地球科学进展 ›› 2025, Vol. 40 ›› Issue (2): 169 -192. doi: 10.11867/j.issn.1001-8166.2025.008

表层地球 上一篇    下一篇

祁连山水系演化研究进展与展望
武佳坤1,2(), 胡小飞2, 潘保田2, 曹喜林3, 温振玲4, 孙强1, 李梦昊1,2, 赵启明2   
  1. 1.西安科技大学 地质与环境学院,陕西 西安 710054
    2.兰州大学 资源环境学院,甘肃 兰州 730000
    3.南京师范大学 地理科学学院,江苏 南京 210023
    4.兰州财经大学 公共管理学院,甘肃 兰州 730101
  • 收稿日期:2024-12-04 修回日期:2025-01-10 出版日期:2025-02-10
  • 基金资助:
    国家自然科学基金项目(41730637)

Research Progress and Prospects on Drainage Evolution in the Qilian Shan

Jiakun WU1,2(), Xiaofei HU2, Baotian PAN2, Xilin CAO3, Zhenling WEN4, Qiang SUN1, Menghao LI1,2, Qiming ZHAO2   

  1. 1.College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
    2.College of Resources and Environment, Lanzhou University, Lanzhou 730000, China
    3.School of Geography, Nanjing Normal University, Nanjing 210023, China
    4.School of Public Administration, Lanzhou University of Finance and Economics, Lanzhou 730101, China
  • Received:2024-12-04 Revised:2025-01-10 Online:2025-02-10 Published:2025-04-17
  • About author:WU Jiakun, research areas include sedimentary evolution, fluvial geomorphology, and tectonic geomorphology. E-mail: jiakunwu992@gmail.com
  • Supported by:
    the National Natural Science Foundation of China(41730637)

祁连山是青藏高原向北扩展形成的最年轻的山体,研究其抬升扩展对于理解高原的扩展过程和隆升机制以及造山带演化等科学问题具有重要意义。水系演化能够比较快速地响应山地的抬升扩展,在祁连山地区开展水系的发育演化研究是探讨山体抬升扩展过程的重要手段。基于对剥蚀面、河流阶地、风口和古河道等地貌记录以及新生代沉积地层开展的年代学与物源研究,当前祁连山地区水系演化研究取得如下成果与认识:①祁连山东部黄河上游干流的形成演化是在构造抬升或者气候变化的驱动下,河流向上游发生溯源侵蚀和袭夺的水系重组过程;②祁连山北部石羊河与黑河流域、祁连山东部兰州盆地开展的河流阶地研究显示,气候变化与构造抬升分别控制着河流的下切时间(冰期向间冰期过渡期、间冰期)和下切幅度,全新世以来阶地的形成主要受气候变化的控制(暖湿期河流下切);③河流阶地可靠地记录了祁连山东部黄河重要支流湟水河(流向反转)与大通河(河流袭夺)的演化过程;④祁连山北部榆木山地区与南部乌兰、查查盆地开展的新生代沉积物年代学、物源与古水文研究,较可靠地重建了区域水系演化历史,显示出沉积地层在重建可靠、详细的水系演化过程中潜力巨大。同时,还有诸多亟需解决的问题,开展深入的地貌面与沉积物定年研究,多物源方法融合的物源分析,持续的地貌特征研究,以及数值模拟与仿真模拟研究,将成为今后研究的重点与趋势。

Qilian Shan, the youngest mountain range formed by the northward expansion of the Tibetan Plateau, plays a crucial role in understanding the expansion processes, uplift mechanisms, and evolution of orogenic belts. Drainage system evolution responds rapidly to mountain uplift, making the study of drainage development and evolution a critical approach for investigating the uplift and expansion of Qilian Shan. Based on chronological and provenance studies of geomorphic records, including erosion surfaces, river terraces, wind gaps and ancient river channels, and Cenozoic sedimentary strata, the current research on drainage system evolution in the Qilian Shan has yielded the following findings and insights: The formation and evolution of the upper reaches of the Yellow River in the eastern Qilian Shan involve a process of drainage reorganization driven by tectonic uplift or climate change, characterized by headward erosion and river capture; Research on river terraces in the Shiyang River and Heihe River basins of the northern Qilian Shan, as well as in the Lanzhou Basin of the eastern Qilian Shan, indicates climate change, and the tectonic uplift independently govern the timing (transitions between glacial and interglacial periods, and interglacial periods) and extent of river incision. Since the Holocene, terrace formation has been primarily driven by climate change, with river incision occurred during warm and humid periods; River terraces reliably record the evolution processes of major tributaries of the Yellow River in the eastern Qilian Shan, including the Huangshui River (flow reversal) and the Datong River (river capture); Study of chronology, provenance, and paleohydrology of Cenozoic sedimentary strata in the Yumu Shan of the northern Qilian Shan, as well as the Wulan and Chacha basins of the southern Qilian Shan, has reliably reconstructed the regional drainage evolution history, highlighting the significant potential of sedimentary strata for reconstructing reliable and detailed record of drainage evolution. However, numerous critical issues remain unresolved and require further investigations. Future research should prioritize and emphasize in-depth studies on geomorphic surface and sediment dating, integration of multi-source methods for provenance analysis, continuous exploration of geomorphic features, and advancements in numerical simulations and simulation modeling studies.

