地球科学进展 ›› 2025, Vol. 40 ›› Issue (2): 207 -220. doi: 10.11867/j.issn.1001-8166.2025.015

表层地球 上一篇    

中国植被火燃烧格局与展望
向书旗1(), 陈静1,2(), 游超1   
  1. 1.重庆大学 环境与生态学院,重庆 400044
    2.重庆大学 三峡库区生态环境教育部 重点实验室,重庆 400044
  • 收稿日期:2024-11-29 修回日期:2025-01-06 出版日期:2025-02-10
  • 通讯作者: 陈静 E-mail:2460126917@qq.com;chen.jing@cqu.edu.cn

Recent Progress and Prospect on the Vegetation Fire Regime in China

Shuqi XIANG1(), Jing CHEN1,2(), Chao YOU1   

  1. 1.College of Environment and Ecology, Chongqing University, Chongqing 400044, China
    2.Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
  • Received:2024-11-29 Revised:2025-01-06 Online:2025-02-10 Published:2025-04-17
  • Contact: Jing CHEN E-mail:2460126917@qq.com;chen.jing@cqu.edu.cn
  • About author:XIANG Shuqi, research areas include vegetation fire and environmental impacts. E-mail: 2460126917@qq.com

植被火燃烧是地球系统的重要干扰因素,会对大气圈、水圈、冰冻圈、生物圈、土壤圈和人类圈等地表圈层产生重要影响。植被火燃烧烟尘中的各种气体和气溶胶颗粒在影响大气环境的同时还会危害人类健康,极端火灾事件还会造成严重的人员伤亡和经济财产损失。近年来,在全球变暖的影响下极端天气事件频繁发生,植被火灾害发生风险也显著增加。理解现代植被火的所处阶段和发生机制,对未来的植被火变化预测有重要的科学意义,同时对制定火灾管控策略具有重要的实践价值。通过从植被火演化历史和现代植被火燃烧格局2个方面综述中国植被火的研究进展,对现代植被火形势获得了如下基本认识:①从历史记录来看,现代植被火燃烧正处于全新世以来最繁盛时期,且从20世纪末到现在甚至到21世纪中叶整体呈上升趋势;②中国植被火以农田火为主,森林野火为辅,集中发生在春季和秋季,主要分布在东北、西南、华北、华东以及华南等地区,且在人类活动和气候变化的影响下呈现出区域多样化的特点。未来还要加强梳理中国植被火的历史变化细节、阐明现代植被火整体格局,以便更准确地预测未来植被火变化。

Vegetation fire, as a significant disturbance factor in the Earth’s system, can have important impacts on Earth’s surface systems, such as the atmosphere, hydrosphere, cryosphere, biosphere, pedosphere, and anthroposphere. The various gases and aerosol particles released during vegetation fires not only affect the atmospheric environment, but also pose risks to human health. Extreme vegetation fires can cause serious casualties and economic loss. In recent years, under the influence of global warming, various extreme weather events have occurred frequently, and the risk of vegetation fire disasters has also significantly increased. Understanding the stages and mechanisms of modern vegetation fires is of great scientific significance for predicting future changes in vegetation fires, and is of great practical importance for formulating fire management strategies. This study provides an overview of the research progress on vegetation fires in China from the perspective of the evolutionary history of vegetation fires and modern vegetation fire regimes. The following basic understanding is obtained regarding the pattern of modern vegetation fires: First, from historical records, modern vegetation fires are currently at their most frequent period since the Holocene, and from the late 20th century to the present, even to the mid-21st century, vegetation fires in China show an overall upward trend. Second, vegetation fires in China are mainly agricultural fires with forest wildfires as a supplement, concentrated in spring and autumn, and are mainly distributed in northeastern, southwestern, eastern, and southern China, showing regional diversification characteristics under the influence of human activities and climate change. In the future, efforts should be made to strengthen the review of the details of historical changes in vegetation fires in China, elucidate the overall modern vegetation fire regime, and provide more accurate predictions of future changes in vegetation fires.

