1 |
ARMSTRONG A, PAGE T, THACKERAY S J, et al. Integrating environmental understanding into freshwater floatovoltaic deployment using an effects hierarchy and decision trees[J]. Environmental Research Letters, 2020, 15(11). DOI: 10.1088/1748-9326/abbf7b .
|
2 |
AL-SHETWI A Q. Sustainable development of renewable energy integrated power sector: trends, environmental impacts, and recent challenges[J]. Science of the Total Environment, 2022, 822. DOI: 10.1016/j.scitotenv.2022.153645 .
|
3 |
International Renewable Energy Agency. Renewable capacity statistics 2024[R]. Abu Dhabi: International Renewable Energy Agency, 2024.
|
4 |
HUANG Zhen, XIE Xiaomin. Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1 010-1 018.
|
|
黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1 010-1 018.
|
5 |
YANG Weidong, ZENG Lianbo, LI Xiang. Advances in research of carbon sinks and their influencing factors evaluation[J]. Advances in Earth Science, 2023, 38(2): 151-167.
|
|
杨卫东, 曾联波, 李想. 碳汇效应及其影响因素研究进展[J]. 地球科学进展, 2023, 38(2): 151-167.
|
6 |
LU X, CHEN S, NIELSEN C P, et al. Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42). DOI: 10.1073/pnas.2103471118 .
|
7 |
TAN Xianchun, GUO Wen, FAN Jie, et al. Policy framework and technology innovation policy of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 435-443.
|
|
谭显春, 郭雯, 樊杰, 等. 碳达峰、碳中和政策框架与技术创新政策研究[J]. 中国科学院院刊, 2022, 37(4): 435-443.
|
8 |
LIU L B, WANG Y, WANG Z, et al. Potential contributions of wind and solar power to China’s carbon neutrality[J]. Resources, Conservation and Recycling, 2022, 180. DOI: 10.1016/j.resconrec.2022.106155 .
|
9 |
BREYER C, BOGDANOV D, GULAGI A, et al. On the role of solar photovoltaics in global energy transition scenarios[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(8): 727-745.
|
10 |
YANG L W, GAO X Q, LV F, et al. Study on the local climatic effects of large photovoltaic solar farms in desert areas[J]. Solar Energy, 2017, 144: 244-253.
|
11 |
JIANG Junxia, YANG Liwei, LI Zhenchao, et al. Progress in the research on the impact of wind farms on climate and environment[J]. Advances in Earth Science, 2019, 34(10): 1 038-1 049.
|
|
蒋俊霞, 杨丽薇, 李振朝, 等. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1 038-1 049.
|
12 |
CHOI C S, CAGLE A E, MACKNICK J, et al. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure[J]. Frontiers in Environmental Science, 2020, 8. DOI:10.3389/fenvs.2020.00140 .
|
13 |
WU Z Y, HOU A P, CHANG C, et al. Environmental impacts of large-scale CSP plants in northwestern China[J]. Environmental Science Process Impacts, 2014, 16(10): 2 432-2 441.
|
14 |
de MARCO A, PETROSILLO I, SEMERARO T, et al. The contribution of utility-scale solar energy to the global climate regulation and its effects on local ecosystem services[J]. Global Ecology and Conservation, 2014, 2: 324-337.
|
15 |
ARMSTRONG A, BURTON R R, LEE S E, et al. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation[J]. Environmental Research Letters, 2016, 11(4). DOI: 10.1088/1748-9326/11/4/044024 .
|
16 |
ARMSTRONG A, OSTLE N J, WHITAKER J. Solar park microclimate and vegetation management effects on grassland carbon cycling[J]. Environmental Research Letters, 2016, 11(7). DOI: 10.1088/1748-9326/11/7/074016 .
|
17 |
ARMSTRONG A, WALDRON S, WHITAKER J, et al. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate[J]. Global Change Biology, 2014, 20(6): 1 699-1 706.
|
18 |
LIANG Hong, WEI Ke, MA Jiao. Climate effect assessment of ideal large-scale solar and wind power farms in northwest China[J]. Climatic and Environmental Research, 2021, 26(2): 124-142.
|
|
梁红, 魏科, 马骄. 我国西北大规模太阳能与风能发电场建设产生的可能气候效应[J]. 气候与环境研究, 2021, 26(2): 124-142.
|
19 |
SCHUUR E A G, ABBOTT B W, COMMANE R, et al. Permafrost and climate change: carbon cycle feedbacks from the warming Arctic[J]. Annual Review of Environment and Resources, 2022, 47: 343-371.
