地球科学进展 ›› 2025, Vol. 40 ›› Issue (2): 155 -168. doi: 10.11867/j.issn.1001-8166.2025.010

大气海洋 上一篇    下一篇

中国地球气候系统模式在CMIP6中的影响力分析及CMIP7概况
李宸昊1,2(), 梁文钧1,2, 胡辉1,2, 董文杰1,2, 吕建华1,2   
  1. 1.中山大学 大气科学学院,广东 珠海 519082
    2.南方海洋科学与工程广东省 实验室(珠海),广东 珠海 519082
  • 收稿日期:2024-09-18 修回日期:2024-12-27 出版日期:2025-02-10
  • 基金资助:
    国家自然科学基金项目(U21A6001)

Influence Analysis of Chinese Earth & Climate System Model in CMIP6 and Overview of CMIP7

Chenhao LI1,2(), Wenjun LIANG1,2, Hui HU1,2, Wenjie DONG1,2, LÜJianhua1,2   

  1. 1.School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China
    2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Guangdong 519082, China
  • Received:2024-09-18 Revised:2024-12-27 Online:2025-02-10 Published:2025-04-17
  • About author:LI Chenhao, research areas include climate change and evaluation of Earth & climate models. E-mail: lichh8@mail2.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(U21A6001)

随着气候危机日益严峻,地球气候系统模式作为预估和应对未来气候变化的关键数值模拟工具,其重要性愈发凸显。耦合模式比较计划旨在推动模式发展并深化对地球气候系统的科学认知,已成为国际间模式交流与应用的核心平台。概述了中国参与第六次国际耦合模式比较计划的情况,并统计分析了中国地球气候系统模式在第六次国际耦合模式比较计划相关研究中的被引用情况、研究概况及特点。结果发现,中国模式应用广泛,影响力较大,但缺乏高被引的成果,需要整合资源集中发展代表模式。此外,简要介绍了正在筹备中的第七次国际耦合模式比较计划,并总结了中国在模式发展方面所面临的机遇与挑战。中国模式应用前景广阔,但仍有提升空间,应继续加大研发投入,保持国际竞争力,为继续深度参与全球气候变化治理做好准备。

As the climate crisis intensifies, Earth system models have become increasingly significant as critical numerical simulation tools for evaluating and addressing future climate change. The Coupled Model Intercomparison Project (CMIP), aimed at promoting model development and deepening the scientific understanding of the Earth's climate system, has become a central platform for international model exchange and application. This paper provides an overview of China’s participation in the Sixth Phase of CMIP (CMIP6), including a statistical analysis of citations, research trends, and key characteristics of the Chinese Earth system models in CMIP6-related studies. In addition, the Seventh Coupled Model Intercomparison Project (CMIP7), which is currently under preparation, is briefly introduced, and the opportunities and challenges faced by China in model development are summarized. Through continuous technological innovation, international cooperation, and exchanges, Chinese scientists are expected to make greater breakthroughs in the field of Earth and Climate System Models and contribute to Chinese wisdom and solutions for global climate change response and governance.

中图分类号: 

