地球科学进展 ›› 2025, Vol. 40 ›› Issue (2): 193 -206. doi: 10.11867/j.issn.1001-8166.2025.013

表层地球 上一篇    下一篇

陆上风光发电设施影响下的碳循环过程研究评述
杨小雪1,2(), 吴川东1,2, 刘鹄1,2,3(), 赵文智1,2,3, 何志斌1,2,3   
  1. 1.中国科学院西北生态环境资源研究院,中国生态系统研究网络临泽内陆河流域研究站,甘肃 兰州 730000
    2.中国科学院大学,北京 100010
    3.中国科学院西北生态环境 资源研究院 干旱区生态安全与可持续发展重点实验室,甘肃 兰州 730000
  • 收稿日期:2024-12-03 修回日期:2025-01-15 出版日期:2025-02-10
  • 通讯作者: 刘鹄 E-mail:yangxiaoxue22@mails.ucas.ac.cn;lhayz@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目(U23A2063);甘肃省拔尖领军人才计划(E339040101)

Carbon Cycling Processes in Onshore Wind and Solar Farms: A Review

Xiaoxue YANG1,2(), Chuandong WU1,2, Hu LIU1,2,3(), Wenzhi ZHAO1,2,3, Zhibin HE1,2,3   

  1. 1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100010, China
    3.Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2024-12-03 Revised:2025-01-15 Online:2025-02-10 Published:2025-04-17
  • Contact: Hu LIU E-mail:yangxiaoxue22@mails.ucas.ac.cn;lhayz@lzb.ac.cn
  • About author:YANG Xiaoxue, research area includes ecosystems. E-mail: yangxiaoxue22@mails.ucas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(U23A2063);Gansu Leading Talents Program(E339040101)

风能与光能在减少温室气体排放、促进能源转型等方面具有无可比拟的优势。但是,陆上风光电站建设占用大量土地资源并改变土地利用类型,且发电设施运行也会改变局地微气候环境与场地生态水文过程,从而深刻影响陆地碳循环过程。因此,明确风光电站对场地碳循环过程的潜在影响对新能源产业可持续发展具有重要意义。通过系统梳理近20年来关于陆上风光电站碳循环特征、影响机制、碳库动态与稳定性等方面的研究成果,发现干旱荒漠环境中的风光电站能够改善场地微气候、促进植被恢复并提高固碳潜力,但其碳库的时空动态存在较大的不确定性。未来需要针对不同生态系统风光电站开展碳循环过程的多尺度长期监测,加强电站内地上—地下碳过程的协同机制研究,揭示陆上风光电站固碳潜力及其时空特征,为国家未来风光能源可持续发展提供科学参考。

Wind and solar energy have unparalleled advantages in reducing greenhouse gas emissions and promoting energy transitions. However, the construction of onshore wind/solar farms occupies a tremendous amount of land resources and changes land use considerably. The operation of power generation facilities further changes the local microclimate and ecohydrological processes, profoundly affecting terrestrial carbon cycle processes. Therefore, it is important to clarify the potential impacts of wind/solar farms on the carbon cycle process at the site for sustainable development of the new energy industry. A systematic review of the research undertaken over the past two decades was conducted in this study, with special emphasis on the carbon cycle characteristics, impact mechanisms, and the dynamics and stability of carbon pools in onshore wind/solar farms. The results indicate that these wind/solar farms have the potential to improve local climate conditions, promote the restoration of vegetation, and thus increase the carbon sequestration potential in arid desert environments. However, considerable uncertainties exist regarding the recovery potential of either vegetation or soil carbon pools for wind/solar farms. We argue that there is an urgent need to conduct multi-scale and long-term monitoring of the carbon cycling processes in wind/solar farms, strengthen research on the synergistic mechanisms of the above- and below-ground carbon processes in onshore wind/solar farms, and quantitatively determine the carbon sequestration potential and its spatial and temporal characteristics in wind/solar farms. These efforts are expected to provide scientific references for sustainable design, management, and development of renewable energy sources in the future.