|
20 |
XIA Z L, LI Y J, ZHANG W, et al. Quantitatively distinguishing the impact of solar photovoltaics programs on vegetation in dryland using satellite imagery[J]. Land Degradation & Development, 2023, 34(14): 4 373-4 385.
|
21 |
XU K, HE L C, HU H J, et al. Positive ecological effects of wind farms on vegetation in China’s Gobi desert[J]. Scientific Reports, 2019, 9. DOI: 10.1038/s41598-019-42569-0 .
|
22 |
WU D H, GRODSKY S M, XU W F, et al. Observed impacts of large wind farms on grassland carbon cycling[J]. Science Bulletin, 2023: S2095-9273(23)00716-8. DOI: 10.1016/j.scib.2023.10.016 .
|
23 |
MA B R, YANG J H, CHEN X H, et al. Revealing the ecological impact of low-speed mountain wind power on vegetation and soil erosion in South China: a case study of a typical wind farm in Yunnan[J]. Journal of Cleaner Production, 2023, 419. DOI: 10.1016/j.jclepro.2023.138020 .
|
24 |
LIU Y, ZHANG R Q, HUANG Z, et al. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem[J]. Land Degradation & Development, 2019, 30(18): 2 177-2 186.
|
25 |
LIU Yi. The influence of photovoltaic power station on two typical degraded ecosystems in north of Shanxi[D]. Taiyuan: Shanxi University of Finance & Economics, 2020.
|
|
刘怡. 光伏电站对晋北两种典型退化生态系统的影响[D]. 太原: 山西财经大学, 2020.
|
26 |
YANG Kaidi, LI Guoqing, LU Xiaonan. Effects of PV power stations on vegetation spatial aggregation in northwest China[J]. Solar Energy, 2023(10): 38-44.
|
|
杨凯迪, 李国庆, 卢潇楠. 中国西北地区光伏电站对植被空间聚集的影响[J]. 太阳能, 2023(10): 38-44.
|
27 |
CHOI C S, MACKNICK J, LI Y D, et al. Environmental co-benefits of maintaining native vegetation with solar photovoltaic infrastructure[J]. Earth’s Future, 2023, 11(6). DOI: 10.1029/2023EF003542 .
|
28 |
RUDMAN J, GAUCHÉ P, ESLER K J. Direct environmental impacts of solar power in two arid biomes: an initial investigation[J]. South African Journal of Science, 2017, 113(11/12). DOI:10.17159/sajs.2017/20170113 .
|
29 |
QIN Z C, DENG X, GRISCOM B, et al. Natural climate solutions for China: the last mile to carbon neutrality[J]. Advances in Atmospheric Sciences, 2021, 38(6): 889-895.
|
30 |
XIE Guohui, LI Nana. Development potential and prospect of global large-scale wind power generation bases[N]. State Grid News, 2018-12-04: 008.
|
|
谢国辉, 李娜娜. 全球大型风光发电基地开发潜力和前景[N]. 国家电网报, 2018-12-04: 008.
|
31 |
LI Yan, WANG Yuan, TANG Jianping. Temporal and spatial variety characteristics in near-surface wind energy in China[J]. Journal of Nanjing University (Natural Sciences), 2007, 43(3): 280-291.
|
|
李艳, 王元, 汤剑平. 中国近地层风能资源的时空变化特征[J]. 南京大学学报(自然科学版), 2007, 43(3): 280-291.
|
32 |
WANG Xiao. The exploration of domestic solar resource and its power generation base[J]. Wireless Internet Technology, 2016, 13(11): 24-25.
|
|
王晓. 我国太阳能资源及其发电基地探讨[J]. 无线互联科技, 2016, 13(11): 24-25.
|
33 |
SHEN Yi. The spatial distribution of solar energy and the comprehensive potential evaluation of regional exploitation and utilization in China[D]. Lanzhou: Lanzhou University, 2014.
|
|
沈义. 我国太阳能的空间分布及地区开发利用综合潜力评价[D]. 兰州: 兰州大学, 2014.
|
34 |
FLAKSMAN A S, MOZGOVOY A I, LOPATKIN D S, et al. Prospects for the development of alternative energy sources in the world energy[J]. IOP Conference Series: Earth and Environmental Science, 2021, 723(5). DOI: 10.1088/1755-1315/723/5/052040 .
