地球科学进展 ›› 2025, Vol. 40 ›› Issue (2): 138 -154. doi: 10.11867/j.issn.1001-8166.2025.009

大气海洋 上一篇    下一篇

我国风云气象卫星发展现状与未来展望
关敏1,2,3(), 张勇1,2,3(), 李云1,2,3, 姚依欣1,2,3, 常远4, 邵益凯4   
  1. 1.国家卫星气象中心(国家空间天气监测预警中心),北京 100081
    2.许健民气象卫星创新中心,北京 100081
    3.中国气象局中国遥感卫星辐射测量和定标重点开放实验室,北京 100081
    4.上海卫星工程技术研究所,上海 201109
  • 收稿日期:2024-10-21 修回日期:2024-01-07 出版日期:2025-02-10
  • 通讯作者: 张勇 E-mail:guanmin@cma.gov.cn;zhangyong@cma.gov.cn
  • 基金资助:
    国家自然科学基金面上项目(42275149);国家自然科学基金重点项目(42230109)

Current Development and Future Trends of Fengyun Meteorological Satellites

Min GUAN1,2,3(), Yong ZHANG1,2,3(), Yun LI1,2,3, Yixin YAO1,2,3, Yuan CHANG4, Yikai SHAO4   

  1. 1.National Satellite Meteorological Center (National Centre for Space Weather), Beijing 100081, China
    2.Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081, China
    3.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China
    4.Shanghai Institute of Satellite Engineering, Shanghai 201109, China
  • Received:2024-10-21 Revised:2024-01-07 Online:2025-02-10 Published:2025-04-17
  • Contact: Yong ZHANG E-mail:guanmin@cma.gov.cn;zhangyong@cma.gov.cn
  • About author:GUAN Min, research areas include development planning research of Fengyun meteorological satellites and socio-economic benefit evaluation of Fengyun meteorological satellites. E-mail: guanmin@cma.gov.cn
  • Supported by:
    the National Natural Science Foundation of China(42275149)

经过50余年的持续研发与技术创新,我国风云气象卫星观测系统取得了显著成就,成功发射了21颗卫星,目前8颗在轨稳定运行,构成了包含地球静止轨道、太阳同步极地轨道和倾斜轨道的卫星组网观测体系。通过回顾风云气象卫星及遥感仪器的发展历程和现状,地面系统在数据接收、处理及运行方面的效能,以及应用系统的建设与服务情况,综合分析了风云气象卫星及其地面应用系统的技术能力。通过与全球主要国家在气象卫星组网观测、遥感仪器技术以及地面系统运行能力的对比分析发现,尽管风云气象卫星部分性能指标仍有提升空间,但其已具备完善的轨道布局和遥感仪器配置,且遥感仪器的探测能力已达到国际先进水平。地面系统则建立了高效的数据接收、处理与服务流程,数据预处理技术先进,地理定位精度达到亚像元级,辐射定标精度在可见近红外波段达到3%,红外波段达到0.2 K。此外,风云气象卫星系统已构建了全面完备的大气、陆地、海洋及空间天气定量产品体系,并建立了中国遥感卫星辐射校正场,常态化开展辐射定标与遥感产品真实性检验工作。风云卫星数据在天气分析、气候变化研究、生态环境监测及自然灾害预警等多个领域得到了广泛应用,且应用水平不断提升。未来,风云气象卫星观测系统将朝着构建混合架构空间观测体系、观测要素全域精准感知、星地系统智能高效运行、数据处理融合新兴技术、遥感应用场景深化以及国际合作共享等方向发展。