中图分类号: 

图1 全球与中国风电与光伏累计装机分布图
(a)全球风电累计装机分布图;(b)全球光电累计装机分布图;(c)中国风电累计装机分布图;(d)中国光电累计装机分布图(全球数据引自IRENA,2023,中国数据引自中国光伏行业协会与中国风能专委会,2023)
Fig. 1 The cumulative installed capacity of solar and wind power in the world and China
(a) Wind power in the world; (b) Solar power in the world; (c) Wind power in China; (d) Solar power in China (the global data are collected from IRENA, 2023, China data are collected from China Photovoltaic Industry Association and China Wind Energy Special Committee, 2023)
图2 陆上风光电站碳循环过程及微气候变化示意图
(a)生态系统碳循环;(b)风机对气候的影响;(c)光伏面板下的能量平衡(据参考文献[46]修改)
Fig. 2 Schematic diagram of carbon cycle process and microclimate change in onshore wind/solar farms
(a) The ecosystem carbon cycle; (b) The impact of wind turbines on climate;(c) The energy balance under PV panels (modified after reference [46])
1 ARMSTRONG A, PAGE T, THACKERAY S J, et al. Integrating environmental understanding into freshwater floatovoltaic deployment using an effects hierarchy and decision trees[J]. Environmental Research Letters202015(11). DOI: 10.1088/1748-9326/abbf7b .
2 AL-SHETWI A Q. Sustainable development of renewable energy integrated power sector: trends, environmental impacts, and recent challenges[J]. Science of the Total Environment2022, 822. DOI: 10.1016/j.scitotenv.2022.153645 .
3 International Renewable Energy Agency. Renewable capacity statistics 2024[R]. Abu Dhabi: International Renewable Energy Agency, 2024.
4 HUANG Zhen, XIE Xiaomin. Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences202136(9): 1 010-1 018.
黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊202136(9): 1 010-1 018.
5 YANG Weidong, ZENG Lianbo, LI Xiang. Advances in research of carbon sinks and their influencing factors evaluation[J]. Advances in Earth Science202338(2): 151-167.
杨卫东, 曾联波, 李想. 碳汇效应及其影响因素研究进展[J]. 地球科学进展202338(2): 151-167.
6 LU X, CHEN S, NIELSEN C P, et al. Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system[J]. Proceedings of the National Academy of Sciences of the United States of America2021118(42). DOI: 10.1073/pnas.2103471118 .
7 TAN Xianchun, GUO Wen, FAN Jie, et al. Policy framework and technology innovation policy of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences202237(4): 435-443.
谭显春, 郭雯, 樊杰, 等. 碳达峰、碳中和政策框架与技术创新政策研究[J]. 中国科学院院刊202237(4): 435-443.
8 LIU L B, WANG Y, WANG Z, et al. Potential contributions of wind and solar power to China’s carbon neutrality[J]. Resources, Conservation and Recycling2022, 180. DOI: 10.1016/j.resconrec.2022.106155 .
9 BREYER C, BOGDANOV D, GULAGI A, et al. On the role of solar photovoltaics in global energy transition scenarios[J]. Progress in Photovoltaics: Research and Applications201725(8): 727-745.
10 YANG L W, GAO X Q, LV F, et al. Study on the local climatic effects of large photovoltaic solar farms in desert areas[J]. Solar Energy2017144: 244-253.
11 JIANG Junxia, YANG Liwei, LI Zhenchao, et al. Progress in the research on the impact of wind farms on climate and environment[J]. Advances in Earth Science201934(10): 1 038-1 049.
蒋俊霞, 杨丽薇, 李振朝, 等. 风电场对气候环境的影响研究进展[J]. 地球科学进展201934(10): 1 038-1 049.
12 CHOI C S, CAGLE A E, MACKNICK J, et al. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure[J]. Frontiers in Environmental Science2020, 8. DOI:10.3389/fenvs.2020.00140 .
13 WU Z Y, HOU A P, CHANG C, et al. Environmental impacts of large-scale CSP plants in northwestern China[J]. Environmental Science Process Impacts201416(10): 2 432-2 441.
14 de MARCO A, PETROSILLO I, SEMERARO T, et al. The contribution of utility-scale solar energy to the global climate regulation and its effects on local ecosystem services[J]. Global Ecology and Conservation20142: 324-337.
15 ARMSTRONG A, BURTON R R, LEE S E, et al. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation[J]. Environmental Research Letters201611(4). DOI: 10.1088/1748-9326/11/4/044024 .
16 ARMSTRONG A, OSTLE N J, WHITAKER J. Solar park microclimate and vegetation management effects on grassland carbon cycling[J]. Environmental Research Letters201611(7). DOI: 10.1088/1748-9326/11/7/074016 .