中图分类号: 

图1 褶皱山地生长控制下发育的横向河与纵向河(据参考文献[18]修改)
Fig. 1 Transvese and longitudinal rivers developed under the control of thrust-fold growthmodified after reference18])
图2 青藏高原东北缘祁连山地区断裂、沉积盆地与水系分布
DEM数据为90 m SRTM。NQF:祁连山北缘断裂;NTF:托来山北缘断裂;NTNF:托来南山北缘断裂;RYSF:日月山断裂;ELSF:鄂拉山断裂;DHNF:党河南山断裂;NQTB:柴北缘断裂带;ZWLF:宗务隆山断裂
Fig. 2 Distribution of faultssedimentary basinsand drainage systems in the Qilian Shan region on the northeastern margin of the Tibetan Plateau
The DEM data is 90 m SRTM. NQF:North Qilian Shan Fault; NTF:North Tuolai Shan Fault; NTNF:North Tuolai Nan Shan Fault; RYSF:Riyue Shan Fault; ELSF:Elashan Fault; DHNF:Danghe Nan Shan Fault; NQTB:North Qaidam Thrust Belt; ZWLF:Zongwulong Shan Fault
图3 青藏高原东北缘祁连山地质与水系分布
NQF:祁连山北缘断裂;NTF:托来山北缘断裂;NTNF:托来南山北缘断裂;RYSF:日月山断裂;ELSF:鄂拉山断裂;DHNF:党河南山断裂;NQTB:柴北缘断裂带;ZWLF:宗务隆山断裂
Fig. 3 Geological map and drainage systems of the Qilian Shan region on the northeastern margin of the Tibetan Plateau
NQF: North Qilian Shan Fault; NTF: North Tuolai Shan Fault; NTNF: North Tuolai Nan Shan Fault; RYSF: Riyue Shan Fault; ELSF:Elashan Fault; DHNF: Danghe Nan Shan Fault; NQTB: North Qaidam Thrust Belt; ZWLF: Zongwulong Shan Fault
图4 祁连山东北缘(石羊河流域)晚新生代构造—地貌演化模型(据参考文献[58]修改)
Fig. 4 Model of late Cenozoic tectonic and geomorphologic evolution in the northeastern margin of the Qilian ShanShiyang River Basin) (modified after reference58])
图5 黑河流域水系演化模型(据参考文献[192234396277-78]修改)
MH钻孔沉积物的物源分析认为走廊南山北侧的横向河段在约2.75 Ma时已溯源侵蚀至走廊南山内部的早古生代基岩(据参考文献[77]修改)。榆木山地区梨园河的演化过程据参考文献[19]修改,其中榆木山东端两个风口的位置和形成年代据参考文献[22]修改。走廊南山南侧黄藏寺附近的最高级阶地ESR年代结果指示约1.2 Ma时河流袭夺形成黑河干流(据参考文献[62]修改)。黑河出山口最高级阶地ESR年代结果指示黑河在走廊南山中的横向河段至少在约1.5 Ma时就已存在(据参考文献[62]修改)。龙首山风口的位置和形成年代据参考文献[62]修改。DWJ和XKJD 钻孔的沉积学研究指示黑河于约1.1 Ma在走廊盆地中形成纵向河段、进入酒东盆地(据参考文献[34]修改)。合黎山与金塔南山风口的位置和形成年代分别据参考文献[3978]修改
Fig. 5 Model of the drainage evolution of the Heihe River Basinmodified after references192234396277-78])
The provenance analysis of sediments from the MH borehole suggests that the transverse river on the north side of the Zoulang Nan Shan may have originated from early Paleozoic bedrock within the southern Zoulang Nan Shan at approximately 2.75 Ma through headward erosion (modified after reference [77]). The evolution process of the Liyuan River in the Yumu Shan area has been modified after reference [19], and the positions and formation ages of two wind gaps at the eastern end of the Yumu Shan have been modified after reference [22]. The ESR dating results of the highest terrace near Huangzangsi on the southern side of the Zoulang Nan Shan indicate that river capture occurred, forming the main stream of the Heihe River at approximately 1.2 Ma (modified after reference [62]). The ESR dating results of the highest terrace at the outlet of the Heihe River suggest that the transverse section of the Heihe River in the Zoulang Nan Shan existed as early as approximately 1.5 Ma (modified after reference [62]). The positions and formation ages of wind gap in the Longshou Shan has been modified after reference [62]. The sedimentological studies of the DWJ and XKJD boreholes indicate that the Heihe River formed a longitudinal river section in the Hexi Corridor and entered the Jiudong Basin at approximately 1.1 Ma (modified after reference [34]). The positions and formation ages of wind gaps in the Heli Shan and Jinta Nan Shan have been modified after references [39,78], respectively
图6 疏勒河演化模型(据参考文献[106]修改)
Fig. 6 Model of the drainage evolution of the Shule Rivermodified after reference106])
图7 祁连山南部构造—地貌演化模型(据参考文献[113]修改)
Fig. 7 Model of tectonic and geomorphologic evolution in the southern Qilian Shanmodified after reference113])
图8 黄河上游不同河段初始下切时代(据参考文献[125]修改)
黄河在兰州盆地初始下切的时代(>1.7 Ma)引自参考文献[121-122131];黄河在临夏盆地初始下切的时代(约1.7 Ma)引自参考文献[134-135];黄河在循化盆地初始下切的时代(>1.1 Ma)引自参考文献[137];黄河在贵德盆地初始下切的时代分别引自参考文献[20](>0.14 Ma)和参考文献[143-145](<1.8 Ma);黄河在共和盆地初始下切的时代(约0.5 Ma)引自参考文献[125
Fig. 8 Timing of initial incision along the upper reaches of the Yellow Rivermodified after reference125])
The initial incision timing of the Yellow River in different basins was constrained as follows: Lanzhou Basin: >1.7 Ma (references [121-122, 131]); Linxia Basin: approximately 1.7 Ma (references [134-135]); Xunhua Basin: >1.1 Ma (reference [137]); Guide Basin: >0.14 Ma (reference [20]) and <1.8 Ma (references [143-145]); Gonghe Basin: approximately 0.5 Ma (reference [125])
表1 祁连山不同区域水系演化概况
Table 1 Overview of drainage evolution in various regions of the Qilian Shan
图9 挤压活动造山带水系演化概念模型(据参考文献[19]修改)
Fig. 9 Conceptual model of drainage evolution in a compressional orogenic beltmodified after reference19])
1 WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens[J]. Annual Review of Earth and Planetary Sciences200432: 151-185.
2 XIE Wanting, WANG Xianyan, ZHANG Hanzhi,et al. Drainage evolution in intermontane basins at the Qinling-Daba Mountains[J]. Science China Earth Sciences202164(11): 1 949-1 968.
谢婉婷,王先彦,张瀚之,等. 南秦岭大巴山北缘山间盆地水系演化[J]. 中国科学:地球科学202252(3):497-516.
3 ANDERSON R S, ANDERSON S P. Geomorphology: the mechanics and chemistry of landscapes[M]. Cambridge, UK: Cambridge University Press, 2010.
4 BENDER A M, LEASE R O, CORBETT L B,et al. Late Cenozoic climate change paces landscape adjustments to Yukon River capture[J]. Nature Geoscience202013: 571-575.
5 JIANG Z X. Sedimentary dynamics of windfield-source-basin system,new concept for interpretation and prediction[M]. Beijing: Science Press and Springer Nature Singapore Pte Ltd., 2018.
6 VIAPLANA-MUZAS M, BABAULT J, DOMINGUEZ S,et al. Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt[J]. Basin Research201931(2): 290-310.
7 GRIMAUD J L, CHARDON D, BEAUVAIS A. Very long-term incision dynamics of big rivers[J]. Earth and Planetary Science Letters2014405: 74-84.
8 LIN Xu, LIU Jing, LIU Haijin,et al. When was the Yellow River formed?[J]. Earth Science202449(6): 2 158-2 185.
林旭,刘静,刘海金,等. 黄河形成于何时?[J]. 地球科学202449(6): 2 158-2 185.
9 CLIFT P D, BLUSZTAJN J. Reorganization of the western Himalayan river system after five million years ago[J]. Nature2005438(7 070):1 001-1 003.
10 LU H H, WU D Y, CHENG L, et al. Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland[J]. Geomorphology2017299: 12-23.
11 YANITES B J, EHLERS T A, BECKER J K,et al. High magnitude and rapid incision from river capture:Rhine River,Switzerland[J]. Journal of Geophysical Research: Earth Surface2013118(2): 1 060-1 084.
12 SU Q, WANG X Y, LU H Y,et al. River piracy and its geomorphic effects in the northern Qilian Shan,northeastern Qinghai-Tibet Plateau[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2022, 601. DOI:10.1016/j.palaeo.2022.111147 .