Over more than 50 years of continuous research and technological innovation, Fengyun Meteorological Satellite System has achieved significant progress. 21 Fengyun satellites have been launched. Currently, eight of these satellites operate stably in orbit, forming a comprehensive observation system that includes geostationary orbit and sun-synchronous polar orbit satellites. By reviewing the development history and current status of Fengyun meteorological satellites and remote sensing instruments; the effectiveness of ground segments in data reception, processing, and operation; and the construction and service of application systems, the technical capabilities of Fengyun meteorological satellites, their ground segments, and application systems were comprehensively analyzed. Through comparative analysis with major countries around the world in terms of meteorological satellite network observations, remote sensing instrument technology, and ground segment operation capabilities, it was found that the Fengyun Meteorological Satellites not only have a complete orbit layout and remote sensing instrument configuration, but their remote sensing instrument detection capability has reached the advanced international level, although some performance indicators still have spcace for improvement. Ground segments have established efficient data reception, processing, and service processes with advanced data preprocessing technology and sub-pixel-level geolocation accuracy. The radiometric calibration accuracy is 3% in the visible and near infrared channels and 0.2 K in the infrared channels. In addition, the Fengyun Meteorological Satellite System has established a comprehensive and complete quantitative product system for atmospheric, land, marine, and space weather, and has established China Radiometric Calibration Sites for Chinese remote sensing satellites, and carried out validation of the remote sensing products. Fengyun satellite data have been widely used in various fields, such as weather forecasting, climate change research, ecological environment monitoring, and natural disaster warning, and their application level continues to advance. In the future, the Fengyun meteorological satellite observation system will aim to evolve towards establishing a hybrid-architecture space observation system, achieving comprehensive and precise perception of observation elements, enabling intelligent and efficient operation of satellite-ground systems, integrating emerging technologies in data processing, expanding remote sensing application scenarios, and fostering international cooperation and sharing.

中图分类号: 

图1 风云气象卫星在轨布局图
Fig. 1 Fengyun meteorological satellites in-orbit layout diagram
表1 风云三号气象卫星基本情况
Table 1 Basic information of Fengyun-3 meteorological satellites
表2 静止轨道气象卫星基本情况
Table 2 Basic information of geostationary meteorological satellites
表3 世界主要国家业务气象卫星轨道布局
Table 3 The operational meteorological satellite orbit layout of major countries in the world
表4 风云卫星遥感仪器性能与欧美同类仪器性能指标比较
Table 4 Comparison of performance indicators of Fengyun satellite remote sensing instruments with those of similar instruments in Europe and the United States
目标/探测方式指标性能
风云卫星12欧美气象卫星913-17

可见红外图像

(实时)

空间分辨率/km

可见光:0.5

红外:2.0

可见光:0.5

红外:2.0

时效/min

全圆盘:15

区域:1

全圆盘:15

区域:5

辐射测量精度/K≥0.2≥0.1

可见红外图像

(全球)

空间分辨率/km0.25/1.0*0.375/0.75**
辐射测量精度/K≥0.2≥0.07
红外高光谱垂直探测(实时)空间分辨率/km

红外:12

可见光:1

光谱分辨率/cm-10.625
时效/min45
辐射定标精度/K0.7
红外高光谱垂直探测(全球)空间分辨率/km1412
光谱分辨率/cm-10.6250.25
闪电成像空间分辨率/km星下点7.8星下点8
闪电探测率90%(夜晚)90%(夜晚)/70%(白天)
微波垂直探测空间分辨率/km1516
辐射测量精度/K11
风场分辨率/km25×0.5(C波段)/10×0.5(Ku波段)25
(最小)可测风速/(m/s)34~24
降水空间分辨率

水平:5 km

垂直:250 m

水平:5 km

垂直:250 m

最小可检测降水强度/(mm/h)

0.5(Ku)

0.2(Ka)

0.5(Ku)

0.2(Ka)

紫外可见探测(臭氧等痕量气体)空间分辨率/km

总量:7×7

廓线:21×28

总量:10

廓线:250

光谱分辨率/nm

总量:0.5~1.0

廓线:0.4

1.0
近红外高光谱探测(大气成分)空间分辨率/km≤33
光谱分辨率/nm0.04~0.10.04~0.1
探测目标O2、CO2、CH4、COO2、CO2
辐射收支光谱范围/μm

