1 |
BOWMAN D M J S, KOLDEN C A, ABATZOGLOU J T, et al. Vegetation fires in the Anthropocene[J]. Nature Reviews Earth & Environment, 2020, 1: 500-515.
|
2 |
LANGMANN B, DUNCAN B, TEXTOR C, et al. Vegetation fire emissions and their impact on air pollution and climate[J]. Atmospheric Environment, 2009, 43(1): 107-116.
|
3 |
SHANG Jingjing, LIAO Hong, FU Yu, et al. The impact of sulfate and black carbon aerosols on summertime cloud properties in China[J]. Journal of Tropical Meteorology, 2017, 33(4): 451-466.
|
|
尚晶晶, 廖宏, 符瑜, 等. 夏季硫酸盐和黑碳气溶胶对中国云特性的影响[J]. 热带气象学报, 2017, 33(4): 451-466.
|
4 |
PETERSON D A, CAMPBELL J R, HYER E J, et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke[J]. NPJ Climate and Atmospheric Science, 2018, 1. DOI:10.1038/s41612-10.1038/s41018-0039-3 .
|
5 |
THOMAS J L, POLASHENSKI C M, SOJA A J, et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada[J]. Geophysical Research Letters, 2017, 44(15): 7 965-7 974.
|
6 |
SKILES S M, FLANNER M, COOK J M, et al. Radiative forcing by light-absorbing particles in snow[J]. Nature Climate Change, 2018, 8: 964-971.
|
7 |
McRAE R H D, SHARPLES J J, FROMM M. Linking local wildfire dynamics to pyroCb development[J]. Natural Hazards and Earth System Sciences, 2015, 15(3): 417-428.
|
8 |
NOLAN R H, COLLINS L, LEIGH A, et al. Limits to post-fire vegetation recovery under climate change[J]. Plant, Cell & Environment, 2021, 44(11): 3 471-3 489.
|
9 |
BOYER E W, WAGENBRENNER J W, ZHANG L. Wildfire and hydrological processes[J]. Hydrological Processes, 2022, 36(7). DOI:10.1002/hyp.14640 .
|
10 |
GUO Y H, ZHANG L, ZHANG Y Q, et al. Estimating impacts of wildfire and climate variability on streamflow in Victoria, Australia[J]. Hydrological Processes, 2021, 35(12). DOI:10.1002/hyp.14439 .
|
11 |
WILSON C, KAMPF S K, RYAN S, et al. Connectivity of post-fire runoff and sediment from nested hillslopes and watersheds[J]. Hydrological Processes, 2021, 35(1). DOI: 10.1002/hyp.13975 .
|
12 |
WAGENBRENNER N S, GERMINO M J, LAMB B K, et al. Wind erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and total horizontal sediment flux[J]. Aeolian Research, 2013, 10: 25-36.
|
13 |
BRIANNE P, REBECCA H, DAVID L. The fate of biological soil crusts after fire: a meta-analysis[J]. Global Ecology and Conservation, 2020, 24. DOI:10.1016/j.gecco.2020.e01380 .
|
14 |
RODRIGUEZ-CABALLERO E, STANELLE T, EGERER S, et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts[J]. Nature Geoscience, 2022, 15: 458-463.
|
15 |
YU Y, GINOUX P. Enhanced dust emission following large wildfires due to vegetation disturbance[J]. Nature Geoscience, 2022, 15: 878-884.
|
16 |
van der WERF G R, RANDERSON J T, GIGLIO L, et al. Global fire emissions estimates during 1997-2016[J]. Earth System Science Data, 2017, 9(2): 697-720.
|
17 |
LIANG S, HURTEAU M D, WESTERLING A L. Potential decline in carbon carrying capacity under projected climate-wildfire interactions in the Sierra Nevada[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/s41598-017-02686-0 .
