1 |
CALLENDAR G S. The artificial production of carbon dioxide and its influence on temperature[J]. Quarterly Journal of the Royal Meteorological Society, 1938, 64(275): 223-240.
|
2 |
APPLEMAN H. The formation of exhaust condensation trails by Jet Aircraft[J]. Bulletin of the American Meteorological Society, 1953, 34(1): 14-20.
|
3 |
EISENBUD M. Inadvertent climate modification. Report of the Study of Man’S Impact on Climate (SMIC)[J]. The Quarterly Review of Biology, 1972, 47(4): 465-466.
|
4 |
KUHN P M. Airborne observations of contrail effects on the thermal radiation budget[J]. Journal of the Atmospheric Sciences, 1970, 27(6): 937-942.
|
5 |
REINKING R F. Insolation reduction by contrails[J]. Weather, 1968, 23(4): 171-173.
|
6 |
FRIEDL R R. Atmospheric effects of subsonic aircraft: interim assessment report of the advanced subsonic technology program[Z]. 1997.
|
7 |
SCHUMANN U. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the aeronox project[J]. Atmospheric Environment, 1997, 31(12): 1 723-1 733.
|
8 |
PENNER J E, LISTER D, GRIGGS D J, et al. Aviation and the global atmosphere: a special report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 1999.
|
9 |
BRASSEUR G P, GUPTA M, ANDERSON B E, et al. Impact of aviation on climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) phase II[J]. Bulletin of the American Meteorological Society, 2016, 97(4): 561-583.
|
10 |
LEE D S, FAHEY D W, SKOWRON A, et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018[J]. Atmospheric Environment, 2021, 244. DOI: 10.1016/J.Atmosenv.2020.117834 .
|
11 |
ADOPTED I. Climate change 2014 synthesis report[R]. IPCC: Geneva, Szwitzerland, 2014.
|
12 |
BURBIDGE R. Adapting aviation to a changing climate: key priorities for action[J]. Journal of Air Transport Management, 2018, 71: 167-174.
|
13 |
THOMPSON T R. Aviation and the impacts of climate change∙climate change impacts upon the commercial air transport industry: an overview[J]. Carbon & Climate Law Review, 2016, 10(2): 105-112.
|
14 |
PROSSER M C, WILLIAMS P D, MARLTON G J, et al. Evidence for large increases in clear-air turbulence over the past four decades[J]. Geophysical Research Letters, 2023, 50(11). DOI:10.1029/2023GL103814 .
|
15 |
SMITH I H, WILLIAMS P D, SCHIEMANN R. Clear-air turbulence trends over the north atlantic in high-resolution climate models[J]. Climate Dynamics, 2023, 61(7/8): 3 063-3 079.
|
16 |
STORER L N, WILLIAMS P D, JOSHI M M. Global response of clear‐air turbulence to climate change[J]. Geophysical Research Letters, 2017, 44(19): 9 976-9 984.
|
17 |
WILLIAMS P D. Increased light, moderate, and severe clear-air turbulence in response to climate change[J]. Advances in Atmospheric Sciences, 2017, 34(5): 576-586.
|
18 |
WILLIAMS P D, JOSHI M M. Intensification of winter transatlantic aviation turbulence in response to climate change[J]. Nature Climate Change, 2013, 3(7): 644-648.
|
19 |
KARNAUSKAS K B, DONNELLY J P, BARKLEY H C, et al. Coupling between air travel and climate[J]. Nature Climate Change, 2015, 5(12): 1 068-1 073.
|
20 |
IRVINE E A, SHINE K P, STRINGER M A. What are the implications of climate change for trans-Atlantic aircraft routing and flight time?[J]. Transportation Research Part D: Transport and Environment, 2016, 47: 44-53.
|
21 |
WILLIAMS P D. Transatlantic flight times and climate change[J]. Environmental Research Letters, 2016, 11(2). DOI:10.1088/1748-9326/11/2/024008 .
|
22 |
COFFEL E, HORTON R. Climate change and the impact of extreme temperatures on aviation[J]. Weather, Climate, and Society, 2015, 7(1): 94-102.
|
23 |
COFFEL E D, THOMPSON T R, HORTON R M. The impacts of rising temperatures on aircraft takeoff performance[J]. Climatic Change, 2017, 144(2): 381-388.
|
24 |
ZHOU T, REN L, LIU H, et al. Impact of 1.5 °C and 2.0 °C global warming on aircraft takeoff performance in China[J]. Science Bulletin, 2018, 63(11): 700-707.
|
25 |
GRATTON G, PADHRA A, RAPSOMANIKIS S, et al. The impacts of climate change on greek airports[J]. Climatic Change, 2020, 160(2): 219-231.
