地球科学进展 ›› 2024, Vol. 39 ›› Issue (4): 331 -346. doi: 10.11867/j.issn.1001-8166.2024.032

综述与评述 上一篇    下一篇

城市热浪与冠层热岛协同作用研究进展与展望
杨元建 1( ), 罗芙 1, 薛捷升 1, 宗莲 1, 田伟守 1, 石涛 2( )   
  1. 1.南京信息工程大学 大气物理学院,江苏 南京 210044
    2.芜湖市气象局,安徽 芜湖 241000
  • 收稿日期:2024-01-16 修回日期:2024-03-01 出版日期:2024-04-10
  • 通讯作者: 石涛 E-mail:yyj1985@nuist.edu.cn;shitao@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金项目(42222503);中国气象局气象能力提升联合研究专项(22NLTSQ013)

Research Progress and Perspective on Synergy Between Urban Heat Waves and Canopy Urban Heat Island

Yuanjian YANG 1( ), Fu LUO 1, Jiesheng XUE 1, Lian ZONG 1, Weishou TIAN 1, Tao SHI 2( )   

  1. 1.School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2.Wuhu Meteorological Administration, Wuhu Anhui 241000, China
  • Received:2024-01-16 Revised:2024-03-01 Online:2024-04-10 Published:2024-04-26
  • Contact: Tao SHI E-mail:yyj1985@nuist.edu.cn;shitao@mail.ustc.edu.cn
  • About author:YANG Yuanjian, Professor, research areas include remote sensing detection of the boundary layer and research on climate and environmental changes. E-mail: yyj1985@nuist.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42222503);The Joint Research Project for Meteorological Capacity Improvement(22NLTSQ013)

城市化的加速和人口聚集不仅加剧了城市冠层热岛效应,还影响高温热浪事件,二者的叠加效应将严重影响城市发展和居民健康。目前部分研究认为热浪与热岛之间存在协同加强的变化特征,但是热浪与城市热岛的叠加效应仍存在较大差异性。通过全面回顾和总结国内外关于热浪与热岛协同作用差异性方面的研究,并从气候背景、局地环流以及城市形态等方面探讨了城市高温的形成机制。在不同气候背景和局地环流条件下,热浪与热岛协同作用呈现出显著的时空差异性,尤其是局地环流的调节作用不可忽视。近10年提出的局地气候区分类在热浪与热岛协同作用方面的研究已经取得了一些成果,但是有必要从城市三维形态方面入手进一步探索其响应特征。目前,未统一标准的热浪定义对深入理解热浪—城市热岛相互作用带来了不确定性。当下需要更全面地了解热浪和热岛带来的城市过度变暖的时空差异性及其形成机制和调节因素,为高温监测和城市居住环境改善提供更详细的指导和理论支撑。

The acceleration of urbanization and population agglomeration intensifies the Urban Heat Island (UHI) effect and causes Heat Waves (HWs). The superimposed effects of the two seriously affect urban development and resident health. A few studies believe that HWs and UHI intensity have the characteristics of synergistic enhancement, but there are still large differences in the superimposed effects of HW-UHI. This article comprehensively reviews and summarizes domestic and foreign research on the differences in the synergy between HWs and UHI and explores the formation mechanism of urban high temperatures from the aspects of climate background, local circulation, and urban morphology. Under different climatic backgrounds and local circulation conditions, the synergistic effects of the HW-UHI show significant spatiotemporal differences, particularly the regulatory role of local circulation, which cannot be ignored. The Local Climate Zone (LCZs) classification proposed in the past decade has achieved some results in research on the synergy between HWs and UHI; however, it is necessary to further explore their response characteristics from the three-dimensional morphology of the city. Currently, there is no unified standard definition for HWs, which brings uncertainty to an in-depth understanding of HW-UHI interactions. There is a need to comprehensively understand the spatiotemporal differences in excessive urban warming caused by HW and UHI and their formation mechanisms and regulating factors to provide more detailed guidance and theoretical support for high-temperature monitoring and improvement of the urban living environment.

中图分类号: 

表1 近年来城市热浪和冠层热岛协同作用研究结果的差异性
Table 1 The difference of research results on the synergies between urban heat wave and canopy heat island in recent years
表2 西太平洋副热带高压位置与中国热浪事件的联系
Table 2 Relationship between the location of western pacific subtropical high and heat wave events in China
图1 局地气候分区的简略定义 114
Fig. 1 Abridged definitions for local climate zones 114
图2 2020816日热浪期间合肥市热岛强度(CUHII)空间特征及气象自动站周围的城市形态特征
Fig. 2 Spatial characteristics of CUHI IntensityCUHIIand urban morphology around meteorological automatic stations in Hefei during the heat wave on August 16th2020
图3 气象站点周围的城市三维形态指标 158
Fig. 3 Three-dimensional morphological indexes of cities around meteorological stations 158
78 LI Shuangshuang, YANG Saini, ZHANG Donghai, et al. Spatiotemporal variability of heat waves in Beijing-Tianjin-Hebei region and influencing factors in recent 54 years[J]. Journal of Applied Meteorological Science, 2015, 26(5): 545-554.
李双双, 杨赛霓, 张东海, 等. 近54年京津冀地区热浪时空变化特征及影响因素[J]. 应用气象学报, 2015, 26(5): 545-554.
79 TAO P H, ZHANG Y C. Large-scale circulation features associated with the heat wave over Northeast China in summer 2018[J]. Atmospheric and Oceanic Science Letters, 2019, 12(4): 254-260.
80 LIU Q, ZHOU T J, MAO H T, et al. Decadal variations in the relationship between the Western Pacific subtropical high and summer heat waves in East China[J]. Journal of Climate, 2019, 32(5): 1 627-1 640.
