地球科学进展 ›› 2024, Vol. 39 ›› Issue (11): 1112 -1122. doi: 10.11867/j.issn.1001-8166.2024.083

综述与评述 上一篇    下一篇

航空与气候变暖研究进展
李耀辉 1( ), 何思奇 1 , 2( ), 徐影 2 , 3   
  1. 1.中国民用航空飞行学院 航空气象学院,四川 广汉 618307
    2.中国气象局国家气候中心,北京 100081
    3.中国气象局气候预测研究重点开放实验室,北京 100081
  • 收稿日期:2024-09-21 修回日期:2024-10-21 出版日期:2024-11-10
  • 通讯作者: 何思奇 E-mail:li-yaohui@163.com;hesq_29@163.com
  • 基金资助:
    中国气象局航空气象重点开放实验室2023年开放研究课题(HKQXT-2024001);中国气象局重点创新团队“气候变化检测与应对”项目(CMA2022ZD03)

Progress of Research on Aviation and Climate Warming

Yaohui LI 1( ), Siqi HE 1 , 2( ), Ying XU 2 , 3   

  1. 1.College of Aviation Meteorology, Civil Aviation Flight University of China, Guanghan Sichuan 618307, China
    2.National Climate Centre, China Meteorological Administration, Beijing 100081, China
    3.China Meteorological Administration Key Laboratory for Climate Prediction Studies, Beijing 100081, China
  • Received:2024-09-21 Revised:2024-10-21 Online:2024-11-10 Published:2024-12-19
  • Contact: Siqi HE E-mail:li-yaohui@163.com;hesq_29@163.com
  • About author:LI Yaohui, research areas include research on weather, climate, climate change and aviation meteorology. E-mail: li-yaohui@163.com
  • Supported by:
    China Meteorological Administration Key Open Laboratory of Aviation Meteorology 2023 Open Research Topic(HKQXT-2024001);The “Climate Change Detection and Response” Project of the Key Innovation Team of China Meteorological Administration(CMA2022ZD03)

航空业排放和气候变暖是国际社会共同关注的热点问题。航空业通过温室气体排放和高空颗粒物的排放加剧了气候变暖,而气候变暖导致的飞行条件的变化和极端天气也反过来影响了航空业的运营和安全,二者相互作用,形成了复杂的影响循环,对这一领域的研究不仅关乎气候变暖与航空业之间的协调与适应,还具有重要的科学意义。通过大量文献调研探讨了航空业与气候变暖之间相互关系的研究进展和动态,主要包括航空业产生的CO2和非CO2排放物对全球气候变暖的贡献以及气候变暖对航空业造成影响(如湍流变化、飞行时间变化、飞机性能下降和极端事件频率增加等)的现象和机制,并对未来的研究进行了展望。通过对这种相互关系的深入理解,有助于推动航空业的可持续发展,并为应对全球气候挑战提供科学依据。

Concerns about aviation emissions and climate change are shared internationally. The aviation industry plays a role in climate warming through its greenhouse gas and high-altitude particulate emissions. Conversely, climate warming alters flight conditions and increases extreme weather, impacts aviation operations and safety. The interaction creates a complex cycle of impacts, and research in this area is not only crucial for coordinating and adapting to climate changes in the aviation industry, but also holds scientific significance. An extensive literature review explores the relationship between aviation and climate warming, examining aviation’s CO2 and non-CO2 contributions to global warming and the phenomena and mechanisms by which climate warming in turn affects aviation (including changes in turbulence, flight time, aircraft performance degradation, and increased frequency of extreme events). The review also presents future research prospects. A deeper understanding of this interrelationship will help promote sustainable development of aviation and provide a scientific basis for addressing global climate challenges.

中图分类号: 