地球辐射:0.2~100

太阳辐射:0.2~20

地球辐射:0.3~100

太阳辐射:—

绝对精度

地球辐射:0.5%~1%

太阳辐射:0.03%~0.1%

地球辐射:0.5%~1%

太阳辐射:—

无线电掩星工作频率GPS, Galileo, GLONASS和BeiDouGPS, Galileo, GLONASS和BeiDou
掩星事件≥500/d(单星)约2 600/d
表5 气象卫星系统能力对比
Table 5 Comparison of meteorological satellite ground system capabilities
表6 风云四号卫星主要产品信息表
Table 6 Main product information of Fengyun-4 satellite
表7 风云三号卫星主要产品信息表
Table 7 Main product information of Fengyun-3 satellite
产品分辨率精度/误差
云检测0.5~1 km10%
云量0.5~1 km12%
云相态和云分类0.5~5 km20%
云顶高度/温度/压强1 km云顶高度:3 km;云顶温度:2 K;压强:100 hPa
射出长波辐射段产品1~14 km5 W/m2
陆地气溶胶段产品10 km±0.20τ±0.05(AOD)
海上气溶胶段产品1 km±0.20τ±0.05(AOD)
沙尘监测1 km10%
极地云导风产品标准差<7 m/s
海表温度段产品1 km1.2 K
陆表温度段产品250 m2.5 K
陆表反射比0.25~1 km5%
冰雪覆盖段产品0.5~1 km10%~20%
植被指数0.25~5 km20%
HIRAS晴空大气廓线反演产品14 km大气温度:1.0 K,大气湿度:10%,臭氧:15%
MWTS-III大气温度廓线33 km1.5 K
MWHS-II大气温湿度廓线15 km大气温度:1.5 K,大气湿度:15%
GNOS大气温度廓线产品垂直:150~300 m2 K
GNOS大气湿度廓线产品依赖背景场垂直分辨率20%
GNOS电子密度垂直:1~3 km20%
GNOS海面风速水平:优于30 km2 m/s
WindRAD海面风轨道产品20 km3~20 m/s范围内,风速:2 m/s;风向:25°
WindRAD海冰轨道产品20 km海冰范围:20%
PMR降水类型、降水相态、降水率5 km30%
臭氧总量7(沿轨)km×7(跨轨)km5%
臭氧垂直廓线产品(天底)21(沿轨)km×28(跨轨)km20%(对流层),15%(平流层/中层大气)
NO2总量7(沿轨)km×7(跨轨)km30%
SO2总量7(沿轨)km×7(跨轨)km50%
大气顶向上辐射和云产品28 kmLW:7 W/m2;SW:10 W/m2
地面辐射收支轨道产品1°×1°
大气顶下行太阳总辐照度日产品1°×1°13 W/m2
75 WU X D, XIAO Q, WEN J G, et al. Advances in quantitative remote sensing product validation: overview and current status[J]. Earth-Science Reviews2019, 196. DOI:10.1016/j.earscirev.2019.102875 .
76 WEN Jianguang, LIU Qinhuo, LI Zengyuan, et al. A review of the development of remote sensing field experiments and product validation in China[J]. National Remote Sensing Bulletin202327(3): 573-583.
闻建光, 柳钦火, 李增元, 等. 中国遥感实验与真实性检验的发展思考[J]. 遥感学报202327(3): 573-583.
77 China Meteorological Administration. Fengyun meteorological satellites application research report[R]. Beijing, 2020.
中国气象局 .风云气象卫星应用年度报告[R]. 北京, 2020.
78 SHEN Xueshun, WANG Jianjie, LI Zechun, et al. Independent innovation and development of numerical weather forecasting in China[J]. Acta Meteorologica Sinica202078(3): 451-476.
沈学顺, 王建捷, 李泽椿, 等. 中国数值天气预报的自主创新发展[J]. 气象学报202078(3): 451-476.
79 DONG Peiming, XUE Jishan, HUANG Bing, et al. Application status and development of satellite data assimilation in numerical weather forecast[J]. Meteorological Science and Technology200836(1): 1-7.
董佩明, 薛纪善, 黄兵, 等. 数值天气预报中卫星资料同化应用现状和发展[J]. 气象科技200836(1): 1-7.
80 WANG Jinsong, LU Naimeng, ZHAO Xiangang, et al. Review and prospect on the meteorological small satellites[J]. Advanced Small Satellite Technology20241(1): 23-29.
王劲松, 卢乃锰, 赵现纲, 等. 气象小卫星发展的回顾与展望[J]. 先进小卫星技术20241(1): 23-29.
1 YANG J, ZHANG P, LU N M, et al. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond[J]. International Journal of Digital Earth20125(3): 251-265.
2 DONG Yaohai, CHEN Wenqiang, YANG Jun. Xingyao China: our Fengyun meteorological satellite[M]. Beijing: Posts & Telecom Press, 2023.
董瑶海, 陈文强, 杨军. 星耀中国:我们的风云气象卫星[M]. 北京: 人民邮电出版社, 2023.
3 GUAN M, WANG J S, ZHAO X G, et al. Progress and achievements of Fengyun meteorological satellite program since 2022[J]. Chinese Journal of Space Science202444(4): 1-10.