中图分类号: 

图1 植被火燃烧对地球系统的影响1
Fig. 1 Vegetation fire in the Earth system1
图2 基于全球炭屑数据库的中国古火灾记录点及中国东部全新世植被火变化(据参考文献[29]修改)
(a)覆盖全新世时期的古火灾记录点被分为北方地区(N1~N7,N5和N6由于位置接近,点位基本重合)和南方地区(S1~S7);(b)北方地区和(c)南方地区全新世植被火变化趋势
Fig. 2 Sites with paleofire records of China based on the Global Charcoal DatabaseGCDand vegetation fire changes during the Holocene periodmodified after reference29])
(a) The paleofire records spanning the Holocene period are divided into the northern region (N1~N7,N5 and N6 being relatively close in location, have points that essentially overlap) and southern region (S1~S7); Trends of Holocene vegetation fire change in the (b) Northern region and (c) Southern region
图3 基于MODIS观测的20182023年中国植被火燃烧的空间分布
Fig. 3 Spatial distribution of vegetation fire in China based on MODIS observation in 2018-2023
表1 21世纪中国不同地区植被火特征汇总
Table 1 Summary of vegetation fire characteristics in different regions of China in 21 century
图4 基于MODIS观测的2012—2021年中国植被火点变化
Fig. 4 Temporal variability of vegetation fire in China during 2012-2021 based on MODIS fire spots products
图5 华北平原地区1997—2021年的6月植被火碳排放演变78
Fig. 5 The evolution of June vegetation fire carbon emission from the North China Plain in 1997-202178
1 BOWMAN D M J S, KOLDEN C A, ABATZOGLOU J T, et al. Vegetation fires in the Anthropocene[J]. Nature Reviews Earth & Environment20201: 500-515.
2 LANGMANN B, DUNCAN B, TEXTOR C, et al. Vegetation fire emissions and their impact on air pollution and climate[J]. Atmospheric Environment200943(1): 107-116.
3 SHANG Jingjing, LIAO Hong, FU Yu, et al. The impact of sulfate and black carbon aerosols on summertime cloud properties in China[J]. Journal of Tropical Meteorology201733(4): 451-466.
尚晶晶, 廖宏, 符瑜, 等. 夏季硫酸盐和黑碳气溶胶对中国云特性的影响[J]. 热带气象学报201733(4): 451-466.
4 PETERSON D A, CAMPBELL J R, HYER E J, et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke[J]. NPJ Climate and Atmospheric Science2018, 1. DOI:10.1038/s41612-10.1038/s41018-0039-3 .
5 THOMAS J L, POLASHENSKI C M, SOJA A J, et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada[J]. Geophysical Research Letters201744(15): 7 965-7 974.
6 SKILES S M, FLANNER M, COOK J M, et al. Radiative forcing by light-absorbing particles in snow[J]. Nature Climate Change20188: 964-971.
7 McRAE R H D, SHARPLES J J, FROMM M. Linking local wildfire dynamics to pyroCb development[J]. Natural Hazards and Earth System Sciences201515(3): 417-428.
8 NOLAN R H, COLLINS L, LEIGH A, et al. Limits to post-fire vegetation recovery under climate change[J]. Plant, Cell & Environment, 202144(11): 3 471-3 489.
9 BOYER E W, WAGENBRENNER J W, ZHANG L. Wildfire and hydrological processes[J]. Hydrological Processes202236(7). DOI:10.1002/hyp.14640 .
10 GUO Y H, ZHANG L, ZHANG Y Q, et al. Estimating impacts of wildfire and climate variability on streamflow in Victoria, Australia[J]. Hydrological Processes202135(12). DOI:10.1002/hyp.14439 .