图1 19402018年商业航空不同类型排放的气候强迫最佳评估
有效辐射强迫(ERF)考虑了传统辐射强迫(RF)评估中未考虑的气候系统中的短期反馈,括号外为最佳估计值,括号内为置信区间(据参考文献[ 10 ]修改)
Fig. 1 Best assessment of climate forcing for different types of emissions from commercial aviation between 1940 and 2018
The ERF takes into account short-term feedbacks in the climate system that are not accounted for in traditional Radiative Forcing (RF) assessments, best estimates outside parentheses, confidence intervals in parentheses (modified after reference [ 10 ])
图2 航空部分的辐射强迫
尾迹云和CO 2估计值代表2011年的排放水平(据参考文献[ 39 ]修改)
Fig. 2 Radiative forcing of the aviation component
Contrail and CO 2 estimates represent 2011 emission levels (modified after reference [ 39 ])
https://www.reading.ac.uk/news/2024/Expert-Comment/Turbulence-is-apparent-cause-of-flight-death
https://www.weforum.org/agenda/2024/08/turbulence-climate-change/
https://www.canada.ca/en/transportation-safety-board/news/2017/02/tsb_reminds_aircraftpassengerstobuckleupafter21peopleinjuredduri.html
https://graphics.thomsonreuters.com/testfiles/2024/nZfKwwIgUlKA/
图3 19792017年北大西洋250 hPa年平均风特征的时间序列(据参考文献[ 55 ]修改)
(a)纬向风的垂直切变;(b)纬向风速
Fig. 3 Time series of 250 hPa annual mean wind characteristics in the North Atlantic for the period 1979-2017modified after reference 55 ])
(a) Vertical shear of latitudinal winds; (b) Latitudinal wind speed
图4 纽约肯尼迪机场和伦敦希思罗机场之间的行程时间直方图
直方图显示了200 hPa高度上每日(a)东行和(b)西行最短航线持续时间的概率分布。用于计算概率的区间宽度为1分钟,路径使用GFDL CM2.1气候模型的工业化前控制模拟和双倍CO?浓度模拟,计算了连续20个冬季(从12月1日到2月28日)的结果。黑色实线是拟合正态分布的;黑色虚线表示静止空气中大圆路线的持续时间(据参考文献[ 21 ]修改)
Fig. 4 Histogram of journey times between New York’s JFK and London’s Heathrow airports
Histograms showing the probability distribution of daily (a) eastbound and (b) westbound shortest route durations at 200 hPa altitude. The width of the interval used to calculate the probabilities is 1 min. The paths are calculated for 20 consecutive winters (from 1 December to 28 February) using the pre-industrial control simulation of the GFDL CM2.1 climate model and a double CO? concentration simulation. The solid black line is fitted to a normal distribution; the dashed black line indicates the duration of the great circle route in still air (modified after reference [ 21 ])
图5 5种不同气候模型中西大西洋和东大西洋的平均急流纬度
对于每对点,当前气候的平均值(符号)和标准偏差(实线)在左侧,未来(2073—2099年)温室气体高排放情景下气候的平均值及其标准偏差在右侧。为了进行比较,标出了1979—2005年ERA Interim再分析数据西部(点线)和东部大西洋(虚线)的平均急流纬度(据参考文献[ 20 ]修改)
Fig. 5 Mean latitude of rapids in the western and eastern Atlantic for five different climate models
For each pair of points, the mean (symbols) and standard deviation (solid line) of the current climate are on the left, and the mean of the climate and its standard deviation for the future (2073-2099) high GHG emission scenario are on the right. For comparison, the mean latitude of rapids in the western (dotted line) and eastern Atlantic (dashed line) of the ERA Interim reanalysis data for the period 1979-2005 is indicated (modified after reference [ 20 ])
1 CALLENDAR G S. The artificial production of carbon dioxide and its influence on temperature[J]. Quarterly Journal of the Royal Meteorological Society, 1938, 64(275): 223-240.
2 APPLEMAN H. The formation of exhaust condensation trails by Jet Aircraft[J]. Bulletin of the American Meteorological Society, 1953, 34(1): 14-20.
3 EISENBUD M. Inadvertent climate modification. Report of the Study of Man’S Impact on Climate (SMIC)[J]. The Quarterly Review of Biology, 1972, 47(4): 465-466.
4 KUHN P M. Airborne observations of contrail effects on the thermal radiation budget[J]. Journal of the Atmospheric Sciences, 1970, 27(6): 937-942.
5 REINKING R F. Insolation reduction by contrails[J]. Weather, 1968, 23(4): 171-173.
6 FRIEDL R R. Atmospheric effects of subsonic aircraft: interim assessment report of the advanced subsonic technology program[Z]. 1997.
7 SCHUMANN U. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes—results from the aeronox project[J]. Atmospheric Environment, 1997, 31(12): 1 723-1 733.