13 GUPTA S. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin[J]. Geology199725(1): 11-14.
14 COLLIGNON M, YAMATO P, CASTELLTORT S,et al. Modeling of wind gap formation and development of sedimentary basins during fold growth:application to the Zagros Fold Belt,Iran[J]. Earth Surface Processes and Landforms201641(11): 1 521-1 535.
15 HE C Q, BRAUN J, TANG H, et al. Drainage divide migration and implications for climate and biodiversity[J]. Nature Reviews Earth & Environment20245: 177-192.
16 BISHOP P. Drainage rearrangement by river capture,beheading and diversion[J]. Progress in Physical Geography: Earth and Environment199519(4): 449-473.
17 BURBANK D W, MCLEAN J K, BULLEN M,et al. Partitioning of intermontane basins by thrust-related folding,Tien Shan,Kyrgyzstan[J]. Basin Research199911(1): 75-92.
18 KELLER E A, DEVECCHIO D E. 5.7 Tectonic geomorphology of active folding and development of transverse drainages[M]// Treatise on geomorphology. Amsterdam: Elsevier, 2013: 129-147.
19 HU X F, WU J K, WEN Z L,et al. Fluvial evolution in a growing thrust-fold range of the Yumu Shan,NE Tibetan Plateau[J]. Earth and Planetary Science Letters2022, 594. DOI: 10.1016/j.epsl.2022.117704 .
20 PAN Baotian. A study on the geomorphic evolution and development of the upper reaches of Yellow River in Guide Basin[J]. Arid Land Geography199417(3): 43-50.
潘保田. 贵德盆地地貌演化与黄河上游发育研究[J]. 干旱区地理199417(3): 43-50.
21 FANG X M, ZHAO Z J, LI J J,et al. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift[J]. Science in China (Series D)200548(7):1 040-1 051.
22 SEONG Y B, KANG H C, REE J H,et al. Geomorphic constraints on active mountain growth by the lateral propagation of fault-related folding: a case study on Yumu Shan,NE Tibet[J]. Journal of Asian Earth Sciences201141(2): 184-194.
23 TAPPONNIER P, XU Z Q, ROGER F,et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science2001294(5 547): 1 671-1 677.
24 YUAN D Y, GE W P, CHEN Z W,et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics:a review of recent studies[J]. Tectonics201332(5): 1 358-1 370.
25 JOLIVET M, BRUNEL M, SEWARD D,et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau:fission-track constraints[J]. Tectonophysics2001343(1/2):111-134.
26 FANG X M, LIU D L, SONG C H,et al. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan:evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications,2013373(1): 149-171.
27 PALUMBO L, HETZEL R, TAO M X,et al. Deciphering the rate of mountain growth during topographic presteady state:an example from the NE margin of the Tibetan Plateau[J]. Tectonics200928(4). DOI:10.1029/2009TC002455 .
28 RAMSEY L A, WALKER R T, JACKSON J. Fold evolution and drainage development in the Zagros mountains of Fars Province,SE Iran[J]. Basin Research200820(1): 23-48.
29 BABAULT J, van den DRIESSCHE J, TEIXELL A. Longitudinal to transverse drainage network evolution in the High Atlas (Morocco): the role of tectonics[J]. Tectonics201231(4). DOI:10.1029/2011TC003015 .
30 YANG Jingchun, TAN Lihua, LI Youli,et al. River terraces and neotectonic evolution at the northern foot of Qilian Mountains[J]. Quaternary Sciences199818(3): 229-237.
杨景春,谭利华,李有利,等. 祁连山北麓河流阶地与新构造演化[J]. 第四纪研究199818(3): 229-237.
31 PAN Baotian, GAO Hongshan, LI Bingyuan,et al. Step-like landforms and uplift of the Qinghai-Xizang Plateau[J]. Quaternary Sciences200424(1): 50-57.
潘保田,高红山,李炳元,等. 青藏高原层状地貌与高原隆[J]. 第四纪研究200424(1): 50-57.
32 GAO Hongshan, PAN Baotian, WU Guangjian,et al. Erosion surfaces in the east Qilian Mountains and uplift of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology200426(5): 540-544.
高红山,潘保田,邬光剑,等. 祁连山东段剥蚀面与青藏高原隆升[J]. 冰川冻土200426(5): 540-544.
33 GAO Hongshan, PAN Baotian, WU Guangjian,et al. Age and genesis of alluvial terraces in east Qilian Mountains[J]. Scientia Geographica Sinica200525(2): 197-202.
高红山,潘保田,邬光剑,等. 祁连山东段河流阶地的形成时代与机制探讨[J]. 地理科学200525(2): 197-202.
34 PAN B T, CHEN D B, HU X F,et al. Drainage evolution of the Heihe River in western Hexi Corridor,China,derived from sedimentary and magnetostratigraphic results[J]. Quaternary Science Reviews2016150: 250-263.
35 CHEN Miao. Characteristics of river longitudinal profiles and the drainage evolution along the Zoulangnan Shan[D]. Lanzhou: Lanzhou University, 2018.
陈苗. 走廊南山河流纵剖面形态特征反映的河流演化过程[D]. 兰州:兰州大学,2018.
36 MENG K, WANG E C, CHU J J,et al. Late Cenozoic river system reorganization and its origin within the Qilian Shan,NE Tibet[J]. Journal of Structural Geology2020, 138. DOI:10.1016/j.jsg.2020.104128 .
37 ZHU Lidong. Uplift of the North of Qinghai-Tibet Plateau and Record in Basins and Geomorphy[D]. Chengdu: Chengdu University of Technology, 2004.
朱利东. 青藏高原北部隆升与盆地和地貌记录[D]. 成都:成都理工大学,2004.
38 CHU Yongbin. The Geomorphy characteristic of Qilian Mountains and its response to Tibetan Plateau uplift[D]. Chengdu:Chengdu University of Technology, 2015.
褚永彬. 祁连山地貌特征及对青藏高原隆升的响应[D]. 成都:成都理工大学,2015.
39 CAO Xilin, GENG Haopeng, PAN Baotian,et al. Development of transverse drainages and formation of wind gaps on actively growing fold:review and case study[J]. Seismology and Geology202042(3): 670-687.
曹喜林,耿豪鹏,潘保田,等. 活动褶皱地区横向河演化与风口形成的研究进展和案例分析[J]. 地震地质202042(3): 670-687.
40 CHEN X H, YIN A, GEHRELS G E,et al. Two phases of Mesozoic north-south extension in the eastern Altyn Tagh range,northern Tibetan Plateau[J]. Tectonics200322(5). DOI:10.1029/2001TC001336 .
41 WU C, YIN A, ZUZA A V,et al. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system[J]. Lithosphere20168(3): 254-292.
42 LI J J, FANG X M, SONG C H,et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research201481(3): 400-423.
43 ZHENG D W, CLARK M K, ZHANG P Z,et al. Erosion,fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere20106(6):937-941.
44 BOVET P M, RITTS B D, GEHRELS G,et al. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor,Gansu Province,China[J]. American Journal of Science2009309(4):290-329.
45 ZHAO Q M, HU X F, SUN X Y,et al. Landform evolution of the Qilian Shan since 120 Ma revealed by apatite fission track data[J]. Journal of the Geological Society2024181(5): jgs2023-jgs2193.