|
35 |
KRUITWAGEN L, STORY K T, FRIEDRICH J, et al. A global inventory of photovoltaic solar energy generating units[J]. Nature, 2021, 598(7 882): 604-610.
|
36 |
Global Wind Energy Council. Global wind report 2021[R]. 2021.
|
37 |
LIU J X. China’s renewable energy law and policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 99: 212-219.
|
38 |
LI Keyu. Total installed capacity of wind and solar power to exceed 1.2 billion kilowatts by 2030, and the proportion of non-fossil energy consumption to reach more than 80 percent by 2060[N]. Daily Economic News, 2021-10-26:002.
|
|
李可愚. 2030年风电、太阳能发电总装机超12亿千瓦2060年非化石能源消费比重达80%以上[N]. 每日经济新闻, 2021-10-26: 002.
|
39 |
MA Weiwei. Current situation and development tend of international wind power industry[J]. Enterprise Reform and Management, 2019(15): 209-213.
|
|
马维唯. 国际风电产业现状及发展趋势[J]. 企业改革与管理, 2019(15): 209-213.
|
40 |
WANG Wenjing. Trend analysis: the reality and illusion of changes in the global photovoltaic industry[J]. Fortune World, 2011(13): 55-58.
|
|
王文静. 大趋势解读: 国际光伏产业变动的虚实[J]. 中国科技财富, 2011(13): 55-58.
|
41 |
ZHANG N, DUAN H B, SHAN Y L, et al. Booming solar energy is encroaching on cropland[J]. Nature Geoscience, 2023, 16(11): 932-934.
|
42 |
HARRISON-ATLAS D, LOPEZ A, LANTZ E. Dynamic land use implications of rapidly expanding and evolving wind power deployment[J]. Environmental Research Letters, 2022, 17(4). DOI: 10.1088/1748-9326/ac5f2c .
|
43 |
ADEH E H, GOOD S P, CALAF M, et al. Solar PV power potential is greatest over croplands[J]. Scientific Reports, 2019, 9(1). DOI: 10.1038/s41598-019-47803-3 .
|
44 |
National Development and Reform Commission, National Energy Administration. 14th Five-Year Plan for modern energy system[EB/OL]. (2022-03-22) [2023-10-08]. .
|
|
国家发展和改革委员会, 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-03-22) [2023-10-08]. .
|
45 |
LAL R. Carbon cycling in global drylands[J]. Current Climate Change Reports, 2019, 5(3): 221-232.
|
46 |
LI Peidu, GAO Xiaoqing. The impact of photovoltaic power plants on ecological environment and climate: a literature review[J]. Plateau Meteorology, 2021, 40(3): 702-710.
|
|
李培都, 高晓清. 光伏电站对生态环境气候的影响综述[J]. 高原气象, 2021, 40(3): 702-710.
|
47 |
BARTIE N J, COBOS-BECERRA Y L, FRÖHLING M, et al. The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: assessment and opportunities[J]. Resources, Conservation and Recycling, 2021, 169. DOI: 10.1016/j.resconrec.2021.105516 .
|
48 |
RAMESH D, CHANDRASEKARAN M, SOUNDARARAJAN R P, et al. Solar-powered plant protection equipment: perspective and prospects[J]. Energies, 2022, 15(19). DOI: 10.3390/en15197379 .
|
49 |
OSMANI K, HADDAD A, LEMENAND T, et al. A review on maintenance strategies for PV systems[J]. Science of the Total Environment, 2020, 746. DOI:10.1016/j.scitotenv.2020.141753 .
|
50 |
LUO L H, ZHUANG Y L, DUAN Q T, et al. Local climatic and environmental effects of an onshore wind farm in North China[J]. Agricultural and Forest Meteorology, 2021, 308/309. DOI: 10.1016/j.agrformet.2021.108607 .
|
51 |
AMADUCCI S, YIN X Y, COLAUZZI M. Agrivoltaic systems to optimise land use for electric energy production[J]. Applied Energy, 2018, 220: 545-561.
|
52 |
QIN Y Z, LI Y, XU R, et al. Impacts of 319 wind farms on surface temperature and vegetation in the United States[J]. Environmental Research Letters, 2022, 17(2). DOI: 10.1088/1748-9326/ac49ba .
|
53 |
XIA Z L, LI Y J, ZHANG W, et al. Solar photovoltaic program helps turn deserts green in China: evidence from satellite monitoring[J]. Journal of Environmental Management, 2022, 324. DOI: 10.1016/j.jenvman.2022.116338 .