表1 20162024年中国参加CMIP6的模式及其成果介绍性文章被引次数
Table 1 CMIP6 models from China during 2016-2024 and citation counts of their respective introduction
图1 参加CMIP6计划的各个国家和组织的模式介绍性文章总被引次数统计情况
Fig. 1 Statistics on the total citation frequency of introducing papers of models from various countries and organizations participating in the CMIP6 project
表2 统计时段内(20162024年)CMIP6计划模式介绍性文章被引次数前20名、高被引论文数及其归属国家/机构
Table 2 Top 20 most-cited CMIP6 project introduction papersnumbers of high cited papers and their corresponding2016-2024
表3 CMIP6相关研究的高频出现及高中心度关键词
Table 3 List of high-frequency occurrences and high centrality keywords in CMIP6 related research
图2 基于CiteSpaceCMIP6相关研究关键词共现网络及聚类图谱
Fig. 2 Research on keyword co-occurrence network and clustering graph of CMIP6 based on CiteSpace
表4 3个中国CMIP6模式被引文献关键词聚类结果
Table 4 Clustering results of keywords from three cited Chinese CMIP6 models
图3 CMIP7试验结构
包括核心试验评估与特征化实验,模式比较子计划试验(Community MIPs,CoMIPs),以及CMIP7新引进的具有问题针对性的“快速通道”(“AR7 Fast Track”)试验,引自https://wcrp-cmip.org/cmip7/#overview
Fig. 3 CMIP7 test structure
Includes the core experiment DECK (Diagnostic, Evaluation and Characterization of Klima), the community model comparison plan (Community MIPs,CoMIPs), and the problem targeted AR7 “Fast Track” experiment emphasized by CMIP7 (https://wcrp-cmip.org/cmip7/#overview)
图4 CMIP7计划时间线
引自国际气候与环境科学中心(CICERO)Benjamin Sanderson研究员2024年6月12日在CESM研讨会上的报告(https://www.cesm.ucar.edu/sites/default/files/2024-06/2024cesmbgcwgsanderson.pdf)
Fig. 4 CMIP7 plan timeline
Quoted from the report by Benjamin Sanderson, a researcher at the CICERO, at the CESM seminar on June 12, 2024(https://www.cesm.ucar.edu/sites/default/files/2024-06/2024cesmbgcwgsanderson.pdf)
1 ZHOU Tianjun, CHEN Ziming, ZOU Liwei, et al. Development of climate and Earth system models in China: past achievements and new CMIP6 fesults[J]. Acta Meteorologica Sinica202078(3): 332-350.
周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报202078(3): 332-350.
2 WANG Bin, ZHOU Tianjun, YU Yongqiang. A perspective on earth system model development[J]. Acta Meteorologica Sinica200866(6): 857-869.
王斌,周天军,俞永强. 地球系统模式发展展望[J].气象学报200866(6): 857-869.
3 National Academies of Sciences, Engineering, and Medicine. A national strategy for advancing climate modeling [M]. Washington, D.C.: The National Academies Press, 2012.
4 Office Met. Weather and climate science and services in a changing world [R/OL]. [2024-01-02]. .
5 DURACK P J, TAYLOR K E, MIZIELINSKI M, et al. CMIP6 Controlled Vocabularies (CVs) (6.2.58.73) [DB]. Zenodo, 2024.
6 WU T W, YU R C, LU Y X, et al. BCC-CSM2-HR: a high-resolution version of the Beijing climate center climate system model[J]. Geoscientific Model Development202114(5): 2 977-3 006.
7 WU T W, LU Y X, FANG Y J, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development201912(4): 1 573-1 600.
8 WU T W, ZHANG F, ZHANG J, et al. Beijing Climate Center Earth System Model Version 1 (BCC-ESM1): model description and evaluation of aerosol simulations[J]. Geoscientific Model Development202013(3): 977-1 005.
9 JI D, WANG L, FENG J, et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1[J]. Geoscientific Model Development20147(5): 2 039-2 064.
10 RONG Xinyao, LI Jian, CHEN Haoming, et al. Introduction of CAMS-CSM model and its participation in CMIP6[J]. Climate Change Research201915(5): 540-544.
容新尧, 李建, 陈昊明, 等. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展201915(5): 540-544.
11 ZHANG H, ZHANG M H, JIN J B, et al. Description and climate simulation performance of CAS-ESM version 2[J]. Journal of Advances in Modeling Earth Systems202012(12). DOI:10.1029/2020MS002210 .
12 LIN Y L, HUANG X M, LIANG Y S, et al. Community Integrated Earth System Model (CIESM): description and evaluation[J]. Journal of Advances in Modeling Earth Systems202012(8). DOI:10.1029/2019MS002036 .
13 BAO Q, LIU Y M, WU G X, et al. CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6[J]. Atmospheric and Oceanic Science Letters202013(6): 576-581.
14 HE B, BAO Q, WANG X C, et al. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation[J]. Advances in Atmospheric Sciences201936(8): 771-778.
15 LI L J, LIN P F, YU Y Q, et al. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2[J]. Advances in Atmospheric Sciences201330(3): 543-560.