46 HU X F, CHEN D B, PAN B T,et al. Sedimentary evolution of the foreland basin in the NE Tibetan Plateau and the growth of the Qilian Shan since 7 Ma[J]. Geological Society of America Bulletin2019131(9/10): 1 744-1 760.
47 PANG J Z, YU J X, ZHENG D W,et al. Neogene expansion of the Qilian Shan,North Tibet: implications for the dynamic evolution of the Tibetan Plateau[J]. Tectonics201938(3): 1 018-1 032.
48 Institute of Geology,China Earthquake Administration,Lanzhou Institute of Eeismology,China Earthquake Administration. Qilian Mountain-Hexi Corridor active fault system[M]. Beijing: Seismological Press,1993.
国家地震局地质研究所国家地震局兰州地震研究所. 祁连山—河西走廊活动断裂系[M]. 北京:地震出版社,1993.
49 PAN Guitang, DING Jun, YAO Dongsheng,et al. Geological map of the Tibetan Plateau and its adjacent areas (1∶1 500 000) and instruction manual[M]. Chengdu: Chengdu Map Press,2004.
潘桂棠,丁俊,姚东生,等. 青藏高原及邻区地质图(1∶1 500 000)及说明书[M]. 成都:成都地图出版社,2004.
50 WANG E C, XU F Y, ZHOU J X,et al. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems[J]. Geological Society of America Bulletin2006118(3/4):349-365.
51 CAO Xilin. The deformation pattern of the central Qilian Shan and river evolution of the upstream Heihe River[D]. Lanzhou:Lanzhou University, 2019.
曹喜林. 祁连山中段抬升变形与黑河上游河流演化[D]. 兰州:兰州大学, 2019.
52 CHEN Dianbao. Sedimentary evolution of the Jiudong Basin in the western Hexi Corridor during the Late Cenozoic and drainage evolution of the Heihe River[D]. Lanzhou: Lanzhou University, 2019.
陈殿宝. 河西走廊酒东盆地晚新生代沉积演变与黑河发育[D]. 兰州:兰州大学,2019.
53 GENG H P, PAN B T, HUANG B,et al. The spatial distribution of precipitation and topography in the Qilian Shan Mountains,northeastern Tibetan Plateau[J]. Geomorphology2017297: 43-54.
54 FENG Shengwu. Characteristics and evolution of Hexi water system in Gansu Province [J]. Journal of Lanzhou University198117(1): 125-129.
冯绳武. 甘肃河西水系的特征和演变[J]. 兰州大学学报198117(1): 125-129.
55 FENG Shengwu. The changes of Hei River (Ruoshui) system in Hexi[J]. Geographical Research19887(1): 18-26.
冯绳武. 河西黑河(弱水)水系的变迁[J]. 地理研究19887(1): 18-26.
56 FENG Shengwu. Evolution of Shule He river system [J]. Journal of Lanzhou University198117(4): 138-143.
冯绳武. 疏勒河水系的变迁[J]. 兰州大学学报198117(4): 138-143.
57 PAN B T, GAO H S, WU G J, et al. Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China[J]. Earth Surface Processes and Landforms200732(1): 143-154.
58 ZHAO Zixian. Late Cenozoic sedimentary,tectonic and geomorphic evolution in the northeastern Qilian Shan[D]. Beijing:Chinese Academy of Geological Sciences, 2021.
赵子贤. 祁连山东北缘晚新生代沉积—构造—地貌演化过程[D]. 北京:中国地质科学院,2021.
59 FAN Y X, MOU X S, WANG Y D, et al. Quaternary paleoenvironmental evolution of the Tengger Desert and its implications for the provenance of the loess of the Chinese Loess Plateau[J]. Quaternary Science Reviews2018197: 21-34.
60 FAN Y X, LI Z J, WANG F, et al. Provenance variations of the Tengger Desert since 2.35 Ma and its linkage with the northern Tibetan Plateau: evidence from U-Pb age spectra of detrital zircons[J]. Quaternary Science Reviews2019, 223. DOI:10.1016/j.quascirev.2019.105916 .
61 GUO Lifei, PAN Baolin, WANG Junping, et al. Sedimentary characteristics of Wuwei Basin since late mid-Pleistocene-Based on OSL chronological study of the wv3 core[J]. Geological Review202470(5): 1 689-1 708.
郭力菲,潘宝林,王均平,等. 晚中更新世以来武威盆地沉积特征——基于wv3钻孔的释光年代学研究[J]. 地质论评202470(5): 1 689-1 708.
62 TAN Lihua, YANG Jingchun, DUAN Fengjun. Stages of Cenozoic tectonic movement in Hexi Corridor,Gansu Province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis199834(4): 111-120.
谭利华,杨景春,段烽军. 河西走廊新生代构造运动的阶段划分[J]. 北京大学学报(自然科学版)199834(4): 111-120.
63 PAN Baotian, WU Guangjian, WANG Yixiang, et al. Age and genesis of Shagou River terrace in the eastern Qilian Mountains[J]. Chinese Science Bulletin200045(24): 2 669-2 675.
潘保田,邬光剑,王义祥,等. 祁连山东段沙沟河阶地的年代与成因[J]. 科学通报200045(24): 2 669-2 675.
64 HU Xiaofei, PAN Baotian, GAO Hongshan, et al. Development of Holocene fluvial terraces in the eastern Qilianshan Mountain and its relationship with climatic changes[J]. Quaternary Sciences201333(4): 723-736.
胡小飞,潘保田,高红山,等. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究[J]. 第四纪研究201333(4): 723-736.
65 PAN B T, HU X F, GAO H S,et al. Late Quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain,China[J]. Geomorphology2013184: 84-97.
66 ZHENG Wentao, YANG Jingchun, DUAN Fengjun. A study on the relation between deformation of river terraces and neotectonic activity for the Wuwei Basin [J]. Seismology and Geology200022(3): 318-328.
郑文涛,杨景春,段锋军. 武威盆地晚更新世河流阶地变形与新构造活动[J]. 地震地质200022(3): 318-328.
67 HU X F, PAN B T, KIRBY E, et al. Rates and kinematics of active shortening along the eastern Qilian Shan,China,inferred from deformed fluvial terraces[J]. Tectonics201534(12): 2 478-2 493.
68 XIONG J G, LI Y L, ZHONG Y Z, et al. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the Eastern Qilian Shan,NE Tibetan Plateau[J]. Tectonics201736(12): 2 973-2 986.
69 LI Y L, YANG J C, TAN L H,et al. Impact of tectonics on alluvial landforms in the Hexi Corridor,Northwest China[J]. Geomorphology199928(3/4): 299-308.
70 PAN B T, BURBANK D, WANG Y X,et al. A 900 k.y. record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology200331(11):957-960.
71 LI Youli, YANG Jingchun. Response of alluvial terraces to Holocene climatic changes in the Hexi Corridor Basin,Gansu,China[J]. Scientia Geographica Sinica199717(3): 57-61.
李有利,杨景春. 河西走廊平原区全新世河流阶地对气候变化的响应[J]. 地理科学199717(3): 57-61.