81 WANG C Z, ZHENG J Y, LIN W, et al. Unprecedented heatwave in western North Americaduring late June of 2021: roles of atmospheric circulation and global warming[J]. Advances in Atmospheric Sciences, 2023, 40(1): 14-28.
82 LIAO W L, LIU X P, LI D, et al. Stronger contributions of urbanization to heat wave trends in wet climates[J]. Geophysical Research Letters, 2018, 45(20): 11 310-11 317.
83 STAP L B, van den HURK B J J M, van HEERWAARDEN C C, et al. Modeled contrast in the response of the surface energy balance to heat waves for forest and grassland[J]. Journal of Hydrometeorology, 2014, 15(3): 973-989.
84 TEULING A J, SENEVIRATNE S I, STÖCKLI R, et al. Contrasting response of European forest and grassland energy exchange to heatwaves[J]. Nature Geoscience, 2010, 3: 722-727.
85 FEINBERG A. Urban heat island high water-vapor feedback estimates and heatwave issues: a temperature difference approach to feedback assessments[J]. Sci, 2022, 4(4). DOI:10.3390/sci4040044 .
86 ZHANG N, ZHU L F, ZHU Y. Urban heat island and boundary layer structures under hot weather synoptic conditions: a case study of Suzhou City, China[J]. Advances in Atmospheric Sciences, 2011, 28(4): 855-865.
87 ZHOU X L, OKAZE T, REN C, et al. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze[J]. Sustainable Cities and Society, 2020, 55. DOI: 10.1016/j.scs.2020.102060 .
88 CHEN S H, YANG Y J, DENG F, et al. A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations[J]. Atmospheric Measurement Techniques, 2022, 15(3): 735-756.
89 HE Qunying, XIE Yiyang, DONG Gaohong, et al. The role of sea-land breeze circulation in local convective torrential rain happening in Tianjin on 26 September 2009[J]. Meteorological Monthly, 2011, 37(3): 291-297.
何群英, 解以扬, 东高红, 等. 海陆风环流在天津2009年9月26日局地暴雨过程中的作用[J]. 气象, 2011, 37(3): 291-297.
90 YANG J, XIN J X, ZHANG Y Q, et al. Contributions of sea-land breeze and local climate zones to daytime and nighttime heat island intensity[J]. NPJ Urban Sustainability, 2022. DOI:10.1038/s42949-022-00055-z .
91 WANG Fan, WANG Yongwei, GAO Song, et al. Simulation analysis of the influence of lake-land breeze circulation on high ozone concentration events[J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1 392-1 401.
王凡, 王咏薇, 高嵩, 等. 湖陆风环流对于臭氧高浓度事件影响的模拟分析[J]. 环境科学学报, 2019, 39(5): 1 392-1 401.
92 REN Xia, WANG Yongwei, ZHANG Zhen, et al. Simulation studies for Lake Taihu effect on surrounding cities thermal environment[J]. Acta Meteorologica Sinica, 2017, 75(4): 645-660.
任侠, 王咏薇, 张圳, 等. 太湖对周边城市热环境影响的模拟[J]. 气象学报, 2017, 75(4): 645-660.
93 DONG Qun, ZHAO Pusheng, WANG Yingchun, et al. Impact of mountain-valley wind circulation on typical cases of air pollution in Beijing[J]. Environmental Science, 2017, 38(6): 2 218-2 230.
董群, 赵普生, 王迎春, 等. 北京山谷风环流特征分析及其对PM2.5浓度的影响[J]. 环境科学, 2017, 38(6): 2 218-2 230.
94 TIAN Yue, MIAO Junfeng. Overview of mountain-valley breeze studies in China[J]. Meteorological Science and Technology, 2019, 47(1): 41-51.
田越, 苗峻峰. 中国地区山谷风研究进展[J]. 气象科技, 2019, 47(1): 41-51.
95 LI D, BOU-ZEID E. Synergistic interactions between urban heat islands and heat waves: the impact in cities is larger than the sum of its parts[J]. Journal of Applied Meteorology and Climatology, 2013, 52(9): 2 051-2 064.
96 YANG Xiaoliang, YANG Min, LI Jiangbo, et al. Impact analysis of a Taihang Mountain fohn on haze intensity[J]. Meteorological Monthly, 2018, 44(2): 313-319.
杨晓亮, 杨敏, 李江波, 等. 一次太行山焚风对霾强度的影响分析[J]. 气象, 2018, 44(2): 313-319.
97 ZHANG Lei, REN Guoyu, REN Yuyu. Identification of urban effect on a single extreme high temperature event[J]. Climatic and Environmental Research, 2015, 20(2): 167-176.
张雷, 任国玉, 任玉玉. 单次极端高温过程中城市热岛效应的识别[J]. 气候与环境研究, 2015, 20(2): 167-176.
98 SAILOR D J, LU L. A preliminary survey of anthropogenic heat emissions in the Los Angeles urban environment[J]. Atmospheric Environment, 2014, 48(2), 157-171.
99 GUO M, ZHANG M X, WANG H, et al. Dual effects of synoptic weather patterns and urbanization on summer diurnal temperature range in an urban agglomeration of East China[J]. Frontiers in Environmental Science, 2021, 9. DOI:10.3389/fenvs.2021.672295 .
100 SHI Jie, XIE Min, ZHU Kuanguang, et al. Estimation of anthropogenic heat flux and its temporal and spatial distribution in Chinese cities[J]. China Environmental Science, 2020, 40(4):1 819-1 824.
施婕,谢旻,朱宽广,等.中国城市人为热通量估士计及时空分布[J].中国环境科学, 2020, 40(4): 1 819-1 824.