4 LU Naimeng, DONG Chaohua, YANG Zhongdong, et al. Ground segment of the new general of Fengyun polar orbit meteorological satellite (FY-3) and its data application[J]. Strategic Study of CAE201214(9): 10-19.
卢乃锰, 董超华, 杨忠东, 等. 我国新一代极轨气象卫星(风云三号)工程地面应用系统[J]. 中国工程科学201214(9): 10-19.
5 YANG Zhongdong, LU Naimeng, SHI Jinming, et al. Overview of FY-3 payload and ground application system[J]. Advances in Meteorological Science and Technology20133(4): 6-12.
杨忠东, 卢乃锰, 施进明, 等. 风云三号卫星有效载荷与地面应用系统概述[J]. 气象科技进展20133(4): 6-12.
6 TANG Shihao, QIU Hong, MA Gang. Review on progress of the Fengyun meteorological satellite[J]. Journal of Remote Sensing201620(5): 842-849.
唐世浩, 邱红, 马刚. 风云气象卫星主要技术进展[J]. 遥感学报201620(5): 842-849.
7 风云卫星遥感数据服务网[EB/OL]. 2021. [2025-01-02]. .
8 YANG Jun, XIAN Di, TANG Shihao. Latest progress and application of Fengyun series meteorological satellites[J]. Satellite Application2018(11): 8-14.
杨军, 咸迪, 唐世浩. 风云系列气象卫星最新进展及应用[J]. 卫星应用2018(11): 8-14.
9 OSCAR. Space-based Capabilities (OSCAR/Space)[EB/OL].2021. [2025-01-02]. .
10 ZHANG P, HU X Q, SUN L, et al. The on-orbit performance of FY-3E in an early morning orbit[J]. Bulletin of the American Meteorological Society2023105(1): E144-E175.
11 ZHANG Peng, GU Songyan, SHANG Jian, et al. Mission overview of China’s first precipitation star-Fengyun-3G star[J]. Space International2023(6): 17-21.
张鹏, 谷松岩, 商建, 等. 我国首颗降水星: 风云三号G星任务概况[J]. 国际太空2023(6): 17-21.
12 国家卫星气象中心. 风云卫星系列仪器[EB/OL].2021. [2025-01-02]. .
13 National Environmental Satellite, Data, and Service Information. GOES-R series spacecraft & instruments[EB/OL].2020. [2025-01-02]. .
14 National Environmental Satellite, Data, and Service Information. JPSS satellite and instruments[EB/OL]. 2020. [2025-01-02]. .
15 Eumetsat. Meteosat second generation instruments[EB/OL].2020. [2025-01-02]. .
16 Eumetsat. Meteosat third generation instruments[EB/OL].2021. [2025-01-02]. .
17 Eumetsat. Metop second generation instruments[EB/OL].2021. [2025-01-02]. .
18 Status of NOAA current and future satellite programs-report to CGMS-52[EB/OL]. 2021. [2024-05-29]. .
19 EUMETSAT updates since CGMS-51 and report on medium to long-term plans[EB/OL]. 2021. [2024-06-04]. .
20 Office of Satellite and Product Operations. Products[EB/OL]. 2021. [2025-01-02]. .
21 Eumetsat User Portal. Getting started using data[EB/OL]. 2021. [2025-01-03]. .
22 XIAN D, ZHANG P, GAO L, et al. Fengyun meteorological satellite products for Earth system science applications[J]. Advances in Atmospheric Sciences202138(8): 1 267-1 284.
23 YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society201798(8): 1 637-1 658.
24 ZHANG P, LU Q F, HU X Q, et al. Latest progress of the Chinese Meteorological Satellite Program and core data processing technologies[J]. Advances in Atmospheric Sciences201936(9): 1 027-1 045.
25 SHANG Jian, LIU Chengbao, YANG Lei, et al. Resident and Navigation accuracy analysis of interferometric infrared sounder onboard FY-4 Satellite [J]. Journal of Telemetry, Tracking and Command202445(6): 1-10.
商建, 刘成保, 杨磊, 等. FY-4卫星高光谱大气探测驻留控制与定位精度分析[J]. 遥测遥控202445(6): 1-10.
