1 |
ZHOU Tianjun, CHEN Ziming, ZOU Liwei, et al. Development of climate and Earth system models in China: past achievements and new CMIP6 fesults[J]. Acta Meteorologica Sinica, 2020, 78(3): 332-350.
|
|
周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 2020, 78(3): 332-350.
|
2 |
WANG Bin, ZHOU Tianjun, YU Yongqiang. A perspective on earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869.
|
|
王斌,周天军,俞永强. 地球系统模式发展展望[J].气象学报,2008, 66(6): 857-869.
|
3 |
National Academies of Sciences, Engineering, and Medicine. A national strategy for advancing climate modeling [M]. Washington, D.C.: The National Academies Press, 2012.
|
4 |
Office Met. Weather and climate science and services in a changing world [R/OL]. [2024-01-02]. .
|
5 |
DURACK P J, TAYLOR K E, MIZIELINSKI M, et al. CMIP6 Controlled Vocabularies (CVs) (6.2.58.73) [DB]. Zenodo, 2024.
|
6 |
WU T W, YU R C, LU Y X, et al. BCC-CSM2-HR: a high-resolution version of the Beijing climate center climate system model[J]. Geoscientific Model Development, 2021, 14(5): 2 977-3 006.
|
7 |
WU T W, LU Y X, FANG Y J, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2019, 12(4): 1 573-1 600.
|
8 |
WU T W, ZHANG F, ZHANG J, et al. Beijing Climate Center Earth System Model Version 1 (BCC-ESM1): model description and evaluation of aerosol simulations[J]. Geoscientific Model Development, 2020, 13(3): 977-1 005.
|
9 |
JI D, WANG L, FENG J, et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1[J]. Geoscientific Model Development, 2014, 7(5): 2 039-2 064.
|
10 |
RONG Xinyao, LI Jian, CHEN Haoming, et al. Introduction of CAMS-CSM model and its participation in CMIP6[J]. Climate Change Research, 2019, 15(5): 540-544.
|
|
容新尧, 李建, 陈昊明, 等. CAMS-CSM模式及其参与CMIP6的方案[J]. 气候变化研究进展, 2019, 15(5): 540-544.
|
11 |
ZHANG H, ZHANG M H, JIN J B, et al. Description and climate simulation performance of CAS-ESM version 2[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12). DOI:10.1029/2020MS002210 .
|
12 |
LIN Y L, HUANG X M, LIANG Y S, et al. Community Integrated Earth System Model (CIESM): description and evaluation[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(8). DOI:10.1029/2019MS002036 .
|
13 |
BAO Q, LIU Y M, WU G X, et al. CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6[J]. Atmospheric and Oceanic Science Letters, 2020, 13(6): 576-581.
|
14 |
HE B, BAO Q, WANG X C, et al. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation[J]. Advances in Atmospheric Sciences, 2019, 36(8): 771-778.
|
15 |
LI L J, LIN P F, YU Y Q, et al. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2[J]. Advances in Atmospheric Sciences, 2013, 30(3): 543-560.
|
16 |
BAO Y, SONG Z Y, QIAO F L. FIO-ESM version 2.0: model description and evaluation[J]. Journal of Geophysical Research: Oceans, 2020, 125(6). DOI:10.1029/2019JC016036 .
|
17 |
CAO Jian, MA Libin, LI Juan, et al. Introduction of NUIST-ESM model and its CMIP6 activities[J]. Advances in Climate Change Research, 2019, 15(5): 566-570.
|
|
曹剑,马利斌, 李娟,等. NUIST-ESM模式及其参与CMIP6的方案. 气候变化研究进展,2019, 15(5): 566-570.
|
18 |
LEE W L, WANG Y C, SHIU C J, et al. Taiwan Earth system model version 1: description and evaluation of mean state[J]. Geoscientific Model Development, 2020, 13(9): 3 887-3 904.
|
19 |
ZHOU Tianjun, ZOU Liwei, CHEN Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456.