16 BAO Y, SONG Z Y, QIAO F L. FIO-ESM version 2.0: model description and evaluation[J]. Journal of Geophysical Research: Oceans2020125(6). DOI:10.1029/2019JC016036 .
17 CAO Jian, MA Libin, LI Juan, et al. Introduction of NUIST-ESM model and its CMIP6 activities[J]. Advances in Climate Change Research201915(5): 566-570.
曹剑,马利斌, 李娟,等. NUIST-ESM模式及其参与CMIP6的方案. 气候变化研究进展201915(5): 566-570.
18 LEE W L, WANG Y C, SHIU C J, et al. Taiwan Earth system model version 1: description and evaluation of mean state[J]. Geoscientific Model Development202013(9): 3 887-3 904.
19 ZHOU Tianjun, ZOU Liwei, CHEN Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research201915(5): 445-456.
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展201915(5): 445-456.
20 NIE S P, FU S W, CAO W H, et al. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model[J]. Theoretical and Applied Climatology2020140(1): 487-502.
21 LI J D, MIAO C Y, WEI W, et al. Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979-2014[J]. Journal of Advances in Modeling Earth Systems202113(6). DOI:10.1029/2021MS002515 .
22 HAYASHI M, SHIOGAMA H, OGURA T. The contribution of climate change to increasing extreme ocean warming around Japan[J]. Geophysical Research Letters202249(19). DOI: 10.1029/2022GL100785 .
23 CHEN Yue, CHEN Chaomei, LIU Zeyuan, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science201533(2): 242-253.
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究201533(2): 242-253.
24 CAI W J, NG B, WANG G J, et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios[J]. Nature Climate Change202212: 228-231.
25 PLANTON Y Y, GUILYARDI E, WITTENBERG A T, et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package[J]. Bulletin of the American Meteorological Society2021102(2): E193-E217.
26 HIRABAYASHI Y, TANOUE M, SASAKI O, et al. Global exposure to flooding from the new CMIP6 climate model projections[J]. Scientific Reports202111(1). DOI:10.1038/s41598-021-83279-w .
27 IYAKAREMYE V, ZENG G, YANG X Y, et al. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century[J]. Science of the Total Environment2021, 790. DOI: 10.1016/j.scitotenv.2021.148162 .
28 MONDAL S K, HUANG J L, WANG Y J, et al. Doubling of the population exposed to drought over south Asia: CMIP6 multi-model-based analysis[J]. Science of the Total Environment2021, 771. DOI: 10.1016/j.scitotenv.2021.145186 .
29 CHIANG F, MAZDIYASNI O, AGHAKOUCHAK A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity[J]. Nature Communications202112(1). DOI:10.1038/s41467-021-22314-w .
30 DONG S Y, SUN Y, LI C, et al. Attribution of extreme precipitation with updated observations and CMIP6 simulations[J]. Journal of Climate34(3): 871-881.
31 TURNOCK S T, ALLEN R J, ANDREWS M, et al. Historical and future changes in air pollutants from CMIP6 models[J]. Atmospheric Chemistry and Physics202020(23): 14 547-14 579.
32 SHI X D, WANG J W, ZHANG L, et al. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model[J]. Ecological Indicators2023, 148. DOI:10.1016/j.ecolind.2023.110093 .
33 XIN X G, WU T W, ZHANG J, et al. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon[J]. International Journal of Climatology202040(15): 6 423-6 440.
34 ZHENG Y Q, CHEN S F, CHEN W, et al. A continuing increase of the impact of the spring north Pacific meridional mode on the following winter El Niño and Southern Oscillation[J]. Journal of Climate202336(2): 585-602.
35 YAZDANDOOST F, MORADIAN S, IZADI A, et al. Evaluation of CMIP6 precipitation simulations across different climatic zones: uncertainty and model intercomparison[J]. Atmospheric Research2021, 250. DOI:10.1016/j.atmosres.2020.105369 .
36 TRAN T N D, DO S K, NGUYEN B Q, et al. Investigating the future flood and drought shifts in the transboundary srepok river basin using CMIP6 projections[C]// IEEE journal of selected topics in applied earth observations and remote sensing. IEEE, 2024: 7 516-7 529.
37 XIN X G, WU T W, ZHENG M Z, et al. Decadal prediction of Northeast Asian winter precipitation with CMIP6 models[J]. Climate Dynamics202462(5): 3 245-3 259.
38 ZHAO C B, LI Q Q, NIE Y, et al. The reversal of surface air temperature anomalies in China between early and late winter 2021/2022: observations and predictions[J]. Advances in Climate Change Research202314(5): 660-670.