11 WILSON C, KAMPF S K, RYAN S, et al. Connectivity of post-fire runoff and sediment from nested hillslopes and watersheds[J]. Hydrological Processes202135(1). DOI: 10.1002/hyp.13975 .
12 WAGENBRENNER N S, GERMINO M J, LAMB B K, et al. Wind erosion from a sagebrush steppe burned by wildfire: measurements of PM10 and total horizontal sediment flux[J]. Aeolian Research201310: 25-36.
13 BRIANNE P, REBECCA H, DAVID L. The fate of biological soil crusts after fire: a meta-analysis[J]. Global Ecology and Conservation2020, 24. DOI:10.1016/j.gecco.2020.e01380 .
14 RODRIGUEZ-CABALLERO E, STANELLE T, EGERER S, et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts[J]. Nature Geoscience202215: 458-463.
15 YU Y, GINOUX P. Enhanced dust emission following large wildfires due to vegetation disturbance[J]. Nature Geoscience202215: 878-884.
16 van der WERF G R, RANDERSON J T, GIGLIO L, et al. Global fire emissions estimates during 1997-2016[J]. Earth System Science Data20179(2): 697-720.
17 LIANG S, HURTEAU M D, WESTERLING A L. Potential decline in carbon carrying capacity under projected climate-wildfire interactions in the Sierra Nevada[J]. Scientific Reports20177(1). DOI:10.1038/s41598-017-02686-0 .
18 DWOMOH F K, AUCH R F, BROWN J F, et al. Trends in tree cover change over three decades related to interannual climate variability and wildfire in California[J]. Environmental Research Letters202318(2). DOI:10.1088/1748-9326/acad15 .
19 XUE T, GENG G N, LI J, et al. Associations between exposure to landscape fire smoke and child mortality in low-income and middle-income countries: a matched case-control study[J]. The Lancet Planetary Health20215(9): e588-e598.
20 XU R B, YE T T, YUE X, et al. Global population exposure to landscape fire air pollution from 2000 to 2019[J]. Nature2023621(7 979): 521-529.
21 JOHNSTON F H, HENDERSON S B, CHEN Y, et al. Estimated global mortality attributable to smoke from landscape fires[J]. Environmental Health Perspectives2012120(5): 695-701.
22 DU Jianhua, GONG Yinting, JIANG Liwei. Study on the characteristics of forest fires in China and their relationship with major climatic factors[J]. Forest Resources Management2019(2): 7-14.
杜建华, 宫殷婷, 蒋丽伟. 中国森林火灾发生特征及其与主要气候因子的关系研究[J]. 林业资源管理2019(2): 7-14.
23 LI Shuang, CAO Meng, ZHU Yanpeng. Temporal and spatial distribution of economic losses and casualties of forest fires in China[J]. Fire Science and Technology202342(3): 387-391.
李爽, 曹萌, 朱彦鹏. 森林火灾经济损失及人员伤亡时空分布特征研究[J]. 消防科学与技术202342(3): 387-391.
24 LIU L, LI Q, HUANG M, et al. Carbon concentration and isotope composition of black carbon in the topsoil of the central and southeastern Qinghai-Tibetan Plateau, and their environmental significance[J]. CATENA2019172: 132-139.
25 HUANG C C, PANG J L, CHEN S E, et al. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2006239(1/2): 28-44.
26 JIANG Shoushu, ZHAO Debo, TANG Yi, et al. Application of black carbon in sediments in paleoenvironment and paleoclimate studies[J]. Marine Geology & Quaternary Geology202343(5): 119-135.
姜寿恕, 赵德博, 唐艺, 等. 沉积物中黑碳在古环境古气候研究中的应用[J]. 海洋地质与第四纪地质202343(5): 119-135.
27 TAN Z H, HAN Y M, CAO J J, et al. Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China[J]. Quaternary Science Reviews2015109: 76-87.