|
54 |
CHEN Zhenghong, HE Fei, CUI Yang, et al. Advances in research of influence on climate of the group of wind farms in past 20 years[J]. Climate Change Research, 2018, 14(4): 381-391.
|
|
陈正洪, 何飞, 崔杨, 等. 近20年来风电场(群)对气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(4): 381-391.
|
55 |
LI Y, KALNAY E, MOTESHARREI S, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science, 2018, 361(6 406): 1 019-1 022.
|
56 |
XIA G, ZHOU L M. Detecting wind farm impacts on local vegetation growth in Texas and Illinois using MODIS vegetation greenness measurements[J]. Remote Sensing, 2017, 9(7). DOI:10.3390/rs9070698 .
|
57 |
BAIDYA R S, TRAITEUR J J. Impacts of wind farms on surface air temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 17 899-17 904.
|
58 |
ZHOU L M, TIAN Y H, BAIDYA R S, et al. Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas[J]. Climate Dynamics, 2013, 41(2): 307-326.
|
59 |
BAIDYA R S. Simulating impacts of wind farms on local hydrometeorology[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 491-498.
|
60 |
WANG C, PRINN R G. Potential climatic impacts and reliability of very large-scale wind farms[J]. Atmospheric Chemistry and Physics, 2010, 10(4): 2 053-2 061.
|
61 |
VAUTARD R, THAIS F, TOBIN I, et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms[J]. Nature Communications, 2014, 5. DOI: 10.1038/ncomms4196 .
|
62 |
KEITH D W, de CAROLIS J F, DENKENBERGER D C, et al. The influence of large-scale wind power on global climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16 115-16 120.
|
63 |
XU Yongming, Shihai LÜ. Effects of wind erosion desertification on the biodiversity of grassland vegetation of Hulunbeir steppe[J]. Journal of Arid Land Resources and Environment, 2011, 25(4): 133-137.
|
|
徐永明, 吕世海. 风蚀沙化对草原植被生物多样性的影响: 以呼伦贝尔草原为例[J]. 干旱区资源与环境, 2011, 25(4): 133-137.
|
64 |
WANG G, LI G Q, LIU Z. Wind farms dry surface soil in temporal and spatial variation[J]. Science of the Total Environment, 2023, 857(Pt. 1). DOI:10.1016/j.scitotenv.2022.159293 .
|
65 |
TANG B J, WU D H, ZHAO X, et al. The observed impacts of wind farms on local vegetation growth in northern China[J]. Remote Sensing, 2017, 9(4). DOI:10.3390/rs9040332 .
|
66 |
RAJEWSKI D A, TAKLE E S, LUNDQUIST J K, et al. Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm[J]. Agricultural and Forest Meteorology, 2014, 194: 175-187.
|
67 |
MARIA M. Assessment on the local climate effects of solar parks[D]. Lancaster, North West England, UK: Lancaster University, 2020.
|
68 |
van de VEN D J, CAPELLAN-PERÉZ I, ARTO I, et al. The potential land requirements and related land use change emissions of solar energy[J]. Scientific Reports, 2021, 11(1). DOI: 10.1038/s41598-021-82042-5 .
|
69 |
NOOR N M, REEZA A A. Effects of solar photovoltaic installation on microclimate and soil properties in UiTM 50MWac Solar Park, Malaysia[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1 059(1). DOI: 10.1088/1755-1315/1059/1/012031 .
|
70 |
LI C, LIU J X, BAO J B, et al. Effect of light heterogeneity caused by photovoltaic panels on the plant-soil-microbial system in solar park[J]. Land, 2023, 12(2). DOI:10.3390/land12020367 .
|
71 |
WANG Ying, LI Guoqing, ZHOU Jie, et al. Research on influence of pv array on soil moisture[J]. Solar Energy, 2021(7): 53-58.
|
|
王颖, 李国庆, 周洁, 等. 光伏阵列对土壤水分的影响研究[J]. 太阳能, 2021(7): 53-58.
|
72 |
WU Chuandong, SU Zebing, LIU Hu, et al. Eco-hydrological effects of photovoltaic power generation facilities on dryland ecosystems: a review[J]. Plateau Meteorology, 2021, 40(3): 690-701.
|
|
吴川东, 苏泽兵, 刘鹄, 等. 干旱、半干旱区光伏发电设施的生态—水文效应研究评述[J]. 高原气象, 2021, 40(3): 690-701.