|
18 |
DWOMOH F K, AUCH R F, BROWN J F, et al. Trends in tree cover change over three decades related to interannual climate variability and wildfire in California[J]. Environmental Research Letters, 2023, 18(2). DOI:10.1088/1748-9326/acad15 .
|
19 |
XUE T, GENG G N, LI J, et al. Associations between exposure to landscape fire smoke and child mortality in low-income and middle-income countries: a matched case-control study[J]. The Lancet Planetary Health, 2021, 5(9): e588-e598.
|
20 |
XU R B, YE T T, YUE X, et al. Global population exposure to landscape fire air pollution from 2000 to 2019[J]. Nature, 2023, 621(7 979): 521-529.
|
21 |
JOHNSTON F H, HENDERSON S B, CHEN Y, et al. Estimated global mortality attributable to smoke from landscape fires[J]. Environmental Health Perspectives, 2012, 120(5): 695-701.
|
22 |
DU Jianhua, GONG Yinting, JIANG Liwei. Study on the characteristics of forest fires in China and their relationship with major climatic factors[J]. Forest Resources Management, 2019(2): 7-14.
|
|
杜建华, 宫殷婷, 蒋丽伟. 中国森林火灾发生特征及其与主要气候因子的关系研究[J]. 林业资源管理, 2019(2): 7-14.
|
23 |
LI Shuang, CAO Meng, ZHU Yanpeng. Temporal and spatial distribution of economic losses and casualties of forest fires in China[J]. Fire Science and Technology, 2023, 42(3): 387-391.
|
|
李爽, 曹萌, 朱彦鹏. 森林火灾经济损失及人员伤亡时空分布特征研究[J]. 消防科学与技术, 2023, 42(3): 387-391.
|
24 |
LIU L, LI Q, HUANG M, et al. Carbon concentration and isotope composition of black carbon in the topsoil of the central and southeastern Qinghai-Tibetan Plateau, and their environmental significance[J]. CATENA, 2019, 172: 132-139.
|
25 |
HUANG C C, PANG J L, CHEN S E, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(1/2): 28-44.
|
26 |
JIANG Shoushu, ZHAO Debo, TANG Yi, et al. Application of black carbon in sediments in paleoenvironment and paleoclimate studies[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 119-135.
|
|
姜寿恕, 赵德博, 唐艺, 等. 沉积物中黑碳在古环境古气候研究中的应用[J]. 海洋地质与第四纪地质, 2023, 43(5): 119-135.
|
27 |
TAN Z H, HAN Y M, CAO J J, et al. Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China[J]. Quaternary Science Reviews, 2015, 109: 76-87.
|
28 |
HU Yuanfeng, ZHOU Bin, PANG Yang, et al. A review of study methods and progress on hominid use of fire[J]. Quaternary Sciences, 2019, 39(1): 240-257.
|
|
胡圆峰, 周斌, 庞洋, 等. 古人类用火研究及其进展[J]. 第四纪研究, 2019, 39(1): 240-257.
|
29 |
XUE J B, ZHONG W, LI Q, et al. Holocene fire history in eastern monsoonal region of China and its controls[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 496: 136-145.
|
30 |
TAN Z H, MAO L J, HAN Y M, et al. Black carbon and charcoal records of fire and human land use over the past 1300 years at the Tongguan Kiln archaeological site, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 162-169.
|
31 |
WANG X, DING Z L, PENG P A. Changes in fire regimes on the Chinese Loess Plateau since the last glacial maximum and implications for linkages to paleoclimate and past human activity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315: 61-74.
|
32 |
TAN Z H, WU C, HAN Y M, et al. Fire history and human activity revealed through Poly cyclic Aromatic Hydrocarbon (PAH) records at archaeological sites in the middle reaches of the Yellow River drainage basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560. DOI: 10.1016/j.palaeo.2020.110015 .
|
33 |
MIAO Y F, CHANG H, LI L, et al. Early Oligocene—late miocene wildfire history in the northern Tibetan Plateau and links to temperature-driven precipitation changes[J]. Frontiers in Earth Science, 2022, 10. DOI:10.3389/feart.2022.850809 .