8 PENNER J E, LISTER D, GRIGGS D J, et al. Aviation and the global atmosphere: a special report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 1999.
9 BRASSEUR G P, GUPTA M, ANDERSON B E, et al. Impact of aviation on climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) phase II[J]. Bulletin of the American Meteorological Society, 2016, 97(4): 561-583.
10 LEE D S, FAHEY D W, SKOWRON A, et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018[J]. Atmospheric Environment, 2021, 244. DOI: 10.1016/J.Atmosenv.2020.117834 .
11 ADOPTED I. Climate change 2014 synthesis report[R]. IPCC: Geneva, Szwitzerland, 2014.
12 BURBIDGE R. Adapting aviation to a changing climate: key priorities for action[J]. Journal of Air Transport Management, 2018, 71: 167-174.
13 THOMPSON T R. Aviation and the impacts of climate change∙climate change impacts upon the commercial air transport industry: an overview[J]. Carbon & Climate Law Review, 2016, 10(2): 105-112.
14 PROSSER M C, WILLIAMS P D, MARLTON G J, et al. Evidence for large increases in clear-air turbulence over the past four decades[J]. Geophysical Research Letters, 2023, 50(11). DOI:10.1029/2023GL103814 .
15 SMITH I H, WILLIAMS P D, SCHIEMANN R. Clear-air turbulence trends over the north atlantic in high-resolution climate models[J]. Climate Dynamics, 2023, 61(7/8): 3 063-3 079.
16 STORER L N, WILLIAMS P D, JOSHI M M. Global response of clear‐air turbulence to climate change[J]. Geophysical Research Letters, 2017, 44(19): 9 976-9 984.
17 WILLIAMS P D. Increased light, moderate, and severe clear-air turbulence in response to climate change[J]. Advances in Atmospheric Sciences, 2017, 34(5): 576-586.
18 WILLIAMS P D, JOSHI M M. Intensification of winter transatlantic aviation turbulence in response to climate change[J]. Nature Climate Change, 2013, 3(7): 644-648.
19 KARNAUSKAS K B, DONNELLY J P, BARKLEY H C, et al. Coupling between air travel and climate[J]. Nature Climate Change, 2015, 5(12): 1 068-1 073.
20 IRVINE E A, SHINE K P, STRINGER M A. What are the implications of climate change for trans-Atlantic aircraft routing and flight time?[J]. Transportation Research Part D: Transport and Environment, 2016, 47: 44-53.
21 WILLIAMS P D. Transatlantic flight times and climate change[J]. Environmental Research Letters, 2016, 11(2). DOI:10.1088/1748-9326/11/2/024008 .
22 COFFEL E, HORTON R. Climate change and the impact of extreme temperatures on aviation[J]. Weather, Climate, and Society, 2015, 7(1): 94-102.
23 COFFEL E D, THOMPSON T R, HORTON R M. The impacts of rising temperatures on aircraft takeoff performance[J]. Climatic Change, 2017, 144(2): 381-388.
24 ZHOU T, REN L, LIU H, et al. Impact of 1.5 °C and 2.0 °C global warming on aircraft takeoff performance in China[J]. Science Bulletin, 2018, 63(11): 700-707.
25 GRATTON G, PADHRA A, RAPSOMANIKIS S, et al. The impacts of climate change on greek airports[J]. Climatic Change, 2020, 160(2): 219-231.
26 ZHOU Y, ZHANG N, LI C, et al. Decreased takeoff performance of aircraft due to climate change[J]. Climatic Change, 2018, 151(3/4): 463-472.
27 LEE D S, FAHEY D W, FORSTER P M, et al. Aviation and global climate change in the 21st century[J]. Atmospheric Environment, 2009, 43(22/23): 3 520-3 537.
28 LARSSON J, KAMB A, NÄSSÉN J, et al. Measuring greenhouse gas emissions from international air travel of a country’s residents methodological development and application for sweden[J]. Environmental Impact Assessment Review, 2018, 72: 137-144.
29 VAROTSOS C, KRAPIVIN V, MKRTCHYAN F, et al. On the effects of aviation on carbon-methane cycles and climate change during the period 2015-2100[J]. Atmospheric Pollution Research, 2021, 12(1): 184-194.
30 BECK J P, REEVES C E, de LEEUW F A A M, et al. The effect of aircraft emissions on tropospheric ozone in the northern hemisphere[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(1): 17-29.