28 HU Yuanfeng, ZHOU Bin, PANG Yang, et al. A review of study methods and progress on hominid use of fire[J]. Quaternary Sciences201939(1): 240-257.
胡圆峰, 周斌, 庞洋, 等. 古人类用火研究及其进展[J]. 第四纪研究201939(1): 240-257.
29 XUE J B, ZHONG W, LI Q, et al. Holocene fire history in eastern monsoonal region of China and its controls[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2018496: 136-145.
30 TAN Z H, MAO L J, HAN Y M, et al. Black carbon and charcoal records of fire and human land use over the past 1300 years at the Tongguan Kiln archaeological site, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2018504: 162-169.
31 WANG X, DING Z L, PENG P A. Changes in fire regimes on the Chinese Loess Plateau since the last glacial maximum and implications for linkages to paleoclimate and past human activity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2012315: 61-74.
32 TAN Z H, WU C, HAN Y M, et al. Fire history and human activity revealed through Poly cyclic Aromatic Hydrocarbon (PAH) records at archaeological sites in the middle reaches of the Yellow River drainage basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560. DOI: 10.1016/j.palaeo.2020.110015 .
33 MIAO Y F, CHANG H, LI L, et al. Early Oligocene—late miocene wildfire history in the northern Tibetan Plateau and links to temperature-driven precipitation changes[J]. Frontiers in Earth Science2022, 10. DOI:10.3389/feart.2022.850809 .
34 MIAO Y F, WU F L, WARNY S, et al. Miocene fire intensification linked to continuous aridification on the Tibetan Plateau[J]. Geology201947(4): 303-307.
35 LU S, IRINO T, IGARASHI Y. Biomass burning history in East Asia during the last 4 million years recorded in elemental carbon variability at IODP site U1423[J]. Progress in Earth and Planetary Science20185(1). DOI: 10.1186/s40645-018-0206-5 .
36 ZHOU B, SHEN C D, SUN Y M, et al. A biomass burning record from the Lingtai Loess Section during the last 370 ka and implication for climate and environment[J]. Chinese Science Bulletin200651(17): 2 116-2 124.
37 XUE J B, ZHONG W, XIE L C, et al. Millennial-scale variability in biomass burning covering the interval ~41 000-7 050 cal BP in the tropical Leizhou Peninsula (south China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2015438: 344-351.
38 XIAO X Y, SHEN J I, HABERLE S G, et al. Vegetation, fire, and climate history during the last 18 500 cal a BP in south-western Yunnan Province, China[J]. Journal of Quaternary Science201530(8): 859-869.
39 XIAO X Y, HABERLE S G, SHEN J, et al. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China[J]. Climate of the Past201713(6): 613-627.
40 YUAN Z J, WU D, WANG T, et al. Holocene fire history in southwestern China linked to climate change and human activities[J]. Quaternary Science Reviews2022, 289. DOI:10.1016/j.quascirev.2022.107615 .
41 WU L, LI L Y, ZHOU H, et al. Holocene fire in relation to environmental change and human activity reconstructed from sedimentary charcoal of Chaohu Lake, East China[J]. Quaternary International2019507: 62-73.
42 PAN Y X, YANG J, YAO Q C, et al. How well do multi-fire danger rating indices represent China forest fire variations across multi-time scales?[J]. Environmental Research Letters202419(4). DOI 10.1088/1748-9326/ad2d3d.
43 ZENG A C, YANG S, ZHU H, et al. Spatiotemporal dynamics and climate influence of forest fires in Fujian Province, China[J]. Forests202213(3). DOI: 10.3390/f13030423 .
44 ZHAO F J, LIU Y Q, SHU L F. Change in the fire season pattern from bimodal to unimodal under climate change: the case of Daxing’anling in Northeast China[J]. Agricultural and Forest Meteorology2020, 291. DOI:10.1016/j.agrformet.2020.108075 .