101 CHEN G W, WANG D Y, WANG Q, et al. Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage[J]. The Science of the Total Environment, 2020, 726. DOI:10.1016/j.scitotenv.2020.138147 .
102 SAILOR D J, GEORGESCU M, MILNE J M, et al. Development of a national anthropogenic heating database with an extrapolation for international cities[J]. Atmospheric Environment, 2015, 118: 7-18.
103 SAILOR D J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment[J]. International Journal of Climatology, 2011, 31(2): 189-199.
104 CHEN F, YANG X C, WU J J. Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5 193-5 212.
105 YANG B, YANG X C, LEUNG L R, et al. Modeling the impacts of urbanization on summer thermal comfort: the role of urban land use and anthropogenic heat[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(13): 6 681-6 697.
106 FENNER D, MEIER F, BECHTEL B, et al. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany[J]. Meteorologische Zeitschrift, 2017, 26(5): 525-547.
107 DANG B, LIU Y H, LYU H L, et al. Assessment of urban climate environment and configuration of ventilation corridor: a refined study in Xi’an[J]. Journal of Meteorological Research, 2022, 36(6): 914-930.
108 OKE T R. The energetic basis of the urban heat island[J]. Quarterly Journal of the Royal Meteorological Society, 1982, 108(455): 1-24.
109 ARNFIELD A J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island[J]. International Journal of Climatology, 2003, 23(1): 1-26.
1 FOUILLET A, REY G, LAURENT F, et al. Excess mortality related to the August 2003 heat wave in France[J]. International Archives of Occupational and Environmental Health, 2006, 80(1): 16-24.
2 XU Z W, FITZGERALD G, GUO Y M, et al. Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis[J]. Environment International, 2016, 89/90: 193-203.
3 ZHANG Y Q, PENG M J, WANG L, et al. Association of diurnal temperature range with daily mortality in England and Wales: a nationwide time-series study[J]. The Science of the Total Environment, 2018, 619/620: 291-300.
4 SENEVIRATNE S I, DONAT M G, MUELLER B, et al. No pause in the increase of hot temperature extremes[J]. Nature Climate Change, 2014, 4: 161-163.
5 IPCC. Climate Change 2013—the physical science basis working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014.
6 MASSON-DELMOTTE V. Climate change 2021: the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change[M]. New York: Cambridge University Press, 2023.
7 SHI Tao, YANG Yuanjian, JIANG Yuelin, et al. Impact of the variation of urban heat island intensity on temperature series in Anhui Province[J]. Climatic and Environmental Research, 2011, 16(6): 779-788.
石涛, 杨元建, 蒋跃林, 等. 城市热岛强度变化对安徽省气温序列的影响[J]. 气候与环境研究, 2011, 16(6): 779-788.
8 SETO K C, GÜNERALP B, HUTYRA L R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 16 083-16 088.
9 YANG Yuanjian, WANG Labao, HUANG Yong, et al. Impact of urbanization on meteorological observation and its environment representativeness: a case study of Shouxian national climate station[J]. Meteorological Science and Technology, 2017, 45(1): 7-13.
杨元建, 汪腊宝, 黄勇, 等. 城市化进程对气象探测环境代表性的影响: 以寿县国家气候观象台为例[J]. 气象科技, 2017, 45(1): 7-13.
110 TAHA H. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat[J]. Energy and Buildings, 1997, 25(2): 99-103.
111 FUJIBE F. Long-term surface wind changes in the Tokyo metropolitan area in the afternoon of sunny days in the warm season[J]. Journal of the Meteorological Society of Japan Series II, 2003, 81(1): 141-149.
112 LI Y, YE H P, SUN X, et al. Coupling analysis of the thermal landscape and environmental carrying capacity of urban expansion in Beijing (China) over the past 35 years[J]. Sustainability, 2021, 13. DOI:10.3390/su13020584 .
113 JIANG Sida, ZHAN Wenfeng, YANG Jun, et al. Urban heat island studies based on local climate zones: a systematic overview[J]. Acta Geographica Sinica, 2020, 75(9): 1 860-1 878.
江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020, 75(9): 1 860-1 878.
114 STEWART I D, OKE T R. Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 2012, 93(12): 1 879-1 900.
115 GENG Shufeng, REN Jiayi, YANG Jun, et al. Exploration of urban thermal environment based on local climate zone[J]. Acta Ecologica Sinica, 2022, 42(6): 2 221-2 227.
耿树丰, 任嘉义, 杨俊, 等. 局地气候区视角下的城市热环境研究[J]. 生态学报, 2022, 42(6): 2 221-2 227.
116 LIU Huosheng, LI Sitao, WAN Haokai, et al. Spatial-temporal differentiation characteristics of urban heat island in Wuhan City based on local climate zone[J]. Journal of Huazhong Agricultural University, 2023, 42(4): 98-106.
刘火胜, 李思韬, 宛浩凯, 等. 基于局地气候分区的武汉市城市热岛时空分异特征[J]. 华中农业大学学报, 2023, 42(4): 98-106.
117 CHEN Guang, LI Nan, CAI Yunnan, et al. Analysis of summer heat island intensity characteristics in Guangzhou based on LCZ[J]. Building Science, 2021, 37(6):96-104.
10 KANG Hanqing, ZHU Bin, ZHU Tong, et al. Investigation of an urban heat island episode along Suzhou-Wuxi-Changzhou urban cluster[J]. Transactions of Atmospheric Sciences, 2014, 37(4): 432-440.
康汉青, 朱彬, 朱彤, 等. 苏州—无锡—常州城市带热岛效应个例研究[J]. 大气科学学报, 2014, 37(4): 432-440.
11 LI Y F, SCHUBERT S, KROPP J P, et al. On the influence of density and morphology on the Urban Heat Island intensity[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-020-16461-9 .