31 STEVENSON D S, DOHERTY R M, SANDERSON M G, et al. Radiative forcing from aircraft NO emissions: mechanisms and seasonal dependence[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D17). DOI:10.1029/2004JD004759 .
32 GREWE V, GANGOLI RAO A, GRÖNSTEDT T, et al. Evaluating the climate impact of aviation emission scenarios towards the paris agreement including COVID-19 effects[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-24091-y .
33 RAP A, FORSTER P M, JONES A, et al. Parameterization of contrails in the UK Met Office Climate Model[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D10). DOI:10.1029/2009JD012443 .
34 SCHUMANN U. A contrail cirrus prediction model[J]. Geoscientific Model Development, 2012, 5(3): 543-580.
35 NAIMAN A D, LELE S K, WILKERSON J T, et al. Parameterization of subgrid plume dilution for use in large-scale atmospheric simulations[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2 551-2 560.
36 GETTELMAN A, MORRISON H. Advanced two-moment bulk microphysics for global models. Part I: off-line tests and comparison with other schemes[J]. Journal of Climate, 2015, 28(3): 1 268-1 287.
37 GETTELMAN A, HANNAY C, BACMEISTER J T, et al. High climate sensitivity in the Community Earth System Model version 2 (CESM2)[J]. Geophysical Research Letters, 2019, 46(14): 8 329-8 337.
38 LIU X, MA P L, WANG H, et al. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the community atmosphere model[J]. Geoscientific Model Development, 2016, 9(2): 505-522.
39 KÄRCHER B. Formation and radiative forcing of contrail cirrus[J]. Nature Communications, 2018, 9(1). DOI:10.1038/s41467-018-04068-0 .
40 BURKHARDT U, KÄRCHER B, SCHUMANN U. Global modeling of the contrail and contrail cirrus climate impact[J]. Bulletin of the American Meteorological Society, 2010, 91(4): 479-484.
41 ZHANG Jinglin, ZHANG Guoyu, YANG Quan, et al. Review of recognition of aircraft contrails and their radiative forcing[J]. Transaction of Atmospheric Sciences, 2018, 41(5): 577-584.
张敬林, 张国宇, 杨全, 等. 飞机尾迹云识别及其辐射强迫的研究进展[J]. 大气科学学报, 2018, 41(5): 577-584.
42 IPCC. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2013.
43 IPCC. Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2021.
44 SHARMAN R, TEBALDI C, WIENER G, et al. An integrated approach to mid- and upper-level turbulence forecasting[J]. Weather and Forecasting, 2006, 21(3): 268-287.
45 SHARMAN R D, TRIER S B, LANE T P, et al. Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: a review[J]. Geophysical Research Letters, 2012, 39(12). DOI:10.1029/2012GL051996 .
46 O’ CONNOR A, KEARNEY D. Evaluating the effect of turbulence on aircraft during landing and take-off phases[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2018, 5(4). DOI:10.15394/IJAAA.2018.1284 .
47 CLARK T L, HALL W D, KERR R M, et al. Origins of aircraft-damaging clear-air turbulence during the 9 december 1992 colorado downslope windstorm: numerical simulations and comparison with observations[J]. Journal of the Atmospheric Sciences, 2000, 57(8): 1 105-1 131.
48 LIU Haiwen, YOU Jingchao, WU Kaijun, et al. Advance on clear-air turbulence of civil aviation aircraft[J]. Journal of Civil Aviation University of China, 2023, 41(6): 1-8.
刘海文, 游景超, 武凯军, 等. 民用航空飞机晴空颠簸研究进展[J]. 中国民航大学学报, 2023, 41(6): 1-8.
49 HU Boyan, TANG Jianping, WANG Shuyu. Future change of clear-air turbulence over East Asia: base on CORDEX-WRF downscaling technology[J]. Chinese Journal of Geophysics, 2022, 65(7): 2 432-2 447.
胡伯彦, 汤剑平, 王淑瑜. 东亚地区晴空湍流未来变化趋势预估: 基于CORDEX-WRF模式降尺度[J]. 地球物理学报, 2022, 65(7): 2 432-2 447.
50 FOUDAD M, SANCHEZ-GOMEZ E, JARAVEL T, et al. Past and future trends in clear-air turbulence over the northern hemisphere[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(13). DOI:10.1029/2023JD040261 .