72 HU Chunsheng, PAN Baotian, GAO Hongshan, et al. Analysis of origin river terraces in Hexi area since 150 ka B.P.[J]. Scientia Geographica Sinica200626(5):5 603-5 608.
胡春生,潘保田,高红山,等. 最近150 ka河西地区河流阶地的成因分析[J]. 地理科学200626(5): 5 603-5 608.
73 GAO H S, LI Z M, PAN B T, et al. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system,western China[J]. Geomorphology2016258: 82-94.
74 WANG Jun, GAO Hongshan, PAN Baotian,et al. Pleoflood sediment of Shagou River and its response to the climate change during early Holocene[J]. Scientia Geographica Sinica201030(6): 943-949.
王军,高红山,潘保田,等. 早全新世沙沟河古洪水沉积及其对气候变化的响应[J]. 地理科学201030(6): 943-949.
75 BURBANK D W, ANDERSON R S. Tectonic geomorphology (Second Edition)[M]. Jersey, USA: Wiley-Blackwell Publishing, 2012.
76 ALLEN P A. Time scales of tectonic landscapes and their sediment routing systems[J]. Geological Society, London, Special Publications2008296(1): 7-28.
77 ZHANG J, GENG H P, PAN B T, et al. Coupling of tectonic uplift and climate change as influences on drainage evolution:a case study at the NE margin of the Tibetan Plateau[J]. CATENA2022, 216. DOI:10.1016/j.catena.2022.106433 .
78 WEN Zhenling, HU Xiaofei, PAN Baotian, et al. The fluvial gravels features of Jinta’nanshan Mountains and its implication on the landform evolution in the NE Tibetan Plateau[J]. Quaternary Sciences201636(4): 907-916.
温振玲,胡小飞,潘保田,等. 金塔南山河流砾石特征指示的青藏高原东北缘地貌演化[J]. 第四纪研究201636(4): 907-916.
79 ZHANG Jian, HU Xiaofei, GENG Haopeng,et al. Drainage evolution history in Jiudong Basin since the Pleistocene inferred from heavy mineral characteristics in cores and modern fluvial deposits[J]. Scientia Geographica Sinica201636(10):1 595-1 605.
张建,胡小飞,耿豪鹏,等. 钻孔及现代河流重矿物特征揭示的更新世以来酒东盆地水系演化历史[J]. 地理科学201636(10):1 595-1 605.
80 WANG Fei, SUN Donghuai, CHEN Fahu,et al. Formation and evolution of the Badain Jaran Desert,North China,as revealed by a drill core from the desert centre and by geological survey[J].Palaeogeography,Palaeoclimatology,Palaeoecology2015426: 139-158.
81 HETZEL R, TAO M X, NIEDERMANN S,et al. Implications of the fault scaling law for the growth of topography:mountain ranges in the broken foreland of north-east Tibet[J]. Terra Nova200416(3): 157-162.
82 HAMPEL A, HETZEL R. Role of climate changes for wind gap formation in a young,actively growing mountain range[J]. Terra Nova201628(6): 441-448.
83 ZHENG W J, ZHANG P Z, GE W P, et al. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor,NW China) and its implications for northeastward growth of the Tibetan Plateau[J]. Tectonics201332(2): 271-293.
84 LI Xiaohua, HU Zhenbo, PAN Baotian, et al. Migration process of the Beida River channel within the Jiudong Basin as a result of the climate fluctuation and rapid tectonic activity in the Holocene period[J]. Quaternary Sciences202141(1): 1-13.
李晓花,胡振波,潘保田,等. 全新世气候波动与快速构造活动作用下的酒东盆地北大河河道迁移过程研究[J]. 第四纪研究202141(1): 1-13.
85 PAN B T, LI X H, HU Z B, et al. Channel migration in the northeastern margin of the Tibetan Plateau and its implication for fluvial response to the interaction between rapid tectonic activity,climatic fluctuation and human influence[J]. Quaternary Science Reviews2023, 310. DOI:10.1016/j.quascirev.2023.108126 .
86 SONG Chunhui, FANG Xiaomin, LI Jijun, et al. Sedimentary evolution and tectonic uplift in the Jiuxi Basin on the northern edge of the Tibetan Plateau since 13 Ma[J]. Science in China(Series D)200131(): 155-162.
宋春晖,方小敏,李吉均,等. 青藏高原北缘酒西盆地13 Ma以来沉积演化与构造隆升[J]. 中国科学(D辑)200131(): 155-162.
87 ZHAO Z J, FANG X M, LI J J. Late Cenozoic magnetic polarity stratigraphy in the Jiudong Basin,northern Qilian Mountain[J]. Science in China (Series D)200144(1): 243-250.
88 ZHUANG G S, HOURIGAN J K, RITTS B D, et al. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: constraints from sedimentary records from Qaidam basin,Hexi Corridor,and Subei Basin,northwest China[J]. American Journal of Science2011311(2): 116-152.
89 WANG W T, ZHANG P Z, PANG J Z, et al. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: a sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth2016121(4):2 235-2 257.
90 CHENG F, GARZIONE C, JOLIVET M, et al. Provenance analysis of the Yumen Basin and northern Qilian Shan:implications for the pre-collisional paleogeography in the NE Tibetan Plateau and eastern termination of Altyn Tagh fault[J]. Gondwana Research201965: 156-171.
91 LIU D L, YAN M D, FANG X M, et al. Magnetostratigraphy of sediments from the Yumu Shan,Hexi Corridor and its implications regarding the Late Cenozoic uplift of the NE Tibetan Plateau[J]. Quaternary International2011236(1/2):13-20.
92 DAI S, FANG X M, SONG C H, et al. Early tectonic uplift of the northern Tibetan Plateau[J]. Chinese Science Bulletin200550(15): 1 642-1 652.
93 FU K, FANG X M, GAO J P, et al. Response of grain size of Quaternary gravels to climate and tectonics in the northern Tibetan Plateau[J]. Science in China (Series D)200750(1): 81-91.
94 WU Jiakun. Late Cenozoic sedimentary sequence and fluvial evolution along the Yumu Shan,NE Tibetan Plateau[D]. Lanzhou:Lanzhou University, 2022.
武佳坤. 青藏高原东北缘榆木山地区晚新生代沉积演变与河流演化[D]. 兰州:兰州大学, 2022.
95 CHEN Jie, LU Yanchou, DING Guoyu. Stages of Quaternary tectonic movement in west Qilianshan Mountain and Jiuxi Basin[J]. Quaternary Sciences199616(3): 263-271.
陈杰,卢演俦,丁国瑜. 祁连山西段及酒西盆地区第四纪构造运动的阶段划分[J]. 第四纪研究199616(3): 263-271.
96 LI Youli, TAN Lihua, DUAN Fengjun, et al. Response of alluvial landforms to neotectonics in the Jiuquan Basin,Gansu,Northwest China[J]. Arid Land Geography200023(4): 304-309.
李有利,谭利华,段烽军,等. 甘肃酒泉盆地河流地貌与新构造运动[J]. 干旱区地理200023(4): 304-309.