26 GUAN Min, WU Ronghua. Geolocation approach for FY-3A MERSI remote sensing image[J]. Journal of Applied Meteorological Science201223(5): 534-542.
关敏, 吴荣华. FY-3A中分辨率光谱成像仪图像地理定位方法[J]. 应用气象学报201223(5): 534-542.
27 GUAN Min, YANG Zhongdong. Geolocation method for FY-3 MWRI’s remote sensing image[J]. Journal of Remote Sensing200913(3): 469-474.
关敏, 杨忠东. FY-3微波成像仪遥感图像地理定位方法研究[J]. 遥感学报200913(3): 469-474.
28 YANG Zhongdong, GUAN Min. Research on precise geolocation model and method using satellite remote sensing[J]. National Remote Sensing Bulletin200812(2): 312-321.
杨忠东, 关敏. 风云卫星遥感数据高精度地理定位软件系统开发研究[J]. 遥感学报200812(2): 312-321.
29 LU Wenqiang, HU Xiuqing, HUANG Yong, et al. Analysis of FY-3D satellite attitude and orbit accuracy and its influence on geolocation[J]. Geomatics and Information Science of Wuhan University202449(2): 256-263.
鲁文强, 胡秀清, 黄勇, 等. FY-3D卫星姿轨误差标校及对定位影响研究[J]. 武汉大学学报(信息科学版)202449(2): 256-263.
30 ZUO Fenghua, HU Xiuqing, WANG Xia, et al. Positioning and calibration accuracy evaluation of HIRAS-Ⅱ by FY-3E imager on same platform[J]. Acta Optica Sinica202242(24): 232-240.
左丰华, 胡秀清, 王霞, 等. FY-3E同平台成像仪对HIRAS-Ⅱ定位与定标精度评估[J]. 光学学报202242(24): 232-240.
31 HU Xiuqing, WANG Ling, ZHANG Peng, et al. Overview of historical data retrospective calibration for space-borne optical payloads[J]. National Remote Sensing Bulletin202327(10): 2 229-2 251.
胡秀清, 王玲, 张鹏, 等. 星载光学载荷历史数据再定标综述[J]. 遥感学报202327(10): 2 229-2 251.
32 DONG Yaohai. FY-4 meteorological satellite and its application prospect[J]. Aerospace Shanghai201633(2): 1-8.
董瑶海. 风云四号气象卫星及其应用展望[J]. 上海航天201633(2): 1-8.
33 XU Na, HU Xiuqing, CHEN Lin, et al. On-orbit radiometric calibration accuracy of FY-3A MERSI thermal infrared channel[J]. Spectroscopy and Spectral Analysis201434(12): 3 429-3 434.
徐娜, 胡秀清, 陈林, 等. FY-3A/MERSI热红外通道在轨辐射定标精度评估[J]. 光谱学与光谱分析201434(12): 3 429-3 434.
34 YANG Tianhang, HU Xiuqing, XU Hanlie, et al. Radiation calibration accuracy assessment of FY-3D hyperspectral infrared atmospheric sounder based on inter-comparison[J]. Acta Optica Sinica201939(11). DOI:10.3788/AOS201939.1130003 .
杨天杭, 胡秀清, 徐寒列, 等. 基于交叉比对的风云三号D星红外高光谱大气探测仪辐射定标性能评估[J]. 光学学报201939(11). DOI:10.3788/AOS201939.1130003 .
35 FENG Xuan, LI Libing, CHEN Boyang, et al. Post-launch calibration and validation of the Geostationary Interferometric Infrared Sounder (GIIRS) on FY-4A[J]. Journal of Infrared and Millimeter Waves201938(5): 648-654.
冯绚, 李利兵, 陈博洋, 等. 风云四号A星干涉式大气垂直探测仪在轨定标及性能评价[J]. 红外与毫米波学报201938(5): 648-654.
36 GU Songyan, GUO Yang, XIE Xinxin, et al. Recalibration of the FY-3 microwave payload historical data records[J]. National Remote Sensing Bulletin202327(10): 2 252-2 269.
谷松岩, 郭杨, 谢鑫新, 等. 风云三号卫星微波载荷历史数据再定标[J]. 遥感学报202327(10): 2 252-2 269.
37 XIE X X, WU S L, XU H X, et al. Ascending-descending bias correction of microwave radiation imager on board FengYun-3C[J]. IEEE Transactions on Geoscience and Remote Sensing201957(6): 3 126-3 134.
38 AN Dawei, GU Songyan, YANG Zhongdong, et al. On-orbit radiometric calibration for nonlinear of FY-3C MWTS[J]. Journal of Infrared and Millimeter Waves201635(3): 317-321.