|
26 |
ZHOU Y, ZHANG N, LI C, et al. Decreased takeoff performance of aircraft due to climate change[J]. Climatic Change, 2018, 151(3/4): 463-472.
|
27 |
LEE D S, FAHEY D W, FORSTER P M, et al. Aviation and global climate change in the 21st century[J]. Atmospheric Environment, 2009, 43(22/23): 3 520-3 537.
|
28 |
LARSSON J, KAMB A, NÄSSÉN J, et al. Measuring greenhouse gas emissions from international air travel of a country’s residents methodological development and application for sweden[J]. Environmental Impact Assessment Review, 2018, 72: 137-144.
|
29 |
VAROTSOS C, KRAPIVIN V, MKRTCHYAN F, et al. On the effects of aviation on carbon-methane cycles and climate change during the period 2015-2100[J]. Atmospheric Pollution Research, 2021, 12(1): 184-194.
|
30 |
BECK J P, REEVES C E, de LEEUW F A A M, et al. The effect of aircraft emissions on tropospheric ozone in the northern hemisphere[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(1): 17-29.
|
31 |
STEVENSON D S, DOHERTY R M, SANDERSON M G, et al. Radiative forcing from aircraft NO emissions: mechanisms and seasonal dependence[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D17). DOI:10.1029/2004JD004759 .
|
32 |
GREWE V, GANGOLI RAO A, GRÖNSTEDT T, et al. Evaluating the climate impact of aviation emission scenarios towards the paris agreement including COVID-19 effects[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-24091-y .
|
33 |
RAP A, FORSTER P M, JONES A, et al. Parameterization of contrails in the UK Met Office Climate Model[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D10). DOI:10.1029/2009JD012443 .
|
34 |
SCHUMANN U. A contrail cirrus prediction model[J]. Geoscientific Model Development, 2012, 5(3): 543-580.
|
35 |
NAIMAN A D, LELE S K, WILKERSON J T, et al. Parameterization of subgrid plume dilution for use in large-scale atmospheric simulations[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2 551-2 560.
|
36 |
GETTELMAN A, MORRISON H. Advanced two-moment bulk microphysics for global models. Part I: off-line tests and comparison with other schemes[J]. Journal of Climate, 2015, 28(3): 1 268-1 287.
|
37 |
GETTELMAN A, HANNAY C, BACMEISTER J T, et al. High climate sensitivity in the Community Earth System Model version 2 (CESM2)[J]. Geophysical Research Letters, 2019, 46(14): 8 329-8 337.
|
38 |
LIU X, MA P L, WANG H, et al. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the community atmosphere model[J]. Geoscientific Model Development, 2016, 9(2): 505-522.
|
39 |
KÄRCHER B. Formation and radiative forcing of contrail cirrus[J]. Nature Communications, 2018, 9(1). DOI:10.1038/s41467-018-04068-0 .
|
40 |
BURKHARDT U, KÄRCHER B, SCHUMANN U. Global modeling of the contrail and contrail cirrus climate impact[J]. Bulletin of the American Meteorological Society, 2010, 91(4): 479-484.
|
41 |
ZHANG Jinglin, ZHANG Guoyu, YANG Quan, et al. Review of recognition of aircraft contrails and their radiative forcing[J]. Transaction of Atmospheric Sciences, 2018, 41(5): 577-584.
|
|
张敬林, 张国宇, 杨全, 等. 飞机尾迹云识别及其辐射强迫的研究进展[J]. 大气科学学报, 2018, 41(5): 577-584.
|
42 |
IPCC. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2013.
|
43 |
IPCC. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2021.
|
44 |
SHARMAN R, TEBALDI C, WIENER G, et al. An integrated approach to mid- and upper-level turbulence forecasting[J]. Weather and Forecasting, 2006, 21(3): 268-287.
|
45 |
SHARMAN R D, TRIER S B, LANE T P, et al. Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: a review[J]. Geophysical Research Letters, 2012, 39(12). DOI:10.1029/2012GL051996 .
|
46 |
O’ CONNOR A, KEARNEY D. Evaluating the effect of turbulence on aircraft during landing and take-off phases[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2018, 5(4). DOI:10.15394/IJAAA.2018.1284 .
|
47 |
CLARK T L, HALL W D, KERR R M, et al. Origins of aircraft-damaging clear-air turbulence during the 9 december 1992 colorado downslope windstorm: numerical simulations and comparison with observations[J]. Journal of the Atmospheric Sciences, 2000, 57(8): 1 105-1 131.