17 ARMSTRONG A, WALDRON S, WHITAKER J, et al. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate[J]. Global Change Biology201420(6): 1 699-1 706.
18 LIANG Hong, WEI Ke, MA Jiao. Climate effect assessment of ideal large-scale solar and wind power farms in northwest China[J]. Climatic and Environmental Research202126(2): 124-142.
梁红, 魏科, 马骄. 我国西北大规模太阳能与风能发电场建设产生的可能气候效应[J]. 气候与环境研究202126(2): 124-142.
19 SCHUUR E A G, ABBOTT B W, COMMANE R, et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic[J]. Annual Review of Environment and Resources202247: 343-371.
20 XIA Z L, LI Y J, ZHANG W, et al. Quantitatively distinguishing the impact of solar photovoltaics programs on vegetation in dryland using satellite imagery[J]. Land Degradation & Development202334(14): 4 373-4 385.
21 XU K, HE L C, HU H J, et al. Positive ecological effects of wind farms on vegetation in China’s Gobi desert[J]. Scientific Reports2019, 9. DOI: 10.1038/s41598-019-42569-0 .
22 WU D H, GRODSKY S M, XU W F, et al. Observed impacts of large wind farms on grassland carbon cycling[J]. Science Bulletin2023: S2095-9273(23)00716-8. DOI: 10.1016/j.scib.2023.10.016 .
23 MA B R, YANG J H, CHEN X H, et al. Revealing the ecological impact of low-speed mountain wind power on vegetation and soil erosion in South China: a case study of a typical wind farm in Yunnan[J]. Journal of Cleaner Production2023, 419. DOI: 10.1016/j.jclepro.2023.138020 .
24 LIU Y, ZHANG R Q, HUANG Z, et al. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem[J]. Land Degradation & Development201930(18): 2 177-2 186.
25 LIU Yi. The influence of photovoltaic power station on two typical degraded ecosystems in north of Shanxi[D]. Taiyuan: Shanxi University of Finance & Economics, 2020.
刘怡. 光伏电站对晋北两种典型退化生态系统的影响[D]. 太原: 山西财经大学, 2020.
26 YANG Kaidi, LI Guoqing, LU Xiaonan. Effects of PV power stations on vegetation spatial aggregation in northwest China[J]. Solar Energy2023(10): 38-44.
杨凯迪, 李国庆, 卢潇楠. 中国西北地区光伏电站对植被空间聚集的影响[J]. 太阳能2023(10): 38-44.
27 CHOI C S, MACKNICK J, LI Y D, et al. Environmental co-benefits of maintaining native vegetation with solar photovoltaic infrastructure[J]. Earth’s Future202311(6). DOI: 10.1029/2023EF003542 .
28 RUDMAN J, GAUCHÉ P, ESLER K J. Direct environmental impacts of solar power in two arid biomes: an initial investigation[J]. South African Journal of Science2017, 113(11/12). DOI:10.17159/sajs.2017/20170113 .
29 QIN Z C, DENG X, GRISCOM B, et al. Natural climate solutions for China: the last mile to carbon neutrality[J]. Advances in Atmospheric Sciences202138(6): 889-895.
30 XIE Guohui, LI Nana. Development potential and prospect of global large-scale wind power generation bases[N]. State Grid News, 2018-12-04: 008.
谢国辉, 李娜娜. 全球大型风光发电基地开发潜力和前景[N]. 国家电网报, 2018-12-04: 008.
31 LI Yan, WANG Yuan, TANG Jianping. Temporal and spatial variety characteristics in near-surface wind energy in China[J]. Journal of Nanjing University (Natural Sciences)200743(3): 280-291.
李艳, 王元, 汤剑平. 中国近地层风能资源的时空变化特征[J]. 南京大学学报(自然科学版)200743(3): 280-291.
32 WANG Xiao. The exploration of domestic solar resource and its power generation base[J]. Wireless Internet Technology201613(11): 24-25.
王晓. 我国太阳能资源及其发电基地探讨[J]. 无线互联科技201613(11): 24-25.
33 SHEN Yi. The spatial distribution of solar energy and the comprehensive potential evaluation of regional exploitation and utilization in China[D]. Lanzhou: Lanzhou University, 2014.