45 QIN X L, YAN H, ZHAN Z H, et al. Characterising vegetative biomass burning in China using MODIS data[J]. International Journal of Wildland Fire201423(1): 69-77.
46 SONG Y, LIU B, MIAO W J, et al. Spatiotemporal variation in nonagricultural open fire emissions in China from 2000 to 2007[J]. Global Biogeochemical Cycles200923(2). DOI: 10.1029/2008GB003344 .
47 JUSTICE C O, GIGLIO L, KORONTZI S, et al. The MODIS fire products[J]. Remote Sensing of Environment200283(1/2): 244-262.
48 CHEN A P, TANG R Y, MAO J F, et al. Spatiotemporal dynamics of ecosystem fires and biomass burning-induced carbon emissions in China over the past two decades[J]. Geography and Sustainability20201(1): 47-58.
49 ROY D P, JIN Y, LEWIS P E, et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment200597(2): 137-162.
50 ROBERTS G, WOOSTER M J, PERRY G L W, et al. Retrieval of biomass combustion rates and totals from fire radiative power observations: application to southern Africa using geostationary SEVIRI imagery[J]. Journal of Geophysical Research: Atmospheres2005110(D21). DOI:10.1029/2005JD006018 .
51 CUNNINGHAM C X, WILLIAMSON G J, BOWMAN D M J S. Increasing frequency and intensity of the most extreme wildfires on Earth[J]. Nature Ecology & Evolution20248: 1 420-1 425.
52 YI K P, BAO Y L, ZHANG J Q. Spatial distribution and temporal variability of open fire in China[J]. International Journal of Wildland Fire201726(2): 122-135.
53 XU C, YOU C. Agricultural expansion dominates rapid increases in cropland fires in Asia[J]. Environment International2023, 179. DOI: 10.1016/j.envint.2023.108189 .
54 KE H B, GONG S L, HE J J, et al. Spatial and temporal distribution of open bio-mass burning in China from 2013 to 2017[J]. Atmospheric Environment2019210: 156-165.
55 TIAN Y P, WU Z C, BIAN S J, et al. Study on spatial-distribution characteristics based on fire-spot data in Northern China[J]. Sustainability202214(11). DOI:10.3390/su14116872 .
56 LIU W L, WANG S X, ZHOU Y, et al. Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China[J]. Natural Hazards201681: 347-363.
57 FAN H, YANG X C, ZHAO C F, et al. Spatiotemporal variation characteristics of global fires and their emissions[J]. Atmospheric Chemistry and Physics202323(13): 7 781-7 798.
58 WANG L L, JIN X, WANG Q L, et al. Spatial and temporal variability of open biomass burning in Northeast China from 2003 to 2017[J]. Atmospheric and Oceanic Science Letters202013(3): 240-247.
59 LI S Y, ZHANG M, WANG L C, et al. The evolution of open biomass burning during summer crop harvest in the North China Plain[J]. Progress in Physical Geography: Earth and Environment202347(6): 873-891.
60 MEHMOOD K, CHANG S C, YU S C, et al. Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016[J]. Environmental Chemistry Letters201816(1): 301-309.
61 LIU X D, EKOUNGOULOU R, ZHAO H, et al. Assessing the temporal and spatial dynamics of the forest fires in southeastern China[J]. Applied Ecology and Environmental Research201816(3): 3 393-3 406.
62 ZHANG Guoli, Xuelun CI, YANG Xueqing, et al. Study on spatio-temporal distribution characteristics and susceptibility analysis of forest fire[J]. Forest and Grassland Resources Research2023(5): 48-55.
张国丽, 慈雪伦, 杨雪清, 等. 森林火灾时空分布特征及易发性分析研究[J]. 林草资源研究2023(5): 48-55.
63 XIONG Q L, LUO X J, LIANG P H, et al. Fire from policy, human interventions, or biophysical factors?Temporal-spatial patterns of forest fire in southwestern China[J]. Forest Ecology and Management2020, 474. DOI:10.1016/j.foreco.2020.118381 .