|
34 |
MIAO Y F, WU F L, WARNY S, et al. Miocene fire intensification linked to continuous aridification on the Tibetan Plateau[J]. Geology, 2019, 47(4): 303-307.
|
35 |
LU S, IRINO T, IGARASHI Y. Biomass burning history in East Asia during the last 4 million years recorded in elemental carbon variability at IODP site U1423[J]. Progress in Earth and Planetary Science, 2018, 5(1). DOI: 10.1186/s40645-018-0206-5 .
|
36 |
ZHOU B, SHEN C D, SUN Y M, et al. A biomass burning record from the Lingtai Loess Section during the last 370 ka and implication for climate and environment[J]. Chinese Science Bulletin, 2006, 51(17): 2 116-2 124.
|
37 |
XUE J B, ZHONG W, XIE L C, et al. Millennial-scale variability in biomass burning covering the interval ~41 000-7 050 cal BP in the tropical Leizhou Peninsula (south China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 344-351.
|
38 |
XIAO X Y, SHEN J I, HABERLE S G, et al. Vegetation, fire, and climate history during the last 18 500 cal a BP in south-western Yunnan Province, China[J]. Journal of Quaternary Science, 2015, 30(8): 859-869.
|
39 |
XIAO X Y, HABERLE S G, SHEN J, et al. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China[J]. Climate of the Past, 2017, 13(6): 613-627.
|
40 |
YUAN Z J, WU D, WANG T, et al. Holocene fire history in southwestern China linked to climate change and human activities[J]. Quaternary Science Reviews, 2022, 289. DOI:10.1016/j.quascirev.2022.107615 .
|
41 |
WU L, LI L Y, ZHOU H, et al. Holocene fire in relation to environmental change and human activity reconstructed from sedimentary charcoal of Chaohu Lake, East China[J]. Quaternary International, 2019, 507: 62-73.
|
42 |
PAN Y X, YANG J, YAO Q C, et al. How well do multi-fire danger rating indices represent China forest fire variations across multi-time scales?[J]. Environmental Research Letters, 2024, 19(4). DOI 10.1088/1748-9326/ad2d3d.
|
43 |
ZENG A C, YANG S, ZHU H, et al. Spatiotemporal dynamics and climate influence of forest fires in Fujian Province, China[J]. Forests, 2022, 13(3). DOI: 10.3390/f13030423 .
|
44 |
ZHAO F J, LIU Y Q, SHU L F. Change in the fire season pattern from bimodal to unimodal under climate change: the case of Daxing’anling in Northeast China[J]. Agricultural and Forest Meteorology, 2020, 291. DOI:10.1016/j.agrformet.2020.108075 .
|
45 |
QIN X L, YAN H, ZHAN Z H, et al. Characterising vegetative biomass burning in China using MODIS data[J]. International Journal of Wildland Fire, 2014, 23(1): 69-77.
|
46 |
SONG Y, LIU B, MIAO W J, et al. Spatiotemporal variation in nonagricultural open fire emissions in China from 2000 to 2007[J]. Global Biogeochemical Cycles, 2009, 23(2). DOI: 10.1029/2008GB003344 .
|
47 |
JUSTICE C O, GIGLIO L, KORONTZI S, et al. The MODIS fire products[J]. Remote Sensing of Environment, 2002, 83(1/2): 244-262.
|
48 |
CHEN A P, TANG R Y, MAO J F, et al. Spatiotemporal dynamics of ecosystem fires and biomass burning-induced carbon emissions in China over the past two decades[J]. Geography and Sustainability, 2020, 1(1): 47-58.
|
49 |
ROY D P, JIN Y, LEWIS P E, et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 2005, 97(2): 137-162.
|
50 |
ROBERTS G, WOOSTER M J, PERRY G L W, et al. Retrieval of biomass combustion rates and totals from fire radiative power observations: application to southern Africa using geostationary SEVIRI imagery[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D21). DOI:10.1029/2005JD006018 .