沈义. 我国太阳能的空间分布及地区开发利用综合潜力评价[D]. 兰州: 兰州大学, 2014.
34 FLAKSMAN A S, MOZGOVOY A I, LOPATKIN D S, et al. Prospects for the development of alternative energy sources in the world energy[J]. IOP Conference Series: Earth and Environmental Science2021723(5). DOI: 10.1088/1755-1315/723/5/052040 .
35 KRUITWAGEN L, STORY K T, FRIEDRICH J, et al. A global inventory of photovoltaic solar energy generating units[J]. Nature2021598(7 882): 604-610.
36 Global Wind Energy Council. Global wind report 2021[R]. 2021.
37 LIU J X. China’s renewable energy law and policy: a critical review[J]. Renewable and Sustainable Energy Reviews201999: 212-219.
38 LI Keyu. Total installed capacity of wind and solar power to exceed 1.2 billion kilowatts by 2030, and the proportion of non-fossil energy consumption to reach more than 80 percent by 2060[N]. Daily Economic News, 2021-10-26:002.
李可愚. 2030年风电、太阳能发电总装机超12亿千瓦2060年非化石能源消费比重达80%以上[N]. 每日经济新闻, 2021-10-26: 002.
39 MA Weiwei. Current situation and development tend of international wind power industry[J]. Enterprise Reform and Management2019(15): 209-213.
马维唯. 国际风电产业现状及发展趋势[J]. 企业改革与管理2019(15): 209-213.
40 WANG Wenjing. Trend analysis: the reality and illusion of changes in the global photovoltaic industry[J]. Fortune World2011(13): 55-58.
王文静. 大趋势解读: 国际光伏产业变动的虚实[J]. 中国科技财富2011(13): 55-58.
41 ZHANG N, DUAN H B, SHAN Y L, et al. Booming solar energy is encroaching on cropland[J]. Nature Geoscience202316(11): 932-934.
42 HARRISON-ATLAS D, LOPEZ A, LANTZ E. Dynamic land use implications of rapidly expanding and evolving wind power deployment[J]. Environmental Research Letters202217(4). DOI: 10.1088/1748-9326/ac5f2c .
43 ADEH E H, GOOD S P, CALAF M, et al. Solar PV power potential is greatest over croplands[J]. Scientific Reports20199(1). DOI: 10.1038/s41598-019-47803-3 .
44 National Development and Reform Commission, National Energy Administration. 14th Five-Year Plan for modern energy system[EB/OL]. (2022-03-22) [2023-10-08]. .
国家发展和改革委员会, 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-03-22) [2023-10-08]. .
45 LAL R. Carbon cycling in global drylands[J]. Current Climate Change Reports20195(3): 221-232.
46 LI Peidu, GAO Xiaoqing. The impact of photovoltaic power plants on ecological environment and climate: a literature review[J]. Plateau Meteorology202140(3): 702-710.
李培都, 高晓清. 光伏电站对生态环境气候的影响综述[J]. 高原气象202140(3): 702-710.
47 BARTIE N J, COBOS-BECERRA Y L, FRÖHLING M, et al. The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: assessment and opportunities[J]. Resources, Conservation and Recycling2021, 169. DOI: 10.1016/j.resconrec.2021.105516 .
48 RAMESH D, CHANDRASEKARAN M, SOUNDARARAJAN R P, et al. Solar-powered plant protection equipment: perspective and prospects[J]. Energies202215(19). DOI: 10.3390/en15197379 .
49 OSMANI K, HADDAD A, LEMENAND T, et al. A review on maintenance strategies for PV systems[J]. Science of the Total Environment2020, 746. DOI:10.1016/j.scitotenv.2020.141753 .
50 LUO L H, ZHUANG Y L, DUAN Q T, et al. Local climatic and environmental effects of an onshore wind farm in North China[J]. Agricultural and Forest Meteorology2021, 308/309. DOI: 10.1016/j.agrformet.2021.108607 .
51 AMADUCCI S, YIN X Y, COLAUZZI M. Agrivoltaic systems to optimise land use for electric energy production[J]. Applied Energy2018220: 545-561.
52 QIN Y Z, LI Y, XU R, et al. Impacts of 319 wind farms on surface temperature and vegetation in the United States[J]. Environmental Research Letters202217(2). DOI: 10.1088/1748-9326/ac49ba .