12 REN G Y, LI J, REN Y Y, et al. An integrated procedure to determine a reference station network for evaluating and adjusting urban bias in surface air temperature data[J]. Journal of Applied Meteorology and Climatology, 2015, 54(6): 1 248-1 266.
13 LUO M, LAU N C. Increasing heat stress in urban areas of eastern China: acceleration by urbanization[J]. Geophysical Research Letters, 2018, 45(23): 13 060-13 069.
14 YANG J C, HU L Q, WANG C H. Population dynamics modify urban residents’ exposure to extreme temperatures across the United States[J]. Science Advances, 2019, 5(12). DOI:10.1126/sciadv.aay3452 .
15 DUAN Yao, LI Yuying, HU Wenqi, et al. Relationship between heat wave and incidence of infectious diarrhea in Guangzhou, 2011-2013[J]. Journal of Environment and Health, 2019, 36(11): 1 003-1 006.
段瑶, 李昱颖, 胡文琦, 等. 2011—2013年广州市热浪与感染性腹泻发病关系的初步研究[J]. 环境与健康杂志, 2019, 36(11): 1 003-1 006.
16 DING Yihui. Scientific questions and answers on climate change[M]. Beijing: China Environmental Science Press, 2018.
丁一汇. 气候变化科学问答[M]. 北京: 中国环境出版社, 2018.
17 YANG Xuchao, CHEN Baode, HU Kejia. A review of impacts of urbanization on extreme heat events[J]. Progress in Geography, 2015, 34(10): 1 219-1 228.
杨续超, 陈葆德, 胡可嘉. 城市化对极端高温事件影响研究进展[J]. 地理科学进展, 2015, 34(10): 1 219-1 228.
117 陈光, 李楠, 蔡云楠, 等. 基于LCZ的广州夏季热岛强度特征分析[J].建筑科学, 2021, 37(6):96-104.
118 ZHENG Z F, LUO F, LI N N, et al. Impact of local climate zones on the urban heat and dry islands in Beijing: spatial heterogeneity and relative contributions[J]. Journal of Meteorological Research, 2024, 38(1): 126-137.
119 SHREEVASTAVA A, PRASANTH S, RAMAMURTHY P, et al. Scale-dependent response of the urban heat island to the European heatwave of 2018[J]. Environmental Research Letters, 2021, 16(10). DOI:10.1088/1748-9326/ac25bb .
120 GIANNAROS C, AGATHANGELIDIS I, PAPAVASILEIOU G, et al. The extreme heat wave of July-August 2021 in the Athens urban area (Greece): atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework[J]. The Science of the Total Environment, 2023, 857(Pt 1). DOI:10.1016/j.scitotenv.2022.159300 .
121 LI C Y, ZHANG N, WANG Y W, et al. Modeling urban heat islands and thermal comfort during a heat wave event in East China with CLM5 incorporating local climate zones[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(16). DOI: 10.1029/2023JD038883 .
122 ZHANG N, WANG X M, CHEN Y, et al. Numerical simulations on influence of urban land cover expansion and anthropogenic heat release on urban meteorological environment in Pearl River Delta[J]. Theoretical and Applied Climatology, 2016, 126(3): 469-479.
123 GARUMA G F. How the interaction of heatwaves and urban heat islands amplify urban warming[J]. Advances in Environmental and Engineering Research, 2022, 3(2). DOI:10.21926/aeer.2202022 .
124 HE B J. Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects[J]. Urban Climate, 2018, 24: 26-33.
125 TIAN W S, YANG Y J, WANG L L, et al. Role of local climate zones and urban ventilation in canopy urban heat island-heatwave interaction in Nanjing megacity, China[J]. Urban Climate, 2023, 49. DOI: 10.1016/j.uclim.2023.101474 .
126 AN Ning, ZUO Zhiyan. Structural changes of heat waves in China from 1961 to 2017[J]. Science China Earth Sciences, 2021, 51(8): 1 214-1 226.
安宁, 左志燕. 1961—2017年中国地区热浪的结构变化[J]. 中国科学:地球科学, 2021, 51(8): 1 214-1 226.
18 ZHENG Zuofang, LIU Weidong, WANG Yingchun. Distributive character of urban heat island effect in the Beijing region[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(5): 694-699.
郑祚芳, 刘伟东, 王迎春. 北京地区城市热岛的时空分布特征[J]. 南京气象学院学报, 2006, 29(5): 694-699.
19 FOUNDA D, PIERROS F, PETRAKIS M, et al. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves[J]. Atmospheric Research, 2015, 161: 1-13.
20 BASARA J B, BASARA H G, ILLSTON B G, et al. The impact of the urban heat island during an intense heat wave in Oklahoma city[J]. Advances in Meteorology, 2010, 2010: 1-10.
21 MISHRA V, GANGULY A R, NIJSSEN B, et al. Changes in observed climate extremes in global urban areas[J]. Environmental Research Letters, 2015, 10(2). DOI:10.1088/1748-9326/10/2/024005 .
22 KHAN H S, PAOLINI R, SANTAMOURIS M, et al. Exploring the synergies between urban overheating and heatwaves (HWs) in western Sydney[J]. Energies, 2020, 13(2). DOI:10.3390/en13020470 .
23 MUGHAL M O, LI X X, NORFORD LESLIE K. Urban heat island mitigation in Singapore: evaluation using WRF/multilayer urban canopy model and local climate zones[J]. Urban Climate, 2020, 34. DOI:10.1016/j.uclim.2020.100714 .
24 ZINZI M, AGNOLI S, BURATTINI C, et al. On the thermal response of buildings under the synergic effect of heat waves and urban heat island[J]. Solar Energy, 2020, 211: 1 270-1 282.