64 HE Rui, LU Heng, JIN Zizhen, et al. Construction of forest fire prediction model and driving factors analysis based on random forests algorithm in Southwest China[J]. Acta Ecologica Sinica2023(22): 1-15.
何锐, 陆恒, 晋子振, 等. 基于随机森林算法的中国西南地区林火发生预测模型构建及驱动因子分析[J]. 生态学报2023(22): 1-15.
65 ZHANG Wenwen, WANG Jin, WANG Qiuhua, et al. Analyses on spatial and temporal characteristics of forest fires in Yunnan Province based on MODIS from 2001 to 2020[J]. Journal of Nanjing Forestry University (Natural Sciences Edition)202347(5): 73-79.
张文文, 王劲, 王秋华, 等. 基于MODIS的云南省2001—2020年林火发生时空特征分析[J]. 南京林业大学学报(自然科学版)202347(5): 73-79.
66 JIAO M, QUAN X W, YAO J S, et al. How does the management paradigm contain wildfire over Southwest China? Evidence from remote sensing observation[J]. IEEE Geoscience and Remote Sensing Letters2023, 20. DOI: 10.1109/LGRS.2023.3304817 .
67 ZHANG Z X, FENG Z Q, ZHANG H Y, et al. Spatial distribution of grassland fires at the regional scale based on the MODIS active fire products[J]. International Journal of Wildland Fire201726(3). DOI:10.1071/WF16026 .
68 LIU M F, ZHAO J J, GUO X Y, et al. Study on climate and grassland fire in HulunBuir, Inner Mongolia Autonomous Region, China[J]. Sensors201717(3). DOI: 10.3390/s17030616 .
69 LIU Haixin, QIAN Yilin, KONG Junjie, et al. Temporal and spatial variations of vegetation fires in Inner Mongolia from 2003 to 2019 based on FIRMS_MODIS[J]. Forestry Science and Technology Information202355(1): 1-8.
刘海新, 钱以临, 孔俊杰, 等. 2003—2019年内蒙古FIRMS_MODIS植被火点时空变化[J]. 林业科技情报202355(1): 1-8.
70 SHAO Y K, FENG Z K, SUN L H, et al. Mapping China’s forest fire risks with machine learning[J]. Forests202213(6). DOI:10.3390/f13060856 .
71 CHEN D M, PEREIRA J M C, MASIERO A, et al. Mapping fire regimes in China using MODIS active fire and burned area data[J]. Applied Geography201785: 14-26.
72 SU J J, LIU Z H, WANG W J, et al. Evaluation of the spatial distribution of predictors of fire regimes in China from 2003 to 2016[J]. Remote Sensing202315(20). DOI: 10.3390/rs15204946 .
73 YAN Kaida, ZHAO Fengjun, YANG Guang, et al. Distribution characteristics of vegetation fires in border areas of China from 2001 to 2022 based on MODIS fire spot data[J]. Chinese Journal of Applied Ecology202435(11): 3 095-3 106.
闫凯达, 赵凤君, 杨光, 等. 基于MODIS火点数据的中国边境地区2001—2022年植被火分布特征[J]. 应用生态学报202435(11): 3 095-3 106.
74 XING H, FANG K Y, YAO Q C, et al. Impacts of changes in climate extremes on wildfire occurrences in China[J]. Ecological Indicators2023, 157. DOI:10.1016/j.ecolind.2023.111288 .
75 YIN J P, HE B B, FAN C Q, et al. Drought-related wildfire accounts for one-third of the forest wildfires in subtropical China[J]. Agricultural and Forest Meteorology2024, 346. DOI: 10.1016/j.agrformet.2024.109893 .
76 SUN Q H, MIAO C Y, HANEL M, et al. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming[J]. Environment International2019128: 125-136.