|
48 |
LIU Haiwen, YOU Jingchao, WU Kaijun, et al. Advance on clear-air turbulence of civil aviation aircraft[J]. Journal of Civil Aviation University of China, 2023, 41(6): 1-8.
|
|
刘海文, 游景超, 武凯军, 等. 民用航空飞机晴空颠簸研究进展[J]. 中国民航大学学报, 2023, 41(6): 1-8.
|
49 |
HU Boyan, TANG Jianping, WANG Shuyu. Future change of clear-air turbulence over East Asia: base on CORDEX-WRF downscaling technology[J]. Chinese Journal of Geophysics, 2022, 65(7): 2 432-2 447.
|
|
胡伯彦, 汤剑平, 王淑瑜. 东亚地区晴空湍流未来变化趋势预估: 基于CORDEX-WRF模式降尺度[J]. 地球物理学报, 2022, 65(7): 2 432-2 447.
|
50 |
FOUDAD M, SANCHEZ-GOMEZ E, JARAVEL T, et al. Past and future trends in clear-air turbulence over the northern hemisphere[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(13). DOI:10.1029/2023JD040261 .
|
51 |
STUECKER M F, BITZ C M, ARMOUR K C, et al. Polar amplification dominated by local forcing and feedbacks[J]. Nature Climate Change, 2018, 8(12): 1 076-1 081.
|
52 |
DELCAMBRE S C, LORENZ D J, VIMONT D J, et al. Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections[J]. Journal of Climate, 2013, 26(14): 4 930-4 946.
|
53 |
HAARSMA R J, SELTEN F, van OLDENBORGH G J. Anthropogenic changes of the thermal and zonal flow structure over western europe and eastern north atlantic in CMIP3 and CMIP5 models[J]. Climate Dynamics, 2013, 41(9/10): 2 577-2 588.
|
54 |
WOOLLINGS T, BLACKBURN M. The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns[J]. Journal of Climate, 2012, 25(3): 886-902.
|
55 |
LEE S H, WILLIAMS P D, FRAME T H A. Increased shear in the North Atlantic upper-level jet stream over the past four decades[J]. Nature, 2019, 572(7 771): 639-642.
|
56 |
LV Y, GUO J, LI J, et al. Increased turbulence in the eurasian upper-level jet stream in winter: past and future[J]. Earth and Space Science, 2021, 8(2). DOI:10.1029/2020EA001556 .
|
57 |
LUNNON R W, MARKLOW A D. Optimization of time saving in navigation through an area of variable flow[J]. Journal of Navigation, 1992, 45(3): 384-399.
|
58 |
PALOPO K, WINDHORST R D, SUHARWARDY S, et al. Wind-optimal routing in the national airspace system[J]. Journal of Aircraft, 2010, 47(5): 1 584-1 592.
|
59 |
LOVE G, SOARES A, PÜEMPEL H. Climate change, climate variability and transportation[J]. Procedia Environmental Sciences, 2010, 1: 130-145.
|
60 |
IPCC. Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2007.
|
61 |
BARNES E A, POLVANI L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models[J]. Journal of Climate, 2013, 26(18): 7 117-7 135.
|
62 |
REN D, LESLIE L M. Impacts of climate warming on aviation fuel consumption[J]. Journal of Applied Meteorology and Climatology, 2019, 58(7): 1 593-1 602.
|
63 |
TRAPP R J, DIFFENBAUGH N S, BROOKS H E, et al. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing[J]. Proceedings of the National Academy of Sciences, 2007, 104(50): 19 719-19 723.
|
64 |
JENAMANI R K, VASHISTH R C, BHAN S C. Characteristics of thunderstorms and squalls over Indira Gandhi International (IGI) airport, New Delhi-impact on environment especially on summer’s day temperatures and use in forecasting[J]. MAUSAM, 2009, 60(4): 461-474.
|
65 |
PEJOVIC T, WILLIAMS V A, NOLAND R B, et al. Factors affecting the frequency and severity of airport weather delays and the implications of climate change for future delays[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2139(1): 97-106.
|
66 |
YAIR Y. Lightning hazards to human societies in a changing climate[J]. Environmental Research Letters, 2018, 13(12). DOI:10.1088/1748-9326/aaea86 .
|
67 |
CHEN Z, WANG Y. Impacts of severe weather events on high-speed rail and aviation delays[J]. Transportation Research Part D: Transport and Environment, 2019, 69: 168-183.
|
68 |
NEUMANN J E, PRICE J, CHINOWSKY P, et al. Climate change risks to US infrastructure: impacts on roads, bridges, coastal development, and urban drainage[J]. Climatic Change, 2015, 131(1): 97-109.
|