|
51 |
CUNNINGHAM C X, WILLIAMSON G J, BOWMAN D M J S. Increasing frequency and intensity of the most extreme wildfires on Earth[J]. Nature Ecology & Evolution, 2024, 8: 1 420-1 425.
|
52 |
YI K P, BAO Y L, ZHANG J Q. Spatial distribution and temporal variability of open fire in China[J]. International Journal of Wildland Fire, 2017, 26(2): 122-135.
|
53 |
XU C, YOU C. Agricultural expansion dominates rapid increases in cropland fires in Asia[J]. Environment International, 2023, 179. DOI: 10.1016/j.envint.2023.108189 .
|
54 |
KE H B, GONG S L, HE J J, et al. Spatial and temporal distribution of open bio-mass burning in China from 2013 to 2017[J]. Atmospheric Environment, 2019, 210: 156-165.
|
55 |
TIAN Y P, WU Z C, BIAN S J, et al. Study on spatial-distribution characteristics based on fire-spot data in Northern China[J]. Sustainability, 2022, 14(11). DOI:10.3390/su14116872 .
|
56 |
LIU W L, WANG S X, ZHOU Y, et al. Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China[J]. Natural Hazards, 2016, 81: 347-363.
|
57 |
FAN H, YANG X C, ZHAO C F, et al. Spatiotemporal variation characteristics of global fires and their emissions[J]. Atmospheric Chemistry and Physics, 2023, 23(13): 7 781-7 798.
|
58 |
WANG L L, JIN X, WANG Q L, et al. Spatial and temporal variability of open biomass burning in Northeast China from 2003 to 2017[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3): 240-247.
|
59 |
LI S Y, ZHANG M, WANG L C, et al. The evolution of open biomass burning during summer crop harvest in the North China Plain[J]. Progress in Physical Geography: Earth and Environment, 2023, 47(6): 873-891.
|
60 |
MEHMOOD K, CHANG S C, YU S C, et al. Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016[J]. Environmental Chemistry Letters, 2018, 16(1): 301-309.
|
61 |
LIU X D, EKOUNGOULOU R, ZHAO H, et al. Assessing the temporal and spatial dynamics of the forest fires in southeastern China[J]. Applied Ecology and Environmental Research, 2018, 16(3): 3 393-3 406.
|
62 |
ZHANG Guoli, Xuelun CI, YANG Xueqing, et al. Study on spatio-temporal distribution characteristics and susceptibility analysis of forest fire[J]. Forest and Grassland Resources Research, 2023(5): 48-55.
|
|
张国丽, 慈雪伦, 杨雪清, 等. 森林火灾时空分布特征及易发性分析研究[J]. 林草资源研究, 2023(5): 48-55.
|
63 |
XIONG Q L, LUO X J, LIANG P H, et al. Fire from policy, human interventions, or biophysical factors?Temporal-spatial patterns of forest fire in southwestern China[J]. Forest Ecology and Management, 2020, 474. DOI:10.1016/j.foreco.2020.118381 .
|
64 |
HE Rui, LU Heng, JIN Zizhen, et al. Construction of forest fire prediction model and driving factors analysis based on random forests algorithm in Southwest China[J]. Acta Ecologica Sinica, 2023(22): 1-15.
|
|
何锐, 陆恒, 晋子振, 等. 基于随机森林算法的中国西南地区林火发生预测模型构建及驱动因子分析[J]. 生态学报, 2023(22): 1-15.
|
65 |
ZHANG Wenwen, WANG Jin, WANG Qiuhua, et al. Analyses on spatial and temporal characteristics of forest fires in Yunnan Province based on MODIS from 2001 to 2020[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(5): 73-79.
|
|
张文文, 王劲, 王秋华, 等. 基于MODIS的云南省2001—2020年林火发生时空特征分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 73-79.