53 XIA Z L, LI Y J, ZHANG W, et al. Solar photovoltaic program helps turn deserts green in China: evidence from satellite monitoring[J]. Journal of Environmental Management2022, 324. DOI: 10.1016/j.jenvman.2022.116338 .
54 CHEN Zhenghong, HE Fei, CUI Yang, et al. Advances in research of influence on climate of the group of wind farms in past 20 years[J]. Climate Change Research201814(4): 381-391.
陈正洪, 何飞, 崔杨, 等. 近20年来风电场(群)对气候的影响研究进展[J]. 气候变化研究进展201814(4): 381-391.
55 LI Y, KALNAY E, MOTESHARREI S, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science2018361(6 406): 1 019-1 022.
56 XIA G, ZHOU L M. Detecting wind farm impacts on local vegetation growth in Texas and Illinois using MODIS vegetation greenness measurements[J]. Remote Sensing20179(7). DOI:10.3390/rs9070698 .
57 BAIDYA R S, TRAITEUR J J. Impacts of wind farms on surface air temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America2010107(42): 17 899-17 904.
58 ZHOU L M, TIAN Y H, BAIDYA R S, et al. Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas[J]. Climate Dynamics201341(2): 307-326.
59 BAIDYA R S. Simulating impacts of wind farms on local hydrometeorology[J]. Journal of Wind Engineering and Industrial Aerodynamics201199(4): 491-498.
60 WANG C, PRINN R G. Potential climatic impacts and reliability of very large-scale wind farms[J]. Atmospheric Chemistry and Physics201010(4): 2 053-2 061.
61 VAUTARD R, THAIS F, TOBIN I, et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms[J]. Nature Communications2014, 5. DOI: 10.1038/ncomms4196 .
62 KEITH D W, de CAROLIS J F, DENKENBERGER D C, et al. The influence of large-scale wind power on global climate[J]. Proceedings of the National Academy of Sciences of the United States of America2004101(46): 16 115-16 120.
63 XU Yongming, Shihai LÜ. Effects of wind erosion desertification on the biodiversity of grassland vegetation of Hulunbeir steppe[J]. Journal of Arid Land Resources and Environment201125(4): 133-137.
徐永明, 吕世海. 风蚀沙化对草原植被生物多样性的影响: 以呼伦贝尔草原为例[J]. 干旱区资源与环境201125(4): 133-137.
64 WANG G, LI G Q, LIU Z. Wind farms dry surface soil in temporal and spatial variation[J]. Science of the Total Environment2023, 857(Pt. 1). DOI:10.1016/j.scitotenv.2022.159293 .
65 TANG B J, WU D H, ZHAO X, et al. The observed impacts of wind farms on local vegetation growth in northern China[J]. Remote Sensing20179(4). DOI:10.3390/rs9040332 .
66 RAJEWSKI D A, TAKLE E S, LUNDQUIST J K, et al. Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm[J]. Agricultural and Forest Meteorology2014194: 175-187.
67 MARIA M. Assessment on the local climate effects of solar parks[D]. Lancaster, North West England, UK: Lancaster University, 2020.
68 van de VEN D J, CAPELLAN-PERÉZ I, ARTO I, et al. The potential land requirements and related land use change emissions of solar energy[J]. Scientific Reports202111(1). DOI: 10.1038/s41598-021-82042-5 .
69 NOOR N M, REEZA A A. Effects of solar photovoltaic installation on microclimate and soil properties in UiTM 50MWac Solar Park, Malaysia[J]. IOP Conference Series: Earth and Environmental Science20221 059(1). DOI: 10.1088/1755-1315/1059/1/012031 .
70 LI C, LIU J X, BAO J B, et al. Effect of light heterogeneity caused by photovoltaic panels on the plant-soil-microbial system in solar park[J]. Land202312(2). DOI:10.3390/land12020367 .
71 WANG Ying, LI Guoqing, ZHOU Jie, et al. Research on influence of pv array on soil moisture[J]. Solar Energy2021(7): 53-58.
王颖, 李国庆, 周洁, 等. 光伏阵列对土壤水分的影响研究[J]. 太阳能2021(7): 53-58.
72 WU Chuandong, SU Zebing, LIU Hu, et al. Eco-hydrological effects of photovoltaic power generation facilities on dryland ecosystems: a review[J]. Plateau Meteorology202140(3): 690-701.