25 JIANG S J, LEE X H, WANG J K, et al. Amplified urban heat islands during heat wave periods[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 7 797-7 812.
26 FOUNDA D, SANTAMOURIS M. Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012)[J]. Scientific Reports, 2017, 7. DOI: 10.1038/s41598-017-11407-6 .
27 RAMAMURTHY P, BOU-ZEID E. Heatwaves and urban heat islands: a comparative analysis of multiple cities[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(1): 168-178.
127 BADOR M, TERRAY L, BOÉ J, et al. Future summer mega-heatwave and record-breaking temperatures in a warmer France climate[J]. Environmental Research Letters, 2017, 12(7). DOI:10.1088/1748-9326/aa751c .
128 YOU Q L, JIANG Z H, KONG L, et al. A comparison of heat wave climatologies and trends in China based on multiple definitions[J]. Climate Dynamics, 2017, 48(11): 3 975-3 989.
129 OSWALD E M. An analysis of the prevalence of heat waves in the United States between 1948 and 2015[J]. Journal of Applied Meteorology and Climatology, 2018, 57(7): 1 535-1 549.
130 REN L W, WANG D Q, AN N, et al. Anthropogenic influences on the persistent night-time heat wave in summer 2018 over Northeast China[J]. Bulletin of the American Meteorological Society, 2020, 101(1): S83-S88.
131 FENNER D, HOLTMANN A, KRUG A, et al. Heat waves in Berlin and Potsdam, Germany—long-term trends and comparison of heat wave definitions from 1893 to 2017[J]. International Journal of Climatology, 2019, 39(4): 2 422-2 437.
132 FENNER D, HOLTMANN A, MEIER F, et al. Contrasting changes of urban heat island intensity during hot weather episodes[J]. Environmental Research Letters, 2019, 14(12). DOI:10.1088/1748-9326/ab506b .
133 KUGLITSCH F G, TORETI A, XOPLAKI E, et al. Heat wave changes in the eastern Mediterranean since 1960[J]. Geophysical Research Letters, 2010, 37(4). DOI:10.1029/2009GL041841 .
134 CHEN Y, LI Y. An inter-comparison of three heat wave types in China during 1961-2010: observed basic features and linear trends[J]. Scientific Reports, 2017, 7. DOI:10.1038/srep45619 .
135 FREYCHET N, TETT S, WANG J, et al. Summer heat waves over Eastern China: dynamical processes and trend attribution[J]. Environmental Research Letters, 2017, 12(2). DOI:10.1088/1748-9326/aa5ba3 .
136 COWAN T, PURICH A, PERKINS-KIRKPATRICK S, et al. More frequent, longer, and hotter heat waves for Australia in the twenty-first century[J]. Journal of Climate, 2014, 27(15). DOI:10.1175/JCLI-D-14-00092.1 .
137 OSWALD E M, ROOD R B. A trend analysis of the 1930-2010 extreme heat events in the continental United States[J]. Journal of Applied Meteorology and Climatology, 2014, 53(3): 565-582.
28 RICHARD Y, POHL B, REGA M, et al. Is urban heat island intensity higher during hot spells and heat waves (Dijon, France, 2014-2019)?[J]. Urban Climate, 2021, 35. DOI:10.1016/j.uclim.2020.100747 .
29 ROGERS C D W, GALLANT A J E, TAPPER N J. Is the urban heat island exacerbated during heatwaves in southern Australian cities?[J]. Theoretical and Applied Climatology, 2019, 137(1): 441-457.
30 LI Y B, SHI T, YANG Y J, et al. Satellite-based investigation and evaluation of the observational environment of meteorological stations in Anhui Province, China[J]. Pure and Applied Geophysics, 2015, 172(6): 1 735-1 749.
31 ZONG L, LIU S H, YANG Y J, et al. Synergistic influence of local climate zones and wind speeds on the urban heat island and heat waves in the megacity of Beijing, China[J]. Frontiers in Earth Science, 2021, 9. DOI:10.3389/feart.2021.673786 .
32 LIU W, JI C, ZHONG J, et al. Temporal characteristics of the Beijing urban heat island[J]. Theoretical and Applied Climatology, 2007, 87(1): 213-221.
33 ZHENG Z F, REN G Y, WANG H, et al. Relationship between fine-particle pollution and the urban heat island in Beijing, China: observational evidence[J]. Boundary-Layer Meteorology, 2018, 169(1): 93-113.
34 YANG Y J, ZHENG Z F, YIM S Y L, et al. PM2.5 pollution modulates wintertime urban heat island intensity in the Beijing-Tianjin-Hebei megalopolis, China[J]. Geophysical Research Letters, 2020, 47(1). DOI:10.1029/2019GL084288 .
35 GAO J H, SUN Y Z, LIU Q Y, et al. Impact of extreme high temperature on mortality and regional level definition of heat wave: a multi-city study in China[J]. The Science of the Total Environment, 2015, 505: 535-544.
36 HOWARD L. The climate of London deduced from metrological observations[M]. London: Harvey and Darton, 1833.
37 PERKINS S E, ALEXANDER L V, NAIRN J R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells[J]. Geophysical Research Letters, 2012, 39(20). DOI:10.1029/2012GL053361 .
38 ZHAO L, OLESON K, BOU-ZEID E, et al. Global multi-model projections of local urban climates[J]. Nature Climate Change, 2021, 11: 152-157.
138 GERSHUNOV A, CAYAN D R, IACOBELLIS S F. The great 2006 heat wave over California and Nevada: signal of an increasing trend[J]. Journal of Climate, 2009, 22(23): 6 181-6 203.
139 XIE W X, ZHOU B T. On the atmospheric background for the occurrence of three heat wave types in East China[J]. Weather and Climate Extremes, 2023, 39. DOI:10.1016/j.wace.2022.100539 .
