.
25 CHOW F, SCHÄR C, BAN N, et al. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain[J]. Atmosphere, 2019, 10(5). DOI:10.3390/atmos10050274 .
26 RICARD D, LAC C, RIETTE S, et al. Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674): 1 327-1 341.
27 SKAMAROCK W C. Evaluating mesoscale NWP models using kinetic energy spectra[J]. Monthly Weather Review, 2004, 132(12): 3 019-3 032.
28 HONNERT R, MASSON V, COUVREUX F. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale[J]. Journal of the Atmospheric Sciences, 2011, 68(12): 3 112-3 131.
29 EFSTATHIOU G A, PLANT R S, BOPAPE M J M. Simulation of an evolving convective boundary layer using a scale-dependent dynamic smagorinsky model at near-gray-zone resolutions[J]. Journal of Applied Meteorology and Climatology, 2018, 57(9): 2 197-2 214.
30 de ROODE S R, DUYNKERKE P G, JONKER H J J. Large-eddy simulation: how large is large enough?[J]. Journal of the Atmospheric Sciences, 2004, 61(4): 403-421.
31 MALAVELLE F F, HAYWOOD J M, FIELD P R, et al. A method to represent subgrid-scale updraft velocity in kilometer-scale models: implication for aerosol activation[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4 149-4 173.
32 SHIN H H, HONG S Y. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions[J]. Journal of the Atmospheric Sciences, 2013, 70(10): 3 248-3 261.
33 SENEL C B, TEMEL O, MUÑOZ-ESPARZA D, et al. Gray zone partitioning functions and parameterization of turbulence fluxes in the convective atmospheric boundary layer[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(22). DOI:10.1029/2020JD033581 .
34 HONNERT R, MASSON V. What is the smallest physically acceptable scale for 1D turbulence schemes?[J]. Frontiers in Earth Science, 2014, 2. DOI:10.3389/feart.2014.00027 .
35 BEARE R J. A length scale defining partially-resolved boundary-layer turbulence simulations[J]. Boundary-Layer Meteorology, 2014, 151(1): 39-55.
36 EFSTATHIOU G A, BEARE R J. Quantifying and improving sub-grid diffusion in the boundary-layer grey zone[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(693): 3 006-3 017.
37 BOUTLE I A, EYRE J E J, LOCK A P. Seamless stratocumulus simulation across the turbulent gray zone[J]. Monthly Weather Review, 2014, 142(4): 1 655-1 668.
38 LOCK A P, BROWN A R, BUSH M R, et al. A new boundary layer mixing scheme. part I: scheme description and single-column model tests[J]. Monthly Weather Review, 2000, 128(9): 3 187-3 199.
39 EFSTATHIOU G A, BEARE R J, OSBORNE S, et al. Grey zone simulations of the morning convective boundary layer development[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 4 769-4 782.
40 SHIN H H, HONG S Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions[J]. Monthly Weather Review, 2015, 143(1): 250-271.
41 ITO J, NIINO H, NAKANISHI M, et al. An extension of the mellor-Yamada model to the Terra incognita zone for dry convective mixed layers in the free convection regime[J]. Boundary-Layer Meteorology, 2015, 157(1): 23-43.
42 ITO J, NIINO H, NAKANISHI M. Horizontal turbulent diffusion in a convective mixed layer[J]. Journal of Fluid Mechanics, 2014, 758: 553-564.
43 ZHANG X, BAO J W, CHEN B D, et al. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model[J]. Monthly Weather Review, 2018, 146(7): 2 023-2 045.
44 NAKANISHI M, NIINO H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. Journal of the Meteorological Society of Japan Series II, 2009, 87(5): 895-912.
45 WEI W, PENG X D, LIN Y L, et al. Extension and evaluation of university of Washington moist turbulence scheme to gray-zone scales[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(8). DOI:10.1029/2021MS002978 .
46 KITAMURA Y. Improving a turbulence scheme for the Terra incognita in a dry convective boundary layer[J]. Journal of the Meteorological Society of Japan Series II, 2016, 94(6): 491-506.
47 SHI X M, HAGEN H L, CHOW F K, et al. Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 611-637.
48 CHOW F K, STREET R L, XUE M, et al. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow[J]. Journal of the Atmospheric Sciences, 2005, 62(7): 2 058-2 077.
49 VENAYAGAMOORTHY S K, STRETCH D D. On the turbulent Prandtl number in homogeneous stably stratified turbulence[J]. Journal of Fluid Mechanics, 2010, 644: 359-369.
50 BOU-ZEID E, MENEVEAU C, PARLANGE M. A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows[J]. Physics of Fluids, 2005, 17(2). DOI:10.1063/1.1839152 .