|
73 |
HASSANPOUR A E, SELKER J S, HIGGINS C W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency[J]. PLoS One, 2018, 13(11). DOI: 10.1371/journal.pone.0203256 .
|
74 |
LAMBERT Q, BISCHOFF A, CUEFF S, et al. Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate[J]. Land Degradation & Development, 2021, 32(18): 5 190-5 202.
|
75 |
MOSCATELLI M C, MARABOTTINI R, MASSACCESI L, et al. Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area[J]. Geoderma Regional, 2022, 29. DOI: 10.1016/j.geodrs.2022.e00500 .
|
76 |
ZHANG X H, XU M. Assessing the effects of photovoltaic powerplants on surface temperature using remote sensing techniques[J]. Remote Sensing, 2020, 12(11). DOI: 10.3390/rs12111825 .
|
77 |
HU A X, LEVIS S, MEEHL G, et al. Impact of solar panels on global climate[J]. Nature Climate Change, 2016, 6: 290-294.
|
78 |
ULDRIJAN D, KOVÁČIKOVÁ M, JAKIMIUK A, et al. Ecological effects of preferential vegetation composition developed on sites with photovoltaic power plants[J]. Ecological Engineering, 2021, 168. DOI: 10.1016/j.ecoleng.2021.106274 .
|
79 |
PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7 241): 1 009-1 013.
|
80 |
MA Songyao, CHEN Long, TENG Zeyu, et al. Vegetation changes in wind farm in desert steppe region[J]. Journal of Desert Research, 2019, 39(2): 186-192.
|
|
马松尧, 陈龙, 滕泽宇, 等. 荒漠草原区风力发电场建设前后的植被变化[J]. 中国沙漠, 2019, 39(2): 186-192.
|
81 |
PEKKAN O I, SENYEL K M A, CABUK S N, et al. Assessing the effects of wind farms on soil organic carbon[J]. Environmental Science and Pollution Research International, 2021, 28(14): 18 216-18 233.
|
82 |
LIU Pengtao. Landscape pattern evolution and ecological effect of the Inner Mongolia wind farm[D]. Hohhot: Inner Mongolia University, 2021.
|
|
刘朋涛. 内蒙古风电场景观格局演变及生态效应[D]. 呼和浩特: 内蒙古大学, 2021.
|
83 |
WU X L, ZHANG L X, ZHAO C F, et al. Satellite-based assessment of local environment change by wind farms in China[J]. Earth and Space Science, 2019, 6(6): 947-958.
|
84 |
URZICEANU M, ANASTASIU P, ROZYLOWICZ L, et al. Local-scale impact of wind energy farms on rare, endemic, and threatened plant species[J]. PeerJ, 2021, 9. DOI: 10.7717/peerj.11390 .
|
85 |
ARYA M, GEETHA P, SOMAN K P. Effect of wind farms in crop production of kanyakumari district[J]. Indian Journal of Science and Technology, 2015, 8(28): 1-4.
|
86 |
KAFFINE D T. Microclimate effects of wind farms on local crop yields[J]. Journal of Environmental Economics and Management, 2019, 96: 159-173.
|
87 |
ZHOU Maorong, WANG Xijun. Influence of photovoltaic power station engineering on soil and vegetation: taking the Gobi Desert area in the Hexi Corridor of Gansu as an example[J]. Science of Soil and Water Conservation, 2019, 17(2): 132-138.
|
|
周茂荣, 王喜君. 光伏电站工程对土壤与植被的影响: 以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学, 2019, 17(2): 132-138.
|
88 |
YOUSUF H, KOO L, CHO Y H. A review on the agri-voltaic and fence PV system[J]. Current Photovoltaic Research, 2022, 10(4): 116-120.
|
89 |
BEATTY B, MACKNICK J, MCCALL J, et al. Native vegetation performance under a Solar PV array at the National Wind Technology Center[R]. Golden, Colorado: National Renewable Energy Laboratory, 2017. DOI: 10.2172/1357887 .
|
90 |
MA S, LIU J H, ZHANG P, et al. Characterizing the development of photovoltaic power stations and their impacts on vegetation conditions from landsat time series during 1990-2022[J]. Remote Sensing, 2023, 15(12). DOI: 10.3390/rs15123101 .
|
91 |
WU C D, LIU H, YU Y, et al. Ecohydrological insight: solar farms facilitate carbon sink enhancement in drylands[J]. Journal of Environmental Management, 2023, 342. DOI: 10.1016/j.jenvman.2023.118304 .