吴川东, 苏泽兵, 刘鹄, 等. 干旱、半干旱区光伏发电设施的生态—水文效应研究评述[J]. 高原气象202140(3): 690-701.
73 HASSANPOUR A E, SELKER J S, HIGGINS C W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency[J]. PLoS One201813(11). DOI: 10.1371/journal.pone.0203256 .
74 LAMBERT Q, BISCHOFF A, CUEFF S, et al. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate[J]. Land Degradation & Development202132(18): 5 190-5 202.
75 MOSCATELLI M C, MARABOTTINI R, MASSACCESI L, et al. Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area[J]. Geoderma Regional2022, 29. DOI: 10.1016/j.geodrs.2022.e00500 .
76 ZHANG X H, XU M. Assessing the effects of photovoltaic powerplants on surface temperature using remote sensing techniques[J]. Remote Sensing202012(11). DOI: 10.3390/rs12111825 .
77 HU A X, LEVIS S, MEEHL G, et al. Impact of solar panels on global climate[J]. Nature Climate Change20166: 290-294.
78 ULDRIJAN D, KOVÁČIKOVÁ M, JAKIMIUK A, et al. Ecological effects of preferential vegetation composition developed on sites with photovoltaic power plants[J]. Ecological Engineering2021, 168. DOI: 10.1016/j.ecoleng.2021.106274 .
79 PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature2009458(7 241): 1 009-1 013.
80 MA Songyao, CHEN Long, TENG Zeyu, et al. Vegetation changes in wind farm in desert steppe region[J]. Journal of Desert Research201939(2): 186-192.
马松尧, 陈龙, 滕泽宇, 等. 荒漠草原区风力发电场建设前后的植被变化[J]. 中国沙漠201939(2): 186-192.
81 PEKKAN O I, SENYEL K M A, CABUK S N, et al. Assessing the effects of wind farms on soil organic carbon[J]. Environmental Science and Pollution Research International202128(14): 18 216-18 233.
82 LIU Pengtao. Landscape pattern evolution and ecological effect of the Inner Mongolia wind farm[D]. Hohhot: Inner Mongolia University, 2021.
刘朋涛. 内蒙古风电场景观格局演变及生态效应[D]. 呼和浩特: 内蒙古大学, 2021.
83 WU X L, ZHANG L X, ZHAO C F, et al. Satellite-based assessment of local environment change by wind farms in China[J]. Earth and Space Science20196(6): 947-958.
84 URZICEANU M, ANASTASIU P, ROZYLOWICZ L, et al. Local-scale impact of wind energy farms on rare, endemic, and threatened plant species[J]. PeerJ2021, 9. DOI: 10.7717/peerj.11390 .
85 ARYA M, GEETHA P, SOMAN K P. Effect of wind farms in crop production of kanyakumari district[J]. Indian Journal of Science and Technology20158(28): 1-4.
86 KAFFINE D T. Microclimate effects of wind farms on local crop yields[J]. Journal of Environmental Economics and Management201996: 159-173.
87 ZHOU Maorong, WANG Xijun. Influence of photovoltaic power station engineering on soil and vegetation: taking the Gobi Desert area in the Hexi Corridor of Gansu as an example[J]. Science of Soil and Water Conservation201917(2): 132-138.
周茂荣, 王喜君. 光伏电站工程对土壤与植被的影响: 以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学201917(2): 132-138.
88 YOUSUF H, KOO L, CHO Y H. A review on the agri-voltaic and fence PV system[J]. Current Photovoltaic Research202210(4): 116-120.
89 BEATTY B, MACKNICK J, MCCALL J, et al. Native vegetation performance under a Solar PV array at the National Wind Technology Center[R]. Golden, Colorado: National Renewable Energy Laboratory, 2017. DOI: 10.2172/1357887 .
90 MA S, LIU J H, ZHANG P, et al. Characterizing the development of photovoltaic power stations and their impacts on vegetation conditions from landsat time series during 1990-2022[J]. Remote Sensing202315(12). DOI: 10.3390/rs15123101 .
91 WU C D, LIU H, YU Y, et al. Ecohydrological insight: solar farms facilitate carbon sink enhancement in drylands[J]. Journal of Environmental Management2023, 342. DOI: 10.1016/j.jenvman.2023.118304 .