|
66 |
JIAO M, QUAN X W, YAO J S, et al. How does the management paradigm contain wildfire over Southwest China? Evidence from remote sensing observation[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20. DOI: 10.1109/LGRS.2023.3304817 .
|
67 |
ZHANG Z X, FENG Z Q, ZHANG H Y, et al. Spatial distribution of grassland fires at the regional scale based on the MODIS active fire products[J]. International Journal of Wildland Fire, 2017, 26(3). DOI:10.1071/WF16026 .
|
68 |
LIU M F, ZHAO J J, GUO X Y, et al. Study on climate and grassland fire in HulunBuir, Inner Mongolia Autonomous Region, China[J]. Sensors, 2017, 17(3). DOI: 10.3390/s17030616 .
|
69 |
LIU Haixin, QIAN Yilin, KONG Junjie, et al. Temporal and spatial variations of vegetation fires in Inner Mongolia from 2003 to 2019 based on FIRMS_MODIS[J]. Forestry Science and Technology Information, 2023, 55(1): 1-8.
|
|
刘海新, 钱以临, 孔俊杰, 等. 2003—2019年内蒙古FIRMS_MODIS植被火点时空变化[J]. 林业科技情报, 2023, 55(1): 1-8.
|
70 |
SHAO Y K, FENG Z K, SUN L H, et al. Mapping China’s forest fire risks with machine learning[J]. Forests, 2022, 13(6). DOI:10.3390/f13060856 .
|
71 |
CHEN D M, PEREIRA J M C, MASIERO A, et al. Mapping fire regimes in China using MODIS active fire and burned area data[J]. Applied Geography, 2017, 85: 14-26.
|
72 |
SU J J, LIU Z H, WANG W J, et al. Evaluation of the spatial distribution of predictors of fire regimes in China from 2003 to 2016[J]. Remote Sensing, 2023, 15(20). DOI: 10.3390/rs15204946 .
|
73 |
YAN Kaida, ZHAO Fengjun, YANG Guang, et al. Distribution characteristics of vegetation fires in border areas of China from 2001 to 2022 based on MODIS fire spot data[J]. Chinese Journal of Applied Ecology, 2024, 35(11): 3 095-3 106.
|
|
闫凯达, 赵凤君, 杨光, 等. 基于MODIS火点数据的中国边境地区2001—2022年植被火分布特征[J]. 应用生态学报, 2024, 35(11): 3 095-3 106.
|
74 |
XING H, FANG K Y, YAO Q C, et al. Impacts of changes in climate extremes on wildfire occurrences in China[J]. Ecological Indicators, 2023, 157. DOI:10.1016/j.ecolind.2023.111288 .
|
75 |
YIN J P, HE B B, FAN C Q, et al. Drought-related wildfire accounts for one-third of the forest wildfires in subtropical China[J]. Agricultural and Forest Meteorology, 2024, 346. DOI: 10.1016/j.agrformet.2024.109893 .
|
76 |
SUN Q H, MIAO C Y, HANEL M, et al. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming[J]. Environment International, 2019, 128: 125-136.
|
77 |
SHAO Y K, FAN G P, FENG Z K, et al. Prediction of forest fire occurrence in China under climate change scenarios[J]. Journal of Forestry Research, 2023, 34(5): 1 217-1 228.
|
78 |
WANG J Y, WANG X F. A triumph of reducing carbon emission by banning open straw burning[J]. Science Bulletin, 2023, 68(1): 18-20.
|
79 |
HUANG L, ZHU Y H, WANG Q, et al. Assessment of the effects of straw burning bans in China: emissions, air quality, and health impacts[J]. Science of the Total Environment, 2021, 789. DOI:10.1016/j.scitotenv.2021.147935 .
|
80 |
SHEN G F, XIONG R, TIAN Y L, et al. Substantial transition to clean household energy mix in rural China[J]. National Science Review, 2022, 9(7). DOI: 10.1093/nsr/nwac050 .