|
92 |
POTTER C. Landsat time series analysis of vegetation changes in solar energy development areas of the lower Colorado desert, southern California[J]. Journal of Geoscience and Environment Protection, 2016, 4(2): 1-6.
|
93 |
YU Jian, FANG Li, BIAN Zhengfu, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4 829-4 838.
|
|
余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4 829-4 838.
|
94 |
LIU Yalong, WANG Ping, WANG Jingkuan. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3): 627-643.
|
|
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643.
|
95 |
LI G L, FU Y, LI B Q, et al. Micro-characteristics of soil aggregate breakdown under raindrop action[J]. CATENA, 2018, 162: 354-359.
|
96 |
ZHAO Jing, GUAN Shiyu, ZHANG Youxin, et al. Distribution characteristics and stability changes of soil aggregates in photovoltaic power stations after vegetation restoration[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 172-177.
|
|
赵晶, 关世羽, 张有新, 等. 植被恢复后光伏电站内土壤团聚体分布特征和稳定性研究[J]. 干旱区资源与环境, 2021, 35(11): 172-177.
|
97 |
CHEN L Y, LIU L, QIN S Q, et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-13119-z .
|
98 |
SONG Wenjie, LIANG Yuzheng, TAO Zhen, et al. Advances on soil organic carbon dynamics mediated by microorganisms[J]. Advances in Earth Science, 2023, 38(12): 1 213-1 223.
|
|
宋文婕, 梁誉正, 陶贞, 等. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 2023, 38(12): 1 213-1 223.
|
99 |
BAI Z Y, JIA A M, BAI Z J, et al. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity[J]. Frontiers in Microbiology, 2022, 13. DOI: 10.3389/fmicb.2022.1065899 .
|
100 |
LIU Z Y, PENG T, MA S L, et al. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: an assessment of soil microbial and plant communities[J]. Frontiers in Microbiology, 2023, 14. DOI: 10.3389/fmicb.2023.1190650 .
|
101 |
LIU Y, DING C X, SU D R, et al. Solar park promoted microbial nitrogen and phosphorus cycle potentials but reduced soil prokaryotic diversity and network stability in alpine desert ecosystem[J]. Frontiers in Microbiology, 2022, 13. DOI: 10.3389/fmicb.2022.976335 .
|
102 |
DING Chengxiang, LIU Yu. Effects of solar photovoltaic park construction on soil microbial community in alpine desert of Qinghai Tibet Plateau[J]. Acta Agrestia Sinica, 2021, 29(5): 1 061-1 069.
|
|
丁成翔, 刘禹. 光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[J]. 草地学报, 2021, 29(5): 1 061-1 069.
|
103 |
SU B Q, SU Z X, SHANGGUAN Z P. Trade-off analyses of plant biomass and soil moisture relations on the Loess Plateau[J]. CATENA, 2021, 197. DOI: 10.1016/j.catena.2020.104946 .
|
104 |
GHOSH S, YADAV R. Future of photovoltaic technologies: a comprehensive review[J]. Sustainable Energy Technologies and Assessments, 2021, 47. DOI: 10.1016/j.seta.2021.101410 .
|
105 |
CARVALHAIS N, FORKEL M, KHOMIK M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems[J]. Nature, 2014, 514(7 521): 213-217.
|
106 |
LI B, LEI C, ZHANG W P, et al. Numerical model study on influences of photovoltaic plants on local microclimate[J]. Renewable Energy, 2024, 221. DOI: 10.1016/j.renene.2023.119551 .
|
107 |
KANNENBERG S A, STURCHIO M A, VENTURAS M D, et al. Grassland carbon-water cycling is minimally impacted by a photovoltaic array[J]. Communications Earth & Environment, 2023, 4. DOI:10.1038/s43247-023-00904-4 .
|
108 |
MEITZNER R, SCHUBERT U S, HOPPE H. Agrivoltaics: the perfect fit for the future of organic photovoltaics[J]. Advanced Energy Materials, 2021, 11(1). DOI: 10.1002/aenm.202002551 .
|
109 |
LIU Y, ZHANG R Q, MA X R, et al. Combined ecological and economic benefits of the solar photovoltaic industry in arid sandy ecosystems[J]. Journal of Cleaner Production, 2020, 262. DOI: 10.1016/j.jclepro.2020.121376 .
|