77 SHAO Y K, FAN G P, FENG Z K, et al. Prediction of forest fire occurrence in China under climate change scenarios[J]. Journal of Forestry Research202334(5): 1 217-1 228.
78 WANG J Y, WANG X F. A triumph of reducing carbon emission by banning open straw burning[J]. Science Bulletin202368(1): 18-20.
79 HUANG L, ZHU Y H, WANG Q, et al. Assessment of the effects of straw burning bans in China: emissions, air quality, and health impacts[J]. Science of the Total Environment2021, 789. DOI:10.1016/j.scitotenv.2021.147935 .
80 SHEN G F, XIONG R, TIAN Y L, et al. Substantial transition to clean household energy mix in rural China[J]. National Science Review20229(7). DOI: 10.1093/nsr/nwac050 .
81 YU S, JIANG L, DU W L, et al. Estimation and spatio-temporal patterns of carbon emissions from grassland fires in Inner Mongolia, China[J]. Chinese Geographical Science202030(4): 572-587.
82 TIAN X R, ZHAO F J, SHU L F, et al. Distribution characteristics and the influence factors of forest fires in China[J]. Forest Ecology and Management2013310: 460-467.
83 CHEN J, DI X Y. Forest fire prevention management legal regime between China and the United States[J]. Journal of Forestry Research201526(2): 447-455.
84 FANG K Y, YAO Q C, GUO Z T, et al. ENSO modulates wildfire activity in China[J]. Nature Communications202112(1). DOI: 10.1038/s41467-021-21988-6 .
85 JIAO Qiangying, HAN Zongfu, WANG Weiye, et al. Driving factors and forecasting model of lightning-caused forest fires in Daxing’anling Mountains based on multi-sources data and machine learning method[J]. Scientia Silvae Sinicae202359(6): 74-87.
焦强英, 韩宗甫, 王炜烨, 等. 基于多源数据和机器学习方法的大兴安岭地区雷击火驱动因子及火险预测模型[J]. 林业科学202359(6): 74-87.
86 SI Liqing, WANG Mingyu, CHEN Feng, et al. Distribution characteristics of lightning and the warning of lightning-caused forest fires[J]. Scientia Silvae Sinicae202359(10): 1-8.
司莉青, 王明玉, 陈锋, 等. 雷电分布特征与雷击森林火预警[J]. 林业科学202359(10): 1-8.
87 GAO C, ZHAO F J, SHI C M, et al. Previous Atlantic Multidecadal Oscillation (AMO) modulates the lightning-ignited fire regime in the boreal forest of northeast China[J]. Environmental Research Letters202116(2). DOI 10.1088/1748-9326/abde09.
88 LI Wei, SHU Lifu, WANG Mingyu, et al. Temporal and spatial distribution and dynamic characteristics of lightning fires in the Daxing’anling Mountains from 1980 to 2021[J]. Scientia Silvae Sinicae202359(10): 22-31.
李威, 舒立福, 王明玉, 等. 大兴安岭1980—2021年雷击火时空分布特征[J]. 林业科学202359(10): 22-31.
89 LI Weike, SHU Lifu, WANG Mingyu, et al. Occurrence pattern and changing trend of lightning induced fires and human-caused fires in Daxing’anling forest region of Heilongjiang Province[J]. Scientia Silvae Sinicae202460(4): 136-146.
李伟克, 舒立福, 王明玉, 等. 黑龙江大兴安岭林区雷击火与人为火发生规律及变化趋势[J]. 林业科学202460(4): 136-146.
90 HARRISON S P, MARLON J R, BARTLEIN P J. Fire in the Earth system[M]// Changing climates, Earth systems and society. Dordrecht: Springer Netherlands, 2010: 21-48.
91 ROMPS D M, SEELEY J T, VOLLARO D, et al. Climate change. Projected increase in lightning strikes in the United States due to global warming[J]. Science2014346(6 211): 851-854.