97 CHEN Jie, LU Yanchou, DING Guoyu. The latest Quaternary tectonic deformation of terraces of Jiuxi Basin in west Qilianshan Mountain[J]. China Earthquake Engineering Journal199820(1): 29-37.
陈杰,卢演俦,丁国瑜. 祁连山西段酒西盆地区阶地构造变形的研究[J]. 西北地震学报199820(1): 29-37.
98 HETZEL R, NIEDERMANN S, TAO M X,et al. Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan[J]. Journal of Geophysical Research: Earth Surface2006, 111. DOI: 10.1029/2005JF000352 .
99 ZHONG Y Z, XIONG J G, LI Y L,et al. Constraining late Quaternary crustal shortening in the eastern Qilian Shan from deformed river terraces[J]. Journal of Geophysical Research: Solid Earth2020125(9). DOI:10.1029/2020JB020631 .
100 HU X F, CAO X L, LI T,et al. Late Quaternary fault slip rate within the Qilian Orogen,insight into the deformation kinematics for the NE Tibetan Plateau[J]. Tectonics202140(5). DOI:10.1029/2020TC006586 .
101 TIAN Qingying, ZHENG Wenjun, ZHANG Dongli, et al. Influence of tectonics and climate on the evolution of fluvial terraces: a case study of the Hongshuiba and Maying River in the northern margin of the Qilian Mountains[J]. Seismology and Geology201739(6): 1 283-1 296.
田晴映,郑文俊,张冬丽,等. 构造活动和气候变化对河流阶地发育的影响:以祁连山北缘洪水坝河和马营河为例[J]. 地震地质201739(6): 1 283-1 296.
102 ZHONG Yuezhi, LI Youli, XIONG Jianguo, et al. Terraces of the Tongziba River,eastern Qilian Mountain and their responses to neotectonic movement and climate change[J]. Journal of Palaeogeography201719(6): 1 075-1 086.
钟岳志,李有利,熊建国,等. 祁连山东段童子坝河阶地对气候变化与新构造运动的响应[J]. 古地理学报201719(6):1 075-1 086.
103 YANG H B, YANG X P, HUANG W L, et al. 10Be and OSL dating of Pleistocene fluvial terraces along the Hongshuiba River: constraints on tectonic and climatic drivers for fluvial downcutting across the NE Tibetan Plateau margin,China[J]. Geomorphology2020, 348. DOI:10.1016/j.geomorph.2019.106884 .
104 WU F L, FANG X M, MA Y Z, et al. Plio-Quaternary stepwise drying of Asia:evidence from a 3 Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters2007257(1/2): 160-169.
105 SU Qi, YUAN Daoyang, XIE Hong, et al. Geomorphic features of the Shule River drainage basin in Qilianshan and its insight into tectonic implications[J]. Seismology and Geology201638(2): 240-258.
苏琦,袁道阳,谢虹,等. 祁连山西段疏勒河流域地貌特征及其构造意义[J]. 地震地质201638(2): 240-258.
106 CHU Yongbin, ZHU Lidong, CHEN Wei, et al. Geomorphology and evolution of the upper Shule River[J]. Quaternary Sciences201535(2): 465-474.
褚永彬,朱利东,陈伟,等. 疏勒河上游河流地貌特征及其演化[J]. 第四纪研究201535(2): 465-474.
107 WANG Ping, LU Yanchou, CHEN Jie. New evidence of Quaternary left-lateral strike-slip movement along the easternmost segment of the Altun Fault[J]. Seismology and Geology200527(1): 55-62.
王萍,卢演俦,陈杰. 阿尔金主断裂东端第四纪左行走滑的新证据[J]. 地震地质200527(1): 55-62.
108 GUO Shunmin, XIANG Hongfa. A study on spatial-temporal distribution of the fault sinistral displacement in the Altun Structure System since Oligocene-Miocene[J]. Seismology and Geology199820(1): 9-18.
虢顺民,向宏发. 阿尔金构造系渐新世—中新世以来断裂左旋位错时空分布规律研究[J]. 地震地质199820(1): 9-18.
109 XING Wei, HOU Yongjian. Research of the Danghe River’s change from the end of the 18th century to the beginning of the 20th century[J]. The Western Regions Studies2010(2): 69-77, 123-124.
邢卫,侯甬坚. 18~20世纪初党河下游河道变迁研究[J]. 西域研究2010(2): 69-77, 123-124.
110 WANG X M, WANG B Y, QIU Z X, et al. Danghe area (western Gansu,China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau[J]. Earth and Planetary Science Letters2003208: 253-269.
111 RITTS B D, YUE Y J, GRAHAM S A. Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh Fault,northern Tibetan Plateau: analysis of the Xorkol,Subei,and Aksay basins[J]. Journal of Geology2004112(2): 207-229.
112 SUN J M, ZHU R X, AN Z S. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters2005235(3/4): 641-653.
113 YIN A, RUMELHART P E, BUTLER R,et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin2002114(10): 1 257-1 295.
114 YIN A, DANG Y Q, WANG L C, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1):the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin[J]. Geological Society of America Bulletin2008120(7/8): 813-846.
115 JIN Zhenkui, QI Congwei, XUE Jianqin, et al. Sedimentary facies of the Paleocene-Miocene in Jielüsu-Hongshan area in north margin of Qaidam Basin[J]. Journal of Palaeogeography20068(3): 377-388.
金振奎,齐聪伟,薛建勤,等. 柴达木盆地北缘结绿素—红山地区古新统至中新统沉积相[J]. 古地理学报20068(3):3 77-388.
116 MCRIVETTE M W, YIN A, CHEN X H, et al. Cenozoic basin evolution of the central Tibetan Plateau as constrained by U-Pb detrital zircon geochronology,sandstone petrology,and fission-track thermochronology[J]. Tectonophysics2019751:150-179.
117 WANG Yongchao, CHEN Xuanhua, SHAO Zhaogang,et al. Miocene evolution of the basin-mountain system and paleogeomorphic reconstruction in the Easternmost Qaidam Basin[J]. Acta Geoscientica Sinica202142(1): 43-54.
王永超,陈宣华,邵兆刚,等. 柴达木盆地东缘中新世盆山系统演化与构造古地貌重建[J]. 地球学报202142(1): 43-54.
118 HEERMANCE R V, PULLEN A, KAPP P, et al. Climatic and tectonic controls on sedimentation and erosion during the Pliocene-Quaternary in the Qaidam Basin (China)[J]. Geological Society of America Bulletin2013125(5/6): 833-856.
119 YUE Y J, RITTS B D, GRAHAM S A. Initiation and long-term slip history of the Altyn Tagh fault[J]. International Geology Review200143(12): 1 087-1 093.
120 YUE Y J, RITTS B D, GRAHAM S A, et al. Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault[J]. Earth and Planetary Science Letters2004217(1/2): 111-122.
121 ZHU Junjie, CAO Jixiu, ZHONG Wei, et al. The discovery of highest terrace of Yellow River and the oldest loess of Lanzhou region and their paleomagnetic ages[C]// The Expert Commitee on Qingzang Program. Formation and evolution of the tibetan plateau,environment changes and ecological system (Annual Journal of Academic Papers). Beijing:Science Press,1994: 77-90.