140 Le TERTRE A, LEFRANC A, EILSTEIN D, et al. Impact of the 2003 heatwave on all-cause mortality in 9 French cities[J]. Epidemiology, 2006, 17(1): 75-79.
141 PU X, WANG T J, HUANG X, et al. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China[J]. The Science of the Total Environment, 2017, 603/604: 807-816.
142 GOSLING S N, LOWE J A, MCGREGOR G R, et al. Associations between elevated atmospheric temperature and human mortality: a critical review of the literature[J]. Climatic Change, 2009, 92(3): 299-341.
143 FISCHER E M, SCHÄR C. Consistent geographical patterns of changes in high-impact European heatwaves[J]. Nature Geoscience, 2010, 3: 398-403.
144 BAHUGUNA R N, SOLIS C A, SHI W J, et al. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.)[J]. Physiologia Plantarum, 2017, 159(1): 59-73.
145 NAIRN J, FAWCETT R. Defining heatwaves: heatwave defined as a heat- impact event servicing all community and business sectors in Australia [R]. South Australia: The Centre for Australian Weather and Climate Research, 2013.
146 WANG J, CHEN Y, TETT S F B, et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-019-14233-8 .
147 SU Q, DONG B W. Recent decadal changes in heat waves over China: drivers and mechanisms[J]. Journal of Climate, 2019, 32(14): 4 215-4 234.
39 KONG Q Q, GUERREIRO S B, BLENKINSOP S, et al. Increases in summertime concurrent drought and heatwave in Eastern China[J]. Weather and Climate Extremes, 2020, 28. DOI:10.1016/j.wace.2019.100242 .
40 SUN Y, ZHANG X B, REN G Y, et al. Contribution of urbanization to warming in China[J]. Nature Climate Change, 2016, 6: 706-709.
41 REN G Y, ZHOU Y Q. Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961-2008[J]. Journal of Climate, 2014, 27(6): 2 340-2 360.
42 SHEPHERD J M, CARTER M. The impact of urbanization on current and future coastal precipitation: a case study for Houston[J]. Environment and Planning B: Planning and Design, 2010, 37(2): 284-304.
43 LUO F, YANG Y J, ZONG L, et al. The interactions between urban heat island and heat waves amplify urban warming in Guangzhou, China: roles of urban ventilation and local climate zones[J]. Frontiers in Environmental Science, 2023. DOI:10.3389/fenvs.2023.1084473 .
44 AO X Y, WANG L, ZHI X, et al. Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China[J]. Journal of Applied Meteorology and Climatology, 2019, 58(9): 1 955-1 972.
45 YANG Y J, GUO M, WANG L L, et al. Unevenly spatiotemporal distribution of urban excess warming in coastal Shanghai megacity, China: roles of geophysical environment, ventilation and sea breezes[J]. Building and Environment, 2023, 235. DOI:10.1016/j.buildenv.2023.110180 .
46 XUE J S, ZONG L, YANG Y J, et al. Diurnal and interannual variations of Canopy Urban Heat Island (CUHI) effects over a mountain-valley city with a semi-arid climate[J]. Urban Climate, 2023, 48. DOI: 10.1016/j.uclim.2023.101425 .
47 NGARAMBE J, NGANYIYIMANA J, KIM I, et al. Synergies between urban heat island and heat waves in Seoul: the role of wind speed and land use characteristics[J]. PLoS ONE, 2020, 15(12). DOI: 10.1371/journal.pone.0243571 .
48 SCOTT A A, WAUGH D W, ZAITCHIK B F. Reduced urban heat island intensity under warmer conditions[J]. Environmental Research Letters, 2018, 13(6). DOI:10.1088/1748-9326/aabd6c .
49 CHEW L W, LIU X, LI X X, et al. Interaction between heat wave and urban heat island: a case study in a tropical coastal city, Singapore[J]. Atmospheric Research, 2021, 247. DOI:10.1016/j.atmosres.2020.105134 .
50 CHEN Qian. Synergistic interactions between urban heat island and heat waves and spatially explicit mapping of heat health risk[D]. Nanchang: Jiangxi Normal University, 2017.
148 XIE W X, ZHOU B T, HAN Z Y, et al. Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble[J]. Environmental Research Letters, 2022, 17(4). DOI:10.1088/1748-9326/ac592d .
149 REN Y Y, REN G Y. A remote-sensing method of selecting reference stations for evaluating urbanization effect on surface air temperature trends[J]. Journal of Climate, 2011, 24(13): 3 179-3 189.
150 SHI T, HUANG Y, WANG H, et al. Influence of urbanization on the thermal environment of meteorological station: satellite-observed evidence[J]. Advances in Climate Change Research, 2015, 6(1): 7-15.
151 WANG J, TETT S F B, YAN Z. Correcting urban bias in large-scale temperature records in China, 1980-2009[J]. Geophysical Research Letters, 2017, 44(1): 401-408.
152 TYSA S K, REN G Y, QIN Y, et al. Urbanization effect in regional temperature series based on a remote sensing classification scheme of stations[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20): 10 646-10 661.
153 CHUN B, GULDMANN J M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities[J]. Landscape and Urban Planning, 2014, 125: 76-88.
154 SRIVANIT M, KAZUNORI H. The influence of urban morphology indicators on summer diurnal range of urban climate in Bangkok metropolitan area, Thailand[J]. International Journal of Civil & Environmental Engineering, 2011, 11(5): 34-46.
155 WANG Chenggang, WEI Xialu, YAN Jiade, et al. Grade evaluation of detection environment of meteorological stations in Beijing[J]. Journal of Applied Meteorological Science, 2019, 30(1): 117-128.