|
|
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
|
20 |
NIE S P, FU S W, CAO W H, et al. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model[J]. Theoretical and Applied Climatology, 2020, 140(1): 487-502.
|
21 |
LI J D, MIAO C Y, WEI W, et al. Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979-2014[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(6). DOI:10.1029/2021MS002515 .
|
22 |
HAYASHI M, SHIOGAMA H, OGURA T. The contribution of climate change to increasing extreme ocean warming around Japan[J]. Geophysical Research Letters, 2022, 49(19). DOI: 10.1029/2022GL100785 .
|
23 |
CHEN Yue, CHEN Chaomei, LIU Zeyuan, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253.
|
|
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
|
24 |
CAI W J, NG B, WANG G J, et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios[J]. Nature Climate Change, 2022, 12: 228-231.
|
25 |
PLANTON Y Y, GUILYARDI E, WITTENBERG A T, et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package[J]. Bulletin of the American Meteorological Society, 2021, 102(2): E193-E217.
|
26 |
HIRABAYASHI Y, TANOUE M, SASAKI O, et al. Global exposure to flooding from the new CMIP6 climate model projections[J]. Scientific Reports, 2021, 11(1). DOI:10.1038/s41598-021-83279-w .
|
27 |
IYAKAREMYE V, ZENG G, YANG X Y, et al. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century[J]. Science of the Total Environment, 2021, 790. DOI: 10.1016/j.scitotenv.2021.148162 .
|
28 |
MONDAL S K, HUANG J L, WANG Y J, et al. Doubling of the population exposed to drought over south Asia: CMIP6 multi-model-based analysis[J]. Science of the Total Environment, 2021, 771. DOI: 10.1016/j.scitotenv.2021.145186 .
|
29 |
CHIANG F, MAZDIYASNI O, AGHAKOUCHAK A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-22314-w .
|
30 |
DONG S Y, SUN Y, LI C, et al. Attribution of extreme precipitation with updated observations and CMIP6 simulations[J]. Journal of Climate, 34(3): 871-881.
|
31 |
TURNOCK S T, ALLEN R J, ANDREWS M, et al. Historical and future changes in air pollutants from CMIP6 models[J]. Atmospheric Chemistry and Physics, 2020, 20(23): 14 547-14 579.
|
32 |
SHI X D, WANG J W, ZHANG L, et al. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model[J]. Ecological Indicators, 2023, 148. DOI:10.1016/j.ecolind.2023.110093 .
|
33 |
XIN X G, WU T W, ZHANG J, et al. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon[J]. International Journal of Climatology, 2020, 40(15): 6 423-6 440.
|
34 |
ZHENG Y Q, CHEN S F, CHEN W, et al. A continuing increase of the impact of the spring north Pacific meridional mode on the following winter El Niño and Southern Oscillation[J]. Journal of Climate, 2023, 36(2): 585-602.
|
35 |
YAZDANDOOST F, MORADIAN S, IZADI A, et al. Evaluation of CMIP6 precipitation simulations across different climatic zones: uncertainty and model intercomparison[J]. Atmospheric Research, 2021, 250. DOI:10.1016/j.atmosres.2020.105369 .
|
36 |
TRAN T N D, DO S K, NGUYEN B Q, et al. Investigating the future flood and drought shifts in the transboundary srepok river basin using CMIP6 projections[C]// IEEE journal of selected topics in applied earth observations and remote sensing. IEEE, 2024: 7 516-7 529.
|
37 |
XIN X G, WU T W, ZHENG M Z, et al. Decadal prediction of Northeast Asian winter precipitation with CMIP6 models[J]. Climate Dynamics, 2024, 62(5): 3 245-3 259.
|
38 |
ZHAO C B, LI Q Q, NIE Y, et al. The reversal of surface air temperature anomalies in China between early and late winter 2021/2022: observations and predictions[J]. Advances in Climate Change Research, 2023, 14(5): 660-670.