朱俊杰,曹继秀,钟巍,等. 兰州地区黄河最高阶地与最老黄土的古地磁年代研究[C]//青藏项目专家委员会. 青藏高原形成演化、环境变迁与生态系统研究(学术论文年刊). 北京:科学出版社,1994: 77-90.
122 LI Jijun, FANG Xiaomin, MA Haizhou, et al. Geomorphologic and environmental evolution in the upper reaches of the Yellow River during the Late Cenozoic[J]. Science in China(Series D)199626(4): 380-390.
李吉均,方小敏,马海洲,等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑)199626(4): 380-390.
123 HU X F, KIRBY E, PAN B T, et al. Cosmogenic burial ages reveal sediment reservoir dynamics along the Yellow River,China[J]. Geology201139: 839-842.
124 HE Xin, HU Xiaofei, PAN Baotian. Research and understanding of the evolution of the Yellow River valley in Lanzhou[J]. Advances in Earth Science202035(4): 404-413.
贺鑫,胡小飞,潘保田. 黄河兰州段河谷演化研究与认识[J]. 地球科学进展202035(4): 404-413.
125 CRADDOCK W H, KIRBY E, HARKINS N W, et al. Rapid fluvial incision along the Yellow River during headward basin integration[J]. Nature Geoscience20103: 209-213.
126 PAN B T, SU H, HU Z B, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River:evidence from a 1.24 Ma terrace record near Lanzhou,China[J]. Quaternary Science Reviews200928(27/28):3 281-3 290.
127 YANG Zhongjian, BIAN Meinian. Cenozoic geology of GaolanYongdeng,central Gansu [J]. Bulletin of the Geological Society of China193716:221-260.
杨钟健,卞美年. 甘肃中部皋兰—永登新生代地质[J]. 中国地质学会志193716:221-260.
128 CHEN Mengxiong. Physiography of the central of Gansu[J]. Geological Review1947(6): 545-556.
陈梦熊. 甘肃中部之地文[J]. 地质论评1947(6): 545-556.
129 ZHANG Linyuan. A preliminary study on Quaternary geology of Lanzhou River valley basin[J]. Journal of Lanzhou University1962(2): 89-101.
张林源. 兰州河谷盆地第四纪地质的初步研究[J]. 兰州大学学报1962(2): 89-101.
130 XU Shuying. Some problems on the terrace development of the Yellow River and its tributaries in the loess area of central and western Gansu Province[J]. Journal of Lanzhou University1965(1): 116-143.
徐叔鹰. 陇中西部黄土区黄河及其支流阶地发育的若干问题[J]. 兰州大学学报1965(1): 116-143.
131 LI J J, ZHANG B, ZHU J J, et al. Magneto-and pedo-stratigraphy of paleosol-loess sequences in the Lanzhou Basin:evidence for evolution of Huang He[J]. Chinese Science Bulletin199944(): 119-128.
132 PAN B T, SU H, HU C S, et al. Discovery of a 1.0 Ma Yellow River terrace and redating of the fourth Yellow River terrace in Lanzhou area[J]. Progress in Natural Science200717(2): 197-205.
133 GUO B H, LIU S P, PENG T J, et al. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin[J]. Geomorphology2018303: 271-283.
134 LI J J, FANG X M, van der VOO R, et al. Magnetostratigraphic dating of river terraces: rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary[J]. Journal of Geophysical Research:Solid Earth1997102(B5): 10 121-10 132.
135 FANG Xiaomin, LI Jijun, ZHU Junjie, et al. Absolute dating and division of Cenozoic strata in Linxia Basin,Gansu Province[J]. Chinese Science Bulletin199742(14): 1 457-1 471.
方小敏,李吉均,朱俊杰,等. 甘肃临夏盆地新生代地层绝对年代测定与划分[J]. 科学通报199742(14):1 457-1 471.
136 FANG X M, WANG J Y, ZHANG W L,et al. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research[J]. Global and Planetary Change2016145: 78-97.
137 PAN Baotian, LI Jijun, CAO Jixiu, et al. Study on the geomorphic evolution and development of the Yellow River in the Hualong Basin[J]. Mountain Research1996(3): 153-158.
潘保田,李吉均,曹继秀,等. 化隆盆地地貌演化与黄河发育研究[J]. 山地研究1996(3): 153-158.
138 XU Shuying, XU Defu, SHI Shengren. A discussion on the development of landforms and evolution of environment in the Gonghe Basin[J]. Journal of Lanzhou University (Natural Sciences)198420(1): 146-157.
徐叔鹰,徐德馥,石生仁. 共和盆地地貌发育与环境演化探讨[J]. 兰州大学学报(自然科学版)198420(1): 146-157.
139 SUN Yangui, FANG Hongbin, ZHANG Kun, et al. Step-like landform system of the Gonghe basin and the uplift of the Qinghai-Tibet Plateau and development of the Yellow River[J]. Geology in China200734(6): 1 141-1 147.
孙延贵,方洪宾,张琨,等. 共和盆地层状地貌系统与青藏高原隆升及黄河发育[J]. 中国地质200734(6): 1 141-1 147.
140 ZHANG H P, ZHANG P Z, CHAMPAGNAC J D, et al. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau[J]. Geology201442(4): 303-306.
141 YANG Dayuan, WU Shengguang, WANG Yunfei. On river terraces of the upper reaches of the Huanghe River and change of the river system[J]. Scientia Geographica Sinica199616(2): 137-143.
杨达源,吴胜光,王云飞. 黄河上游的阶地与水系变迁[J]. 地理科学199616(2): 137-143.
142 ZHAO Zhenming, LIU Baichi. The primary perspective of Longyang Gorge formation[J]. Northwestern Geology200538(2): 24-32.
赵振明,刘百篪. 对龙羊峡形成的初步认识[J]. 西北地质200538(2): 24-32.
143 SONG Chunhui, FANG Xiaomin, LI Jijun, et al. Sedimentary evolution of the Guide Basin in the late Cenozoic and the uplift of the Qinghai-Tibet Plateau[J]. Geological Review200349(4): 337-346.
宋春晖,方小敏,李吉均,等. 青海贵德盆地晚新生代沉积演化与青藏高原北部隆升[J]. 地质论评200349(4): 337-346.
144 NIE Junsheng, SONG Chunhui, FANG Xiaomin, et al. Paleomagnetic constraint on appearance of the Yellow River in the Guide Basin in the NE Tibetan Plateau and its geomorphologic implications[J]. Marine Geology & Quaternary Geology200323(2): 59-64.
聂军胜,宋春晖,方小敏,等. 贵德盆地黄河出现的古地磁年代及其意义[J]. 海洋地质与第四纪地质200323(2): 59-64.
145 FANG X M, YAN M D, van der VOO R, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau:evidence from high-resolution magnetostratigraphy of the Guide Basin,Qinghai Province,China[J]. Geological Society of America Bulletin2005117(9): 1 208-1 225.
146 CRADDOCK W, KIRBY E, ZHANG H P. Late Miocene-Pliocene range growth in the interior of the northeastern Tibetan Plateau[J]. Lithosphere20113(6): 420-438.