安大伟, 谷松岩, 杨忠东, 等. FY-3C微波温度计在轨辐射非线性定标新方法[J]. 红外与毫米波学报201635(3): 317-321.
39 ZHANG Peng, YANG Jun, GUAN Min, et al. WMO space program and internationalization of FengYun meteorological satellites[J]. Advances in Meteorological Science and Technology202212(5): 56-63, 79.
张鹏, 杨军, 关敏, 等. WMO空间计划与风云气象卫星的国际化发展趋势[J]. 气象科技进展202212(5): 56-63, 79.
40 WANG Jinsong. Development and application of Fengyun satellite[C]// 2023 Fengyun meteorological satellite user conference, 2023.
王劲松. 风云卫星发展及其应用[C]// 2023年风云气象卫星用户大会, 2023.
41 风云卫星遥感数据服务网. FY-4产品使用说明[EB/OL]. 2019.[2025-01-04]. .
42 GU Songyan, ZHANG Peng, CHEN Lin, et al. Overview and prospect of the detection capability of China’s first precipitation measurement satellite FY-3G[J]. Torrential Rain and Disasters202342(5): 489-498.
谷松岩, 张鹏, 陈林, 等. 中国首颗降水测量卫星(风云三号G星)的探测能力概述与展望[J]. 暴雨 灾害202342(5): 489-498.
43 YANG Z D, ZHANG P, GU S Y, et al. Capability of Fengyun-3D satellite in Earth system observation[J]. Journal of Meteorological Research201933(6): 1 113-1 130.
44 QIU Kangmu. Construction and research achievements of China’s remote sensing satellite radiation correction field and its application prospects[C]// Proceedings of the 20th academic symposium on China’s remote sensing innovation and progress. 2001.
邱康睦. 中国遥感卫星辐射校正场建设和科研成果及其应用前景[C]// 中国遥感奋进创新二十年学术讨论会学术论文集. 2001.
45 HU Xiuqing, RONG Zhiguo, QIU Kangmu, et al. In-flight radiometric calibration for thermal channels of FT-1C and FY-2B Meteorological Satellite sensors using Qinghai Lake[J]. Chinese Journal of Space Science200121(4): 370-380.
胡秀清, 戎志国, 邱康睦, 等. 利用青海湖对FY-1C、FY-2B气象卫星热红外通道进行在轨辐射定标[J]. 空间科学学报200121(4): 370-380.
46 CHEN Qinglian, LI Tongji, REN Hongqi. The radiometric calibration and validation of HY-1/COCTS[J]. Journal of Ocean Technology200322(1): 1-9.
陈清莲, 李铜基, 任洪启. HY-1卫星水色扫描仪的辐射定标与真实性检验[J]. 海洋技术200322(1): 1-9.
47 LI Xingchao, MIN Xiangjun, GU Yingqi, et al. An application research on absolute radiometric calibration for CBERS-1 Satellite[J]. Spacecraft Recovery & Remote Sensing200223(3): 43-47.
李杏朝, 闵祥军, 顾英圻, 等. CBERS-1卫星绝对辐射校正试验应用初探[J]. 航天返回与遥感200223(3): 43-47.
48 ZHANG Dongying, QIAO Yanli, YI Weining, et al. The Radiance-based method research of experimentation on radiometric calibration site—the comparison of synchronous observing instruments[J]. Optoelectronic Technology & Information200215(3): 9-13.
张冬英, 乔延利, 易维宁, 等. 基于辐照度法的场地辐射校正试验研究——场地同步观测仪器的比较[J]. 光电子技术与信息200215(3): 9-13.
49 MIN Xiangjun, WANG Zhimin, FU Qiaoyan, et al. Ground simultaneous measurements and analysis of radiometric characterization of Dunhuang test site for calibrating CBERS-1 sensors[J]. Geo-Information Science20024(3): 43-50.
闵祥军, 王志民, 傅俏燕, 等. CBERS-1 CCD相机飞行绝对辐射标定试验地面同步测量与场地辐射特性分析[J]. 地球信息科学20024(3): 43-50.
50 TONG Jinjun, QIU Kangmu, LI Xiaowen. New method of in-flight absolute calibration for thermal infrared channals of satellite sensors[J]. Journal of Infrared and Millimeter Waves200524(4): 277-280.
童进军, 邱康睦, 李小文. 一种卫星遥感仪器热红外通道在轨绝对辐射定标新方法[J]. 红外与毫米波学报200524(4): 277-280.