51 STUECKER M F, BITZ C M, ARMOUR K C, et al. Polar amplification dominated by local forcing and feedbacks[J]. Nature Climate Change, 2018, 8(12): 1 076-1 081.
52 DELCAMBRE S C, LORENZ D J, VIMONT D J, et al. Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections[J]. Journal of Climate, 2013, 26(14): 4 930-4 946.
53 HAARSMA R J, SELTEN F, van OLDENBORGH G J. Anthropogenic changes of the thermal and zonal flow structure over western europe and eastern north atlantic in CMIP3 and CMIP5 models[J]. Climate Dynamics, 2013, 41(9/10): 2 577-2 588.
54 WOOLLINGS T, BLACKBURN M. The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns[J]. Journal of Climate, 2012, 25(3): 886-902.
55 LEE S H, WILLIAMS P D, FRAME T H A. Increased shear in the North Atlantic upper-level jet stream over the past four decades[J]. Nature, 2019, 572(7 771): 639-642.
56 LV Y, GUO J, LI J, et al. Increased turbulence in the eurasian upper-level jet stream in winter: past and future[J]. Earth and Space Science, 2021, 8(2). DOI:10.1029/2020EA001556 .
57 LUNNON R W, MARKLOW A D. Optimization of time saving in navigation through an area of variable flow[J]. Journal of Navigation, 1992, 45(3): 384-399.
58 PALOPO K, WINDHORST R D, SUHARWARDY S, et al. Wind-optimal routing in the national airspace system[J]. Journal of Aircraft, 2010, 47(5): 1 584-1 592.
59 LOVE G, SOARES A, PÜEMPEL H. Climate change, climate variability and transportation[J]. Procedia Environmental Sciences, 2010, 1: 130-145.
60 IPCC. Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [M]. Cambridge and New York: Cambridge University Press, 2007.
61 BARNES E A, POLVANI L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models[J]. Journal of Climate, 2013, 26(18): 7 117-7 135.
62 REN D, LESLIE L M. Impacts of climate warming on aviation fuel consumption[J]. Journal of Applied Meteorology and Climatology, 2019, 58(7): 1 593-1 602.
63 TRAPP R J, DIFFENBAUGH N S, BROOKS H E, et al. Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing[J]. Proceedings of the National Academy of Sciences, 2007, 104(50): 19 719-19 723.
64 JENAMANI R K, VASHISTH R C, BHAN S C. Characteristics of thunderstorms and squalls over Indira Gandhi International (IGI) airport, New Delhi-impact on environment especially on summer’s day temperatures and use in forecasting[J]. MAUSAM, 2009, 60(4): 461-474.
65 PEJOVIC T, WILLIAMS V A, NOLAND R B, et al. Factors affecting the frequency and severity of airport weather delays and the implications of climate change for future delays[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2139(1): 97-106.
66 YAIR Y. Lightning hazards to human societies in a changing climate[J]. Environmental Research Letters, 2018, 13(12). DOI:10.1088/1748-9326/aaea86 .
67 CHEN Z, WANG Y. Impacts of severe weather events on high-speed rail and aviation delays[J]. Transportation Research Part D: Transport and Environment, 2019, 69: 168-183.
68 NEUMANN J E, PRICE J, CHINOWSKY P, et al. Climate change risks to US infrastructure: impacts on roads, bridges, coastal development, and urban drainage[J]. Climatic Change, 2015, 131(1): 97-109.
[1] 雷汶杰, 罗栋梁, 陈方方, 刘佳, 彭贻菲, 李世珍, 沈琦. 基于 HYDRUS模型的 19792018年黄河源头区冻土热状态变化[J]. 地球科学进展, 2024, 39(11): 1183-1195.
[2] 张强, 马芳, 王莺, 宋连春, 马鹏里. 浅论气候容量及其对气候安全风险管理的作用[J]. 地球科学进展, 2015, 30(6): 709-714.
[3] 张强, 韩兰英, 张立阳, 王劲松. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
[4] 邓振镛,王鹤龄,李国昌,辛吉武,张宇飞,徐金芳. 气候变暖对河西走廊棉花生产影响的成因与对策研究[J]. 地球科学进展, 2008, 23(2): 160-166.
[5] 赵 鸿,王润元,王鹤龄,杨启国,邓振镛,肖国举. 西北干旱半干旱区春小麦生长对气候变暖响应的区域差异[J]. 地球科学进展, 2007, 22(6): 636-641.
[6] 马丽,方修琦. 近20年气候变暖对北京时令旅游的影响——以北京市植物园桃花节为例[J]. 地球科学进展, 2006, 21(03): 313-319.
[7] 张强;韩永翔;宋连春. 全球气候变化及其影响因素研究进展综述[J]. 地球科学进展, 2005, 20(9): 990-998.
[8] 秦大河,丁一汇,王绍武,王苏民,董光荣,林而达,刘春蓁,佘之祥,孙惠南,王守荣,伍光和. 中国西部生态环境变化与对策建议[J]. 地球科学进展, 2002, 17(3): 314-319.
[9] 温家洪. 国际南极冰盖与海平面变化研究述评[J]. 地球科学进展, 2000, 15(5): 586-591.
[10] 任振球. 当代气候变化若干问题商榷[J]. 地球科学进展, 1996, 11(5): 504-507.
阅读次数
全文


摘要