39 AL-YAARI A, ZHAO Y, CHERUY F, et al. Heatwave characteristics in the recent climate and at different global warming levels: a multimodel analysis at the global scale[J]. Earth’s Future202311(9). DOI: 10.1029/2022EF003301 .
40 PAIK S, MIN S K, ZHANG X B, et al. Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation[J]. Geophysical Research Letters202047(12). DOI: 10.1029/2019GL086875 .
41 DONG B W, SUTTON R T, SHAFFREY L, et al. Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions[J]. Nature Communications202213(1). DOI:10.1038/s41467-022-28816-5 .
42 FANG Y J, WU T W, HU A X, et al. A modified thermodynamic sea ice model and its application[J]. Ocean Modelling2022, 178. DOI:10.1016/j.ocemod.2022.102096 .
43 MUILWIJK M, NUMMELIN A, HEUZÉ C, et al. Divergence in climate model projections of future Arctic atlantification[J]. Journal of Climate202336(6): 1 727-1 748.
44 HEUZÉ C, LIU H L. No emergence of deep convection in the Arctic ocean across CMIP6 models[J]. Geophysical Research Letters202451(4). DOI: 10.5194/egusphere-egu24-3080 .
45 DING Yihui, LIU Yanju, XU Ying, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science202338(6): 551-562.
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候 “暖湿化” 趋势、成因及预估研究进展与展望[J]. 地球科学进展202338(6): 551-562.
46 DUNNE J P, HEWITT H T, ARBLASTER J, et al. An evolving Coupled Model Intercomparison Project phase 7 (CMIP7) and fast track in support of future climate assessment[J]. EGUsphere2024. DOI:10.5194/egusphere-2024-3874 .
47 ROBERTS M J, REED K A, BAO Q, et al. High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7[J]. Geoscientific Model Development202518(4): 1 307-1 332.
48 SANDERSON B M, BOOTH B B B, DUNNE J, et al. The need for carbon emissions-driven climate projections in CMIP7[J]. EGUsphere202417(22): 8 141-8 172.
49 WANG Huijun, XU Yongfu, ZHOU Tianjun, et al. Atmospheric science: a vigorous frontier science[J]. Advances in Earth Science200419(4): 525-532.
王会军,徐永福,周天军, 等. 大气科学:一个充满活力的前沿科学[J]. 地球科学进展200419(4): 525-532.
50 WANG Bin, ZHOU Tianjun, YU Yongqiang, et al. A perspective on Earth system model development[J]. Acta Meteorologica Sinica200866(6): 857-869.
王斌, 周天军, 俞永强, 等. 地球系统模式发展展望[J]. 气象学报200866(6): 857-869.
51 ZHOU Tianjun, ZOU Liwei, WU Bo, et al. Development of earth/climate system models in China: a review from the Coupled Model Intercomparison Project perspective[J]. Journal of Meteorological Research201472(5): 892-907.
周天军,邹立维,吴波,等. 中国地球气候系统模式研究进展:计划实施近20年回顾[J]. 气象学报201472(5): 892-907.
52 ZHOU Tianjun, ZHANG Wenxia, CHEN Deliang, et al. Understanding and building upon the pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: from the greenhouse effect to Earth system science and beyond[J]. Science China Earth Sciences202252(4): 579-594.
周天军,张文霞,陈德亮,等. 2021年诺贝尔物理学奖解读:从温室效应到地球系统科学[J].中国科学:地球科学202252(4):579-594.
53 ZHOU Guangqing, ZHANG Yunquan, JIANG Jinrong, et al. Earth system model: CAS-ESM[J]. Frontiers of Data & Computing20202(1): 38-54.
周广庆,张云泉,姜金荣,等. 地球系统模式CAS-ESM[J]. 数据与计算发展前沿20202(1): 38-54.
[1] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[2] 李煦骞, 李庆祥. 从地球能量收支估算角度理解全球变暖[J]. 地球科学进展, 2025, 40(1): 57-67.
[3] 李耀辉, 何思奇, 徐影. 航空与气候变暖研究进展[J]. 地球科学进展, 2024, 39(11): 1112-1122.
[4] 屈侠, 黄刚. 全球地表气温对CO2 浓度变化的非对称响应:能量平衡模式研究[J]. 地球科学进展, 2024, 39(6): 632-646.
[5] 程久菊, 吕新苗, 朱立平, 马庆峰, SIMA HUMAGAIN, KHUM PAUDAYAL N. 珠穆朗玛峰北坡桤木属大气花粉传输路径与来源[J]. 地球科学进展, 2024, 39(4): 419-428.
[6] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[7] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[8] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[9] 鲁学云, 季建清, 王丽宁, 钟大赉. 气候—构造—剥蚀相互作用研究进展与展望[J]. 地球科学进展, 2023, 38(3): 270-285.
[10] 朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球1.5/2.0 °C变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.
[11] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[12] 姜大膀, 田芝平, 王娜, 张冉. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13.
[13] 况雪源, 韩跃超. 中全新世背景下中国区域气候对植被变化响应的降尺度模拟研究[J]. 地球科学进展, 2021, 36(12): 1301-1312.
[14] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[15] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
阅读次数
全文


摘要