|
81 |
YU S, JIANG L, DU W L, et al. Estimation and spatio-temporal patterns of carbon emissions from grassland fires in Inner Mongolia, China[J]. Chinese Geographical Science, 2020, 30(4): 572-587.
|
82 |
TIAN X R, ZHAO F J, SHU L F, et al. Distribution characteristics and the influence factors of forest fires in China[J]. Forest Ecology and Management, 2013, 310: 460-467.
|
83 |
CHEN J, DI X Y. Forest fire prevention management legal regime between China and the United States[J]. Journal of Forestry Research, 2015, 26(2): 447-455.
|
84 |
FANG K Y, YAO Q C, GUO Z T, et al. ENSO modulates wildfire activity in China[J]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-21988-6 .
|
85 |
JIAO Qiangying, HAN Zongfu, WANG Weiye, et al. Driving factors and forecasting model of lightning-caused forest fires in Daxing’anling Mountains based on multi-sources data and machine learning method[J]. Scientia Silvae Sinicae, 2023, 59(6): 74-87.
|
|
焦强英, 韩宗甫, 王炜烨, 等. 基于多源数据和机器学习方法的大兴安岭地区雷击火驱动因子及火险预测模型[J]. 林业科学, 2023, 59(6): 74-87.
|
86 |
SI Liqing, WANG Mingyu, CHEN Feng, et al. Distribution characteristics of lightning and the warning of lightning-caused forest fires[J]. Scientia Silvae Sinicae, 2023, 59(10): 1-8.
|
|
司莉青, 王明玉, 陈锋, 等. 雷电分布特征与雷击森林火预警[J]. 林业科学, 2023, 59(10): 1-8.
|
87 |
GAO C, ZHAO F J, SHI C M, et al. Previous Atlantic Multidecadal Oscillation (AMO) modulates the lightning-ignited fire regime in the boreal forest of northeast China[J]. Environmental Research Letters, 2021, 16(2). DOI 10.1088/1748-9326/abde09.
|
88 |
LI Wei, SHU Lifu, WANG Mingyu, et al. Temporal and spatial distribution and dynamic characteristics of lightning fires in the Daxing’anling Mountains from 1980 to 2021[J]. Scientia Silvae Sinicae, 2023, 59(10): 22-31.
|
|
李威, 舒立福, 王明玉, 等. 大兴安岭1980—2021年雷击火时空分布特征[J]. 林业科学, 2023, 59(10): 22-31.
|
89 |
LI Weike, SHU Lifu, WANG Mingyu, et al. Occurrence pattern and changing trend of lightning induced fires and human-caused fires in Daxing’anling forest region of Heilongjiang Province[J]. Scientia Silvae Sinicae, 2024, 60(4): 136-146.
|
|
李伟克, 舒立福, 王明玉, 等. 黑龙江大兴安岭林区雷击火与人为火发生规律及变化趋势[J]. 林业科学, 2024, 60(4): 136-146.
|
90 |
HARRISON S P, MARLON J R, BARTLEIN P J. Fire in the Earth system[M]// Changing climates, Earth systems and society. Dordrecht: Springer Netherlands, 2010: 21-48.
|
91 |
ROMPS D M, SEELEY J T, VOLLARO D, et al. Climate change. Projected increase in lightning strikes in the United States due to global warming[J]. Science, 2014, 346(6 211): 851-854.
|
92 |
VERHOEVEN E M, MURRAY B R, DICKMAN C R, et al. Fire and rain are one: extreme rainfall events predict wildfire extent in an arid grassland[J]. International Journal of Wildland Fire, 2020, 29(8). DOI: 10.1071/WF19087 .
|
93 |
LAN Y C, WANG J L, HU W Y, et al. Spatial pattern prediction of forest wildfire susceptibility in Central Yunnan Province, China based on multivariate data[J]. Natural Hazards, 2023, 116(1): 565-586.