王成刚, 魏夏潞, 严家德, 等. 气象探测环境等级评估方法及应用[J]. 应用气象学报, 2019, 30(1): 117-128.
156 STEWART I D, OKE T R, KRAYENHOFF E S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations[J]. International Journal of Climatology, 2014, 34(4): 1 062-1 080.
157 ALONSO L, RENARD F. A new approach for understanding urban microclimate by integrating complementary predictors at different scales in regression and machine learning models[J]. Remote Sensing, 2020, 12(15). DOI: 10.3390/rs12152434 .
50 陈倩. 城市高温热浪与热岛效应的协同作用及其健康风险评估: 以长三角地区为例[D]. 南昌: 江西师范大学, 2017.
51 WANG Junfeng. Study on the influence of urbanization on summer high temperature in Yangtze River Delta region[D]. Chengdu: Chengdu University of Information Technology, 2020.
王俊锋. 长三角地区城市化对夏季高温的影响研究[D]. 成都: 成都信息工程大学, 2020.
52 ZHAO L, OPPENHEIMER M, ZHU Q, et al. Interactions between urban heat islands and heat waves[J]. Environmental Research Letters, 2018, 13(3). DOI:10.1088/1748-9326/aa9f73 .
53 AO Xiangyu, TAN Jianguo, ZHI Xing, et al. Synergistic interaction between urban heat island and heat waves and its impact factors in Shanghai[J]. Acta Geographica Sinica, 2019, 74(9): 1 789-1 802.
敖翔宇, 谈建国, 支星, 等. 上海城市热岛与热浪协同作用及其影响因子[J]. 地理学报, 2019, 74(9): 1 789-1 802.
54 IMRAN H M, KALA J, NG A W M, et al. Impacts of future urban expansion on urban heat island effects during heatwave events in the city of Melbourne in southeast Australia[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(723): 2 586-2 602.
55 MCGREGOR G R, FELLING M, WOLF T, et al. The social impacts of heat waves[M]. Bristol, UK: Environment Agency, 2007.
56 ZHAO L, LEE X H, SMITH R B, et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511: 216-219.
57 MANOLI G, FATICHI S, SCHLÄPFER M, et al. Magnitude of urban heat islands largely explained by climate and population[J]. Nature, 2019, 573: 55-60.
158 SHI T, YANG Y J, SUN D B, et al. Influence of changes in meteorological observational environment on urbanization bias in surface air temperature: a review[J]. Frontiers in Climate, 2022, 3. DOI: 10.3389/fclim.2021.781999 .
159 OKE T R. Street design and urban canopy layer climate[J]. Energy and Buildings, 1988, 11(1/2/3): 103-113.
160 SHASHUA-BAR L, HOFFMAN M E. Vegetation as a climatic component in the design of an urban street[J]. Energy and Buildings, 2000, 31(3): 221-235.
161 SVENSSON M K. Sky view factor analysis-implications for urban air temperature differences[J]. Meteorological Applications, 2004, 11(3): 201-211.
162 BOURBIA F, BOUCHERIBA F. Impact of street design on urban microclimate for semi arid climate (Constantine)[J]. Renewable Energy, 2010, 35(2): 343-347.
163 YAN W Y, SHAKER A, EL-ASHMAWY N. Urban land cover classification using airborne LiDAR data: a review[J]. Remote Sensing of Environment, 2015, 158: 295-310.
164 FREITAS S, CATITA C, REDWEIK P, et al. Modelling solar potential in the urban environment: state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 915-931.
165 JAMEI E, RAJAGOPALAN P, SEYEDMAHMOUDIAN M, et al. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1 002-1 017.
166 BERGER C, VOLTERSEN M, ECKARDT R, et al. Multi-modal and multi-temporal data fusion: outcome of the 2012 GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1 324-1 340.
167 CHEN Liding, SUN Ranhao, LIU Hailian. Eco-environmental effects of urban landscape pattern changes: progresses, problems, and perspectives[J]. Acta Ecologica Sinica, 2013, 33(4): 1 042-1 050.
陈利顶, 孙然好, 刘海莲. 城市景观格局演变的生态环境效应研究进展[J]. 生态学报, 2013, 33(4): 1 042-1 050.
58 ZHENG Z F, REN G Y, GAO H, et al. Urban ventilation planning and its associated benefits based on numerical experiments: a case study in Beijing, China[J]. Building and Environment, 2022, 222. DOI: 10.1016/j.buildenv.2022.109383 .
59 ROTH M. Review of urban climate research in (sub)tropical regions[J]. International Journal of Climatology, 2007, 27(14): 1 859-1 873.
60 BADARO-SALIBA N, ADJIZIAN-GERARD J, ZAAROUR R, et al. LCZ scheme for assessing urban heat island intensity in a complex urban area (Beirut, Lebanon)[J]. Urban Climate, 2021, 37. DOI:10.1016/j.uclim.2021.100846 .
61 MATSUMURA S, SUGIMOTO S, SATO T. Recent intensification of the Western Pacific Subtropical high associated with the East Asian summer monsoon[J]. Journal of Climate, 2015, 28(7): 2 873-2 883.
62 HE C, ZHOU T J, LIN A L, et al. Enhanced or weakened western North Pacific subtropical high under global warming?[J]. Scientific Reports, 2015, 5. DOI: 10.1038/srep16771 .
63 HONG J S, YEH S W, SEO K H. Diagnosing physical mechanisms leading to pure heat waves versus pure tropical nights over the Korean peninsula[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(14): 7 149-7 160.
64 TONG N Y O, LEUNG D Y C. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons[J]. Journal of Environmental Sciences, 2012, 24(12): 2 091-2 103.
65 BRUNNER L, HEGERL G C, STEINER A K. Connecting atmospheric blocking to European temperature extremes in spring[J]. Journal of Climate, 2017, 30(2): 585-594.