51 SIMON J S, ZHOU B W, MIROCHA J D, et al. Explicit filtering and reconstruction to reduce grid dependence in convective boundary layer simulations using WRF-LES[J]. Monthly Weather Review, 2019, 147(5): 1 805-1 821.
52 BROWN A R, BEARE R J, EDWARDS J M, et al. Upgrades to the boundary-layer scheme in the met office numerical weather prediction model[J]. Boundary-Layer Meteorology, 2008, 128(1): 117-132.
53 NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-profile Model for the planetary boundary layer based on large eddy simulation data[J]. Boundary-Layer Meteorology, 2003, 107(2): 401-427.
54 EFSTATHIOU G A, PLANT R S. A dynamic extension of the pragmatic blending scheme for scale-dependent sub-grid mixing[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(719): 884-892.
55 KUROWSKI M J, TEIXEIRA J. A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 675-690.
56 TEIXEIRA J, CHEINET S. A simple mixing length formulation for the eddy-diffusivity parameterization of dry convection[J]. Boundary-Layer Meteorology, 2004, 110(3): 435-453.
57 ZHOU B W, LI Y H, MIAO S G. A scale-adaptive turbulence model for the dry convective boundary layer[J]. Journal of the Atmospheric Sciences, 2021, 78(5): 1 715-1 733.
58 BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta: scale model[J]. Monthly Weather Review, 1989, 117(8): 1 872-1 890.
59 ZHOU B W, LI Y H, ZHU K F. Improved length scales for turbulence kinetic energy-based planetary boundary layer scheme for the convective atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2020, 77(7): 2 605-2 626.
60 MOENG C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of the Atmospheric Sciences, 1984, 41(13): 2 052-2 062.
61 KAIMAL J C, FINNIGAN J J. Atmospheric boundary layer flows: their structure and measurement[M]. New York: Oxford University Press, 1994.
62 ZHOU B W, XUE M, ZHU K F. A grid-refinement-based approach for modeling the convective boundary layer in the gray zone: a pilot study[J]. Journal of the Atmospheric Sciences, 2017, 74(11): 3 497-3 513.
63 O’NEILL J J, CAI X M, KINNERSLEY R. A generalised stochastic backscatter model: large-eddy simulation of the neutral surface layer[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(692): 2 617-2 629.
64 BIELLO J, KHOUIDER B, MAJDA A J. A stochastic multicloud model for tropical convection[J]. Communications in Mathematical Sciences, 2010, 8(1): 187-216.
65 PALMER T N. Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(665): 841-861.
66 WANG Y H, CHENG X P, FEI J F, et al. Modeling the shallow cumulus-topped boundary layer at gray zone resolutions[J]. Journal of the Atmospheric Sciences, 2022, 79(9): 2 435-2 451.
67 VERRELLE A, RICARD D, LAC C. Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(687): 433-448.
68 HANLEY K E, PLANT R S, STEIN T H M, et al. Mixing-length controls on high-resolution simulations of convective storms[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141(686): 272-284.
69 MACHADO L A T, CHABOUREAU J P. Effect of turbulence parameterization on assessment of cloud organization[J]. Monthly Weather Review, 2015, 143(8): 3 246-3 262.
70 ITO J, HAYASHI S, HASHIMOTO A, et al. Stalled improvement in a numerical weather prediction model as horizontal resolution increases to the sub-kilometer scale[J]. SOLA, 2017, 13: 151-156.
71 VERRELLE A, RICARD D, LAC C. Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution[J]. Monthly Weather Review, 2017, 145(10): 3 947-3 967.
72 MOENG C H. A closure for updraft-downdraft representation of subgrid-scale fluxes in cloud-resolving models[J]. Monthly Weather Review, 2014, 142(2): 703-715.
73 STRAUSS C, RICARD D, LAC C, et al. Evaluation of turbulence parametrizations in convective clouds and their environment based on a large-eddy simulation[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(724): 3 195-3 217.
74 SHI X M, CHOW F K, STREET R L, et al. Key elements of turbulence closures for simulating deep convection at kilometer-scale resolution[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(3): 818-838.
75 SUN S W, ZHOU B W, XUE M, et al. Scale-similarity subgrid-scale turbulence closure for supercell simulations at kilometer-scale resolutions: comparison against a large-eddy simulation[J]. Journal of the Atmospheric Sciences, 2021, 78(2): 417-437.
76 KEALY J C, EFSTATHIOU G A, BEARE R J. The onset of resolved boundary-layer turbulence at grey-zone resolutions[J]. Boundary-Layer Meteorology, 2019, 171(1): 31-52.
[1] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[2] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
[3] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
阅读次数
全文


摘要