51 ZHANG Yong, LI Yuan, RONG Zhiguo, et al. Absolute radiometric calibration of FY-2C infrared split-window channels by using sea buoy data and NCEP reanalysis data[J]. Journal of Infrared and Millimeter Waves200928(3): 188-193, 234.
张勇, 李元, 戎志国, 等. 利用大洋浮标数据和NCEP再分析资料对FY-2C红外分裂窗通道的绝对辐射定标[J]. 红外与毫米波学报200928(3): 188-193, 234.
52 ZHANG Yong, LI Yuan, RONG Zhiguo, et al. Field measurement of Gobi surface emissivity spectrum at Dunhuang calibration site of China[J]. Spectroscopy and Spectral Analysis200929(5): 1 213-1 217.
张勇, 李元, 戎志国, 等. 中国遥感卫星辐射校正场陆表热红外发射率光谱野外测量[J]. 光谱学与光谱分析200929(5): 1 213-1 217.
53 HU X Q, LIU J J, SUN L, et al. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors[J]. Canadian Journal of Remote Sensing201036(5): 566-582.
54 MIN Min, ZHANG Yong, HU Xiuqing, et al. Evaluation for radiometric calibration of infrared band of FY-3A Medium Resolution Spectral Imager(MERSI) using radiometric calibration sites[J]. Infrared and Laser Engineering201241(8): 1 995-2 001.
闵敏, 张勇, 胡秀清, 等. FY-3A中分辨率光谱成像仪红外通道辐射定标的场地评估[J]. 红外与激光工程201241(8): 1 995-2 001.
55 ZHANG Y, ZHENG Z J, HU X Q, et al. Lake Qinghai: Chinese site for radiometric calibration of satellite infrared remote sensors[J]. Remote Sensing Letters20134(4): 315-324.
56 ZHANG Y, LI Z, LI J. Comparisons of emissivity observations from satellites and the ground at the CRCS Dunhuang Gobi site[J]. Journal of Geophysical Research—Atmospheres2015119(22): 13 026-13 041.
57 ZHANG Yong, RONG Zhiguo, MIN Min. Accuracy evaluations of the CRCS in-orbit field radiometric calibration methods for thermal infrared channels[J]. Advances in Earth Science201631(2): 171-179.
张勇, 戎志国, 闵敏. 中国遥感卫星辐射校正场热红外通道在轨场地辐射定标方法精度评估[J]. 地球科学进展201631(2): 171-179.
58 WANG Min, ZHOU Shudao, HE Mingyuan, et al. Characterization and calibration method of satellite sensor radiometric calibration site[J]. Geomatics & Spatial Information Technology201538(7): 24-27.
王敏, 周树道, 何明元, 等. 国内外卫星遥感器辐射定标场地特性比较分析[J]. 测绘与空间地理信息201538(7): 24-27.
59 CHEN L, ZHANG P, LV J Y, et al. Radiometric calibration evaluation for RSBs of Suomi-NPP/VIIRS and aqua/MODIS based on the 2015 Dunhuang Chinese radiometric calibration site in situ measurements[J]. International Journal of Remote Sensing201738(20): 5 640-5 656.
60 ZHANG Yong, QI Guangli, RONG Zhiguo. Radiation calibration model and method for satellite infrared remote sensors[M]. Beijing: Science Press, 2015.
张勇, 祁广利, 戎志国. 卫星红外遥感器辐射定标模型与方法[M]. 北京:科学出版社, 2015.
61 LI Yuan, SUN Ling, ZHANG Yong, et al. Radiometric correction and authenticity verification of remote sensing satellites [M]. Beijing: China Meteorological Press, 2020.
李元, 孙凌, 张勇, 等. 遥感卫星辐射校正与真实性检验[M]. 北京:气象出版社, 2020.
62 State Administration for Market Regulation. General requirements for field experiments of radiation correction for Chinese remote sensing satellites: [S/OL]. 2023.[2025-01-04]. .
国家市场监督管理总局. 中国遥感卫星辐射校正场外场试验要求 通则: [S/OL]. 2023.[2025-01-04]..
63 ZHANG Y, LI X, RONG Z G, et al. China radiometric calibration sites ground-based automatic observing systems for CAL/VALV[C]// Sensors, systems, and next-generation satellites XIX. International Society for Optics and Photonics, 2015.