|
94 |
ZHAO F J, LIU Y Q. Important meteorological predictors for long-range wildfires in China[J]. Forest Ecology and Management, 2021, 499. DOI:10.1016/j.foreco.2021.119638 .
|
95 |
YU Y, MAO J F, THORNTON P E, et al. Quantifying the drivers and predictability of seasonal changes in African fire[J]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-020-16692-w .
|
96 |
BOWMAN D M J S, BALCH J K, ARTAXO P, et al. Fire in the Earth system[J]. Science, 2009, 324(5 926): 481-484.
|
97 |
YAO Q C, JIANG D B, ZHENG B, et al. Anthropogenic warming is a key climate indicator of rising urban fire activity in China[J]. National Science Review, 2024, 11(5). DOI: 10.1093/nsr/nwae163 .
|
98 |
SHANG Y Q, PEI Y Y, FU P, et al. Increased corn cultivation exacerbated crop residue burning in NorthEast China in the 21st century[J]. Geography and Sustainability, 2025, 6(3). DOI: 10.1016/j.geosus.2024.09.008 .
|
99 |
YOU Chao, WU Guangjian, WANG Ninglian, et al. Progress of levoglucosan records and vegetation fire changes in environmental media[J]. Chinese Science Bulletin, 2022, 67(21): 2 522-2 534.
|
|
游超, 邬光剑, 王宁练, 等. 环境介质中左旋葡聚糖记录与植被火燃烧变化研究进展[J]. 科学通报, 2022, 67(21): 2 522-2 534.
|
100 |
SUN Long, LI Guangxin, HU Tongxin, et al. Advance in carbon loss of peatlands caused by wildfire[J]. Wetland Science, 2021, 19(5): 615-622.
|
|
孙龙, 李光新, 胡同欣, 等. 野外火灾所致的泥炭地碳损失研究进展[J]. 湿地科学, 2021, 19(5): 615-622.
|
101 |
XU Huifeng, JI Shengzhen, YANG Yixuan, et al. Effect of prescribed burning on soil organic matter and nutrients in a peatland in the Great Khingan Mountains[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(3): 584-589.
|
|
徐惠风, 吉生珍, 杨艺璇, 等. 计划火烧对大兴安岭地区泥炭地土壤有机质和养分的影响[J]. 应用与环境生物学报, 2023, 29(3): 584-589.
|
102 |
ALIZADEH M R, ABATZOGLOU J T, LUCE C H, et al. Warming enabled upslope advance in western US forest fires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(22). DOI: 10.1073/pnas.2009717118 .
|
103 |
BYRNE B, LIU J J, BOWMAN K W, et al. Carbon emissions from the 2023 Canadian wildfires[J]. Nature, 2024, 633(8 031): 835-839.
|
104 |
van der VELDE I R, van der WERF G R, HOUWELING S, et al. Vast CO2 release from Australian fires in 2019-2020 constrained by satellite[J]. Nature, 2021, 597: 366-369.
|
105 |
ZHANG Minghua. The challenges of the US emergency management system as seen from the Maui wildfire[J]. City and Disaster Reduction, 2024(5): 54-58.
|
|
张明华. 从毛伊岛火灾看美国的应急管理体制之困[J]. 城市与减灾, 2024(5): 54-58.
|
106 |
GOU Aiping, PENG Yadi, WANG Jiangbo. A summary of the resilience strategy of the United States to deal with wildfires and its enlightenment[J]. Contemporary Horticulture, 2023(23): 190-193, 197.
|
|
苟爱萍, 彭雅娣, 王江波. 美国应对野火的韧性策略综述及启示[J]. 现代园艺, 2023(23): 190-193, 197.
|
107 |
ANDREEVA-MORI A, OHGA K, KOBAYASHI K, et al. Flight test exploration of integrated wildfire response operations with crewed and uncrewed air assets[C]// AIAA SciTech 2024 Forum. Orlando, FL: AIAA, 2024.
|