92 POTTER C. Landsat time series analysis of vegetation changes in solar energy development areas of the lower Colorado desert, southern California[J]. Journal of Geoscience and Environment Protection20164(2): 1-6.
93 YU Jian, FANG Li, BIAN Zhengfu, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica201434(17): 4 829-4 838.
余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报201434(17): 4 829-4 838.
94 LIU Yalong, WANG Ping, WANG Jingkuan. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica202360(3): 627-643.
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报202360(3): 627-643.
95 LI G L, FU Y, LI B Q, et al. Micro-characteristics of soil aggregate breakdown under raindrop action[J]. CATENA2018162: 354-359.
96 ZHAO Jing, GUAN Shiyu, ZHANG Youxin, et al. Distribution characteristics and stability changes of soil aggregates in photovoltaic power stations after vegetation restoration[J]. Journal of Arid Land Resources and Environment202135(11): 172-177.
赵晶, 关世羽, 张有新, 等. 植被恢复后光伏电站内土壤团聚体分布特征和稳定性研究[J]. 干旱区资源与环境202135(11): 172-177.
97 CHEN L Y, LIU L, QIN S Q, et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale[J]. Nature Communications201910(1). DOI:10.1038/s41467-019-13119-z .
98 SONG Wenjie, LIANG Yuzheng, TAO Zhen, et al. Advances on soil organic carbon dynamics mediated by microorganisms[J]. Advances in Earth Science202338(12): 1 213-1 223.
宋文婕, 梁誉正, 陶贞, 等. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展202338(12): 1 213-1 223.
99 BAI Z Y, JIA A M, BAI Z J, et al. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity[J]. Frontiers in Microbiology2022, 13. DOI: 10.3389/fmicb.2022.1065899 .
100 LIU Z Y, PENG T, MA S L, et al. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: an assessment of soil microbial and plant communities[J]. Frontiers in Microbiology2023, 14. DOI: 10.3389/fmicb.2023.1190650 .
101 LIU Y, DING C X, SU D R, et al. Solar park promoted microbial nitrogen and phosphorus cycle potentials but reduced soil prokaryotic diversity and network stability in alpine desert ecosystem[J]. Frontiers in Microbiology2022, 13. DOI: 10.3389/fmicb.2022.976335 .
102 DING Chengxiang, LIU Yu. Effects of solar photovoltaic park construction on soil microbial community in alpine desert of Qinghai Tibet Plateau[J]. Acta Agrestia Sinica202129(5): 1 061-1 069.
丁成翔, 刘禹. 光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[J]. 草地学报202129(5): 1 061-1 069.
103 SU B Q, SU Z X, SHANGGUAN Z P. Trade-off analyses of plant biomass and soil moisture relations on the Loess Plateau[J]. CATENA2021, 197. DOI: 10.1016/j.catena.2020.104946 .
104 GHOSH S, YADAV R. Future of photovoltaic technologies: a comprehensive review[J]. Sustainable Energy Technologies and Assessments2021, 47. DOI: 10.1016/j.seta.2021.101410 .
105 CARVALHAIS N, FORKEL M, KHOMIK M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems[J]. Nature2014514(7 521): 213-217.
106 LI B, LEI C, ZHANG W P, et al. Numerical model study on influences of photovoltaic plants on local microclimate[J]. Renewable Energy2024, 221. DOI: 10.1016/j.renene.2023.119551 .
107 KANNENBERG S A, STURCHIO M A, VENTURAS M D, et al. Grassland carbon-water cycling is minimally impacted by a photovoltaic array[J]. Communications Earth & Environment2023, 4. DOI:10.1038/s43247-023-00904-4 .
108 MEITZNER R, SCHUBERT U S, HOPPE H. Agrivoltaics: the perfect fit for the future of organic photovoltaics[J]. Advanced Energy Materials202111(1). DOI: 10.1002/aenm.202002551 .
109 LIU Y, ZHANG R Q, MA X R, et al. Combined ecological and economic benefits of the solar photovoltaic industry in arid sandy ecosystems[J]. Journal of Cleaner Production2020, 262. DOI: 10.1016/j.jclepro.2020.121376 .
[1] 杨元建, 罗芙, 薛捷升, 宗莲, 田伟守, 石涛. 城市热浪与冠层热岛协同作用研究进展与展望[J]. 地球科学进展, 2024, 39(4): 331-346.
[2] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
阅读次数
全文


摘要