64 LI Xin, ZHENG Xiaobing, YIN Yapeng. Progress in automated site vicarious calibration technologies[J]. Journal of Atmospheric and Environmental Optics20149(1): 17-21.
李新, 郑小兵, 尹亚鹏. 场地自动化定标技术进展[J]. 大气与环境光学学报20149(1): 17-21.
65 QIU Ganggang, LI Xin, WEI Wei, et al. Experiment and analysis of on-orbit radiometric calibration for remote sensors based on in-site automated observation technology[J]. Acta Optica Sinica201636(7): 1-9.
邱刚刚, 李新, 韦玮, 等. 基于场地自动化观测技术的遥感器在轨辐射定标试验与分析[J]. 光学学报201636(7): 1-9.
66 LIU Enchao, LI Xin, WEI Wei, et al. Automatic field calibration and analysis of satellite based on hyper-spectral ratio radiometer[J]. Spectroscopy and Spectral Analysis201636(12): 4 076-4 081.
刘恩超, 李新, 韦玮, 等. 基于超光谱比值辐射仪的卫星自动化场地定标与分析[J]. 光谱学与光谱分析201636(12): 4 076-4 081.
67 YIN Yapeng, LI Xin, ZHENG Xiaobing, et al. Design and implement of automated site observing radiometer[J]. Journal of Atmospheric and Environmental Optics201611(1): 44-50.
尹亚鹏, 李新, 郑小兵, 等. 场地自动化观测辐射计的设计与实现[J]. 大气与环境光学学报201611(1): 44-50.
68 Jiayan LÜ, HE Mingyuan, CHEN Lin, et al. Automated radiation calibration method based on Dunhuang radiometric calibration site[J]. Acta Optica Sinica201737(8): 18-25.
吕佳彦, 何明元, 陈林, 等. 基于敦煌辐射校正场的自动化辐射定标方法[J]. 光学学报201737(8): 18-25.
69 LI Yuan, ZHANG Yong, HU Liqin, et al. Investigation of optical environment changes in the Dunhuang gobi site of the Chinese radiometric calibration sites[J]. Chinese Optics202114(5): 1 231-1 242.
李元, 张勇, 胡丽琴, 等. 中国遥感卫星辐射校正场敦煌戈壁场区光环境变化研究[J]. 中国光学202114(5): 1 231-1 242.
70 HU Y H, ZHANG Y, YAN L, et al. Evaluation of the radiometric calibration of FY4A-AGRI thermal infrared data using Lake Qinghai[J]. IEEE Transactions on Geoscience and Remote Sensing202159(9): 8 040-8 050.
71 YAN L, HU Y H, ZHANG Y, et al. Radiometric calibration evaluation for FY3D MERSI-II thermal infrared channels at Lake Qinghai[J]. Remote Sensing202113(3). DOI:10.3390/rs13030466 .
72 LI Y P, LIN X, XU R H, et al. Radiometric calibration analysis for thermal infrared data from MERSI-LL onboard the dust-dawn orbiting satellite FY3E[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202317: 1 813-1 823.
73 ZHANG Yong, XU Hanlie, ZHANG Lijun, et al. Measurements of CRCS Dunhuang Gobi surface reflectance spectrum using multi-rotor UAV and its calibration evaluations[J]. Spectroscopy and Spectral Analysis202444(5): 1 439-1 448.
张勇, 徐寒列, 张立军, 等. 敦煌戈壁地表反射率光谱的旋翼无人机测量及定标评估[J]. 光谱学与光谱分析202444(5): 1 439-1 448.
74 LIU Qinhuo, WEN Jianguang, ZHOU Xiang, et al. Technique system of remote sensing product generation and validation of GF common products[J]. National Remote Sensing Bulletin202327(3): 544-562.
柳钦火, 闻建光, 周翔, 等. 高分遥感共性产品生成和真实性检验技术体系[J]. 遥感学报202327(3): 544-562.
[1] 郑勇玲,吴承强,蔡 锋,鲍晶晶,许 艳. 我国海底地貌研究进展及其在东海近海的新发现、新认识[J]. 地球科学进展, 2012, 27(9): 1026-1034.
[2] 王庚辰. 我国大气臭氧探测技术的进展现状[J]. 地球科学进展, 1991, 6(6): 31-36.
阅读次数
全文
226
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 19 0 0 207

  来源 本网站 其他网站
  次数 58 168
  比例 26% 74%

摘要
101
最新录用 在线预览 正式出版
0 0 101
  来源 本网站 其他网站
  次数 38 63
  比例 38% 62%