66 JÉZÉQUEL A, YIOU P, RADANOVICS S. Role of circulation in European heatwaves using flow analogues[J]. Climate Dynamics, 2018, 50(3): 1 145-1 159.
67 LI M Y, YAO Y, SIMMONDS I, et al. Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018[J]. Environmental Research Letters, 2020, 15(11). DOI:10.1088/1748-9326/aba6ad .
68 LUCARINI V, MELINDA G V, MESSORI G. Typicality of the 2021 Western North America summer heatwave[J]. Environmental Research Letters, 2023, 18(1). DOI:10.1088/1748-9326/acab77 .
69 WU Z W, LIN H, LI J P, et al. Heat wave frequency variability over North America: two distinct leading modes[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D2). DOI: 10.1029/2011JD016908 .
70 CHOI W, HO C H, JUNG J, et al. Synoptic conditions controlling the seasonal onset and days of heatwaves over Korea[J]. Climate Dynamics, 2021, 57(11): 3 045-3 053.
71 LUO M, NING G C, XU F, et al. Observed heatwave changes in arid northwest China: physical mechanism and long-term trend[J]. Atmospheric Research, 2020, 242. DOI:10.1016/j.atmosres.2020.105009 .
72 XING Caiying, WU Shengan, HU Deqiang, et al. Analysis of cause of abnormally high temperature in Hainan Island in spring 2019[J]. Journal of Arid Meteorology, 2021, 39(6): 911-920.
邢彩盈, 吴胜安, 胡德强, 等. 2019年春季海南岛异常高温成因分析[J]. 干旱气象, 2021, 39(6): 911-920.
73 LUO M, LAU N C. Heat waves in southern China: synoptic behavior, long-term change, and urbanization effects[J]. Journal of Climate, 2017, 30(2): 703-720.
74 ZOU Yan, ZHOU Xinyu, LIN Yi, et al. Cause of high-temperature weather in summer in Fujian Province[J]. Meteorological Monthly, 2001, 27(9): 26-30.
邹燕, 周信禹, 林毅, 等. 福建省夏季高温成因分析[J]. 气象, 2001, 27(9): 26-30.
75 MA Hao, LIU Changjie, QIAN Qifeng, et al. Analysis on the climatic characteristics of extreme heat-wave during July-August, 2017 and associated large-scale circulation background[J]. Journal of Natural Disasters, 2021, 30(5): 85-99.
马浩, 刘昌杰, 钱奇峰, 等. 2017年盛夏7~8月浙江省高温热浪特征及环流背景分析[J]. 自然灾害学报, 2021, 30(5): 85-99.
76 XIA Yang, XU Haiming. Circulation characteristics and causes of the summer extreme high temperature event in the middle and lower reaches of the Yangtze River of 2013[J]. Journal of the Meteorological Sciences, 2017, 37(1): 60-69.
夏扬, 徐海明. 2013年长江中下游地区夏季高温事件的环流特征及成因[J]. 气象科学, 2017, 37(1): 60-69.
77 GAO Huanyan, SHEN Xinyong, DONG Wei, et al. The synergy of urbanization and Western Pacific subtropical high intensification on compound heat waves in China[J]. Transactions of Atmospheric Sciences, 2023, 46(1): 119-131.
高焕妍, 沈新勇, 董伟, 等. 城市化和西太平洋副热带高压增强对中国复合热浪的协同作用[J]. 大气科学学报, 2023, 46(1): 119-131.
168 ZHOU Weiqi, TIAN Yunyu. Effects of urban three-dimensional morphology on thermal environment: a review[J]. Acta Ecologica Sinica, 2020, 40(2): 416-427.
周伟奇, 田韫钰. 城市三维空间形态的热环境效应研究进展[J]. 生态学报, 2020, 40(2): 416-427.
169 REN Guoyu, ZHANG Aiying, CHU Ziying, et al. Principles and procedures for selecting reference surface air temperature stations in China[J]. Meteorological Science and Technology, 2010, 38(1): 78-85.
任国玉, 张爱英, 初子莹, 等. 我国地面气温参考站点遴选的依据、原则和方法[J]. 气象科技, 2010, 38(1): 78-85.
170 YANG Yuanjian, SHI Tao, TANG Weian, et al. Study of observational environment of meteorological station based remote sensing—cases in six stations of Anhui Province[J]. Remote Sensing Technology and Application, 2011, 26(6): 791-797.
杨元建, 石涛, 唐为安, 等. 气象台站环境的卫星遥感调查与评估: 以安徽代表气象站为例[J]. 遥感技术与应用, 2011, 26(6): 791-797.
171 SCARANO M, MANCINI F. Assessing the relationship between sky view factor and land surface temperature to the spatial resolution[J]. International Journal of Remote Sensing, 2017, 38(23): 6 910-6 929.
[1] 邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展, 2019, 34(6): 640-649.
[2] 贾佳, 胡泽勇. 中国不同等级高温热浪的时空分布特征及趋势[J]. 地球科学进展, 2017, 32(5): 546-559.
[3] 方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.
[4] 蒋维楣,苗世光,张宁,刘红年,胡非,李磊,王咏薇,王成刚. 城市气象环境与边界层数值模拟研究[J]. 地球科学进展, 2010, 25(5): 463-473.
[5] 邓振镛,张强,徐金芳,陈敏,秦三杰,张树誉. 高温热浪与干热风的危害特征比较研究[J]. 地球科学进展, 2009, 24(8): 865-873.
[6] 施斌,刘春,王宝军,赵理政. 城市热岛效应对土的工程性质影响及灾害效应分析[J]. 地球科学进展, 2008, 23(11): 1167-1173.
阅读次数
全文


摘要