|
39 |
AL-YAARI A, ZHAO Y, CHERUY F, et al. Heatwave characteristics in the recent climate and at different global warming levels: a multimodel analysis at the global scale[J]. Earth’s Future, 2023, 11(9). DOI: 10.1029/2022EF003301 .
|
40 |
PAIK S, MIN S K, ZHANG X B, et al. Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation[J]. Geophysical Research Letters, 2020, 47(12). DOI: 10.1029/2019GL086875 .
|
41 |
DONG B W, SUTTON R T, SHAFFREY L, et al. Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions[J]. Nature Communications, 2022, 13(1). DOI:10.1038/s41467-022-28816-5 .
|
42 |
FANG Y J, WU T W, HU A X, et al. A modified thermodynamic sea ice model and its application[J]. Ocean Modelling, 2022, 178. DOI:10.1016/j.ocemod.2022.102096 .
|
43 |
MUILWIJK M, NUMMELIN A, HEUZÉ C, et al. Divergence in climate model projections of future Arctic atlantification[J]. Journal of Climate, 2023, 36(6): 1 727-1 748.
|
44 |
HEUZÉ C, LIU H L. No emergence of deep convection in the Arctic ocean across CMIP6 models[J]. Geophysical Research Letters, 2024, 51(4). DOI: 10.5194/egusphere-egu24-3080 .
|
45 |
DING Yihui, LIU Yanju, XU Ying, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562.
|
|
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候 “暖湿化” 趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
|
46 |
DUNNE J P, HEWITT H T, ARBLASTER J, et al. An evolving Coupled Model Intercomparison Project phase 7 (CMIP7) and fast track in support of future climate assessment[J]. EGUsphere, 2024. DOI:10.5194/egusphere-2024-3874 .
|
47 |
ROBERTS M J, REED K A, BAO Q, et al. High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7[J]. Geoscientific Model Development, 2025, 18(4): 1 307-1 332.
|
48 |
SANDERSON B M, BOOTH B B B, DUNNE J, et al. The need for carbon emissions-driven climate projections in CMIP7[J]. EGUsphere, 2024,17(22): 8 141-8 172.
|
49 |
WANG Huijun, XU Yongfu, ZHOU Tianjun, et al. Atmospheric science: a vigorous frontier science[J]. Advances in Earth Science, 2004, 19(4): 525-532.
|
|
王会军,徐永福,周天军, 等. 大气科学:一个充满活力的前沿科学[J]. 地球科学进展,2004, 19(4): 525-532.
|
50 |
WANG Bin, ZHOU Tianjun, YU Yongqiang, et al. A perspective on Earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869.
|
|
王斌, 周天军, 俞永强, 等. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6): 857-869.
|
51 |
ZHOU Tianjun, ZOU Liwei, WU Bo, et al. Development of earth/climate system models in China: a review from the Coupled Model Intercomparison Project perspective[J]. Journal of Meteorological Research, 2014, 72(5): 892-907.
|
|
周天军,邹立维,吴波,等. 中国地球气候系统模式研究进展:计划实施近20年回顾[J]. 气象学报,2014,72(5): 892-907.
|
52 |
ZHOU Tianjun, ZHANG Wenxia, CHEN Deliang, et al. Understanding and building upon the pioneering work of Nobel Prize in Physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: from the greenhouse effect to Earth system science and beyond[J]. Science China Earth Sciences, 2022, 52(4): 579-594.
|
|
周天军,张文霞,陈德亮,等. 2021年诺贝尔物理学奖解读:从温室效应到地球系统科学[J].中国科学:地球科学,2022,52(4):579-594.
|
53 |
ZHOU Guangqing, ZHANG Yunquan, JIANG Jinrong, et al. Earth system model: CAS-ESM[J]. Frontiers of Data & Computing, 2020, 2(1): 38-54.
|
|
周广庆,张云泉,姜金荣,等. 地球系统模式CAS-ESM[J]. 数据与计算发展前沿, 2020, 2(1): 38-54.
|