147 ZENG Yongnian, MA Haizhou, LI Zhen, et al. A study on Terraces formation and development of the Huangshui River in Xining area [J]. Scientia Geographica Sinica199515(3):253-258.
曾永年,马海洲,李珍,等. 西宁地区湟水阶地的形成与发育研究[J]. 地理科学199515(3): 253-258.
148 LU Huayu, AN Zhisheng, WANG Xiaoyong, et al. Geomorphological evidence of the periodic uplift of the northeastern margin of Qinghai-Tibet Plateau in recent 14 Ma [J]. Science in China (Series D)2004(9): 855-864.
鹿化煜,安芷生,王晓勇,等. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学(D辑)2004(9): 855-864.
149 MIAO X D, LU H Y, LI Z, et al. Paleocurrent and fabric analyses of the imbricated fluvial gravel deposits in Huangshui Valley,the northeastern Tibetan Plateau,China[J]. Geomorphology200899(1/2/3/4): 433-442.
150 ZHANG W L, ZHANG T, SONG C H, et al. Termination of fluvial-alluvial sedimentation in the Xining Basin,NE Tibetan Plateau,and its subsequent geomorphic evolution[J]. Geomorphology2017297: 86-99.
151 YANG R S, FANG X M, MENG Q Q, et al. Paleomagnetic constraints on the middle Miocene-early Pliocene stratigraphy in the Xining Basin,NE Tibetan Plateau,and the geologic implications[J]. Geochemistry,Geophysics,Geosystems, 201718(11): 3 741-3 757.
152 FANG X M, FANG Y H, ZAN J B, et al. Cenozoic magnetostratigraphy of the Xining Basin,NE Tibetan Plateau,and its constraints on paleontological,sedimentological and tectonomorphological evolution[J]. Earth-Science Reviews2019190: 460-485.
153 MA Z H, FENG Z T, PENG T J, et al. Quaternary drainage evolution of the Datong River,Qilian Mountains,northeastern Tibetan Plateau, China[J]. Geomorphology2020,353. DOI: 10.1016/j.geomorph.2019.107021 .
154 CHEN Kezao, HUANG Difan, LIANG Digang. The formation and development of the Qinghai Lake[J]. Acta Geographica Sinica196430(3): 214-233.
陈克造,黄第藩,梁狄刚. 青海湖的形成和发展[J]. 地理学报196430(3): 214-233.
155 YUAN Baoyin, CHEN Kezao, BOWLER J M, et al. The formation and evolution of the Qinghai Lake[J]. Quaternary Sciences199010(3): 233-243.
袁宝印,陈克造, Bowler J M,等. 青海湖的形成与演化趋势[J]. 第四纪研究199010(3): 233-243.
156 FU C F, AN Z S, QIANG X K, et al. Magnetostratigraphic determination of the age of ancient Lake Qinghai,and record of the East Asian monsoon since 4.63 Ma[J]. Geology201341(8): 875-878.
157 SUN Jianchu. The Qinghai Lake [J]. Geological Review19383(5): 507-511.
孙健初. 青海湖[J]. 地质论评19383(5): 507-511.
158 HU Dongsheng. The geological evolution of the Qinghai Lake[J]. Arid Land Geography198912(2): 29-36.
胡东生. 青海湖的地质演变[J]. 干旱区地理198912(2): 29-36.
159 BIAN Qiantao, LIU Jiaqi, LUO Xiaoquan, et al. Geotectonic setting, formation and evolution of the Qinghai Lake[J]. Seismology and Geology200022(1): 20-26.
边千韬,刘嘉麒,罗小全,等. 青海湖的地质构造背景及形成演化[J]. 地震地质200022(1): 20-26.
160 ZHANG Kun, SUN Yangui, JU Shengcheng, et al. The neotectonic process causing the conversion of the Qinghai Lake from an outflow lake into an interior lake[J]. Remote Sensing for Land Resources2010(): 77-81.
张焜,孙延贵,巨生成,等. 青海湖由外流湖转变为内陆湖的新构造过程[J]. 国土资源遥感2010(): 77-81.
161 WANG E C, SHi X H, WANG G, et al. Structural control on the topography of the Laji-Jishi and Riyue Shan belts in the NE margin of the Tibetan Plateau: facilitation of the headward propagation of the Yellow River system[J]. Journal of Asian Earth Sciences201140(4): 1 002-1 014.
162 ZHAO Di, CHEN Peng, LI Rongxi, et al. Basin response of muti-stage tectonic uplift of the Longshoushan area since the Late Cenozoic in northeastern margin of the Qinghai-Tibet Plateau[J]. Acta Petrologica Sinica202339(12): 3 759-3 774.
赵迪,陈鹏,李荣西,等. 青藏高原东北缘龙首山晚新生代多阶段构造隆升的盆地记录[J]. 岩石学报202339(12): 3 759-3 774.
163 AN Kaixuan. Cenozoic sedimentary evolution and exhumation in Jiuxi Basin and its implications for the growth of northeastern Tibetan Plateau[D]. Hangzhou: Zhejiang University, 2019.
安凯旋. 酒西盆地新生代沉积、剥露过程及对青藏高原东北缘生长的启示[D]. 杭州:浙江大学,2019.
[1] 任珩, 赵文智, 王小鹏, 罗维成, 周涛. 祁连山甘肃片区生命共同体的系统认知、实践历程与关键挑战[J]. 地球科学进展, 2024, 39(9): 957-967.
[2] 孟宪萌, 黄檬, 黄杰, 赵琦, 刘登峰. 流域地貌与河网结构影响机制及其演化模型的研究进展[J]. 地球科学进展, 2023, 38(8): 780-789.
[3] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[4] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[5] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[6] 陈京华, 贾文雄*, 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[7] 胡凯, 方小敏, 赵志军. 宇宙成因核素10Be揭示的北祁连山侵蚀速率特征*[J]. 地球科学进展, 2015, 30(2): 268-275.
[8] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
[9] 由伟丰,张海清,校培喜,曹宣铎,胡云绪,谢从瑞. 北祁连山—阿拉善地区寒武纪构造—岩相古地理[J]. 地球科学进展, 2011, 26(10): 1092-1100.
[10] 郑国光,陈跃,陈添宇,陈乾,朱君鉴,李照荣. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011, 26(10): 1057-1070.
[11] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
[12] 武震,刘时银,张世强. 祁连山老虎沟12号冰川冰下形态特征分析[J]. 地球科学进展, 2009, 24(10): 1149-1158.
[13] 王宝鉴,黄玉霞,王劲松,陶健红. 祁连山云和空中水汽资源的季节分布与演变[J]. 地球科学进展, 2006, 21(9): 948-955.
[14] 白云来;范育新;汤中立;江荣伏. 关于中国西部龙首山、祁连山成矿区(带)进一步找矿问题的思考[J]. 地球科学进展, 2005, 20(1): 36-041.
[15] 宋述光. 北祁连山俯冲杂岩带的构造演化[J]. 地球科学进展, 1997, 12(4): 351-365.
阅读次数
全文


摘要