92 VERHOEVEN E M, MURRAY B R, DICKMAN C R, et al. Fire and rain are one: extreme rainfall events predict wildfire extent in an arid grassland[J]. International Journal of Wildland Fire202029(8). DOI: 10.1071/WF19087 .
93 LAN Y C, WANG J L, HU W Y, et al. Spatial pattern prediction of forest wildfire susceptibility in Central Yunnan Province, China based on multivariate data[J]. Natural Hazards2023116(1): 565-586.
94 ZHAO F J, LIU Y Q. Important meteorological predictors for long-range wildfires in China[J]. Forest Ecology and Management2021, 499. DOI:10.1016/j.foreco.2021.119638 .
95 YU Y, MAO J F, THORNTON P E, et al. Quantifying the drivers and predictability of seasonal changes in African fire[J]. Nature Communications202011(1). DOI: 10.1038/s41467-020-16692-w .
96 BOWMAN D M J S, BALCH J K, ARTAXO P, et al. Fire in the Earth system[J]. Science2009324(5 926): 481-484.
97 YAO Q C, JIANG D B, ZHENG B, et al. Anthropogenic warming is a key climate indicator of rising urban fire activity in China[J]. National Science Review202411(5). DOI: 10.1093/nsr/nwae163 .
98 SHANG Y Q, PEI Y Y, FU P, et al. Increased corn cultivation exacerbated crop residue burning in NorthEast China in the 21st century[J]. Geography and Sustainability20256(3). DOI: 10.1016/j.geosus.2024.09.008 .
99 YOU Chao, WU Guangjian, WANG Ninglian, et al. Progress of levoglucosan records and vegetation fire changes in environmental media[J]. Chinese Science Bulletin202267(21): 2 522-2 534.
游超, 邬光剑, 王宁练, 等. 环境介质中左旋葡聚糖记录与植被火燃烧变化研究进展[J]. 科学通报202267(21): 2 522-2 534.
100 SUN Long, LI Guangxin, HU Tongxin, et al. Advance in carbon loss of peatlands caused by wildfire[J]. Wetland Science202119(5): 615-622.
孙龙, 李光新, 胡同欣, 等. 野外火灾所致的泥炭地碳损失研究进展[J]. 湿地科学202119(5): 615-622.
101 XU Huifeng, JI Shengzhen, YANG Yixuan, et al. Effect of prescribed burning on soil organic matter and nutrients in a peatland in the Great Khingan Mountains[J]. Chinese Journal of Applied and Environmental Biology202329(3): 584-589.
徐惠风, 吉生珍, 杨艺璇, 等. 计划火烧对大兴安岭地区泥炭地土壤有机质和养分的影响[J]. 应用与环境生物学报202329(3): 584-589.
102 ALIZADEH M R, ABATZOGLOU J T, LUCE C H, et al. Warming enabled upslope advance in western US forest fires[J]. Proceedings of the National Academy of Sciences of the United States of America2021118(22). DOI: 10.1073/pnas.2009717118 .
103 BYRNE B, LIU J J, BOWMAN K W, et al. Carbon emissions from the 2023 Canadian wildfires[J]. Nature2024633(8 031): 835-839.
104 van der VELDE I R, van der WERF G R, HOUWELING S, et al. Vast CO2 release from Australian fires in 2019-2020 constrained by satellite[J]. Nature2021597: 366-369.
105 ZHANG Minghua. The challenges of the US emergency management system as seen from the Maui wildfire[J]. City and Disaster Reduction2024(5): 54-58.
张明华. 从毛伊岛火灾看美国的应急管理体制之困[J]. 城市与减灾2024(5): 54-58.
106 GOU Aiping, PENG Yadi, WANG Jiangbo. A summary of the resilience strategy of the United States to deal with wildfires and its enlightenment[J]. Contemporary Horticulture2023(23): 190-193, 197.
苟爱萍, 彭雅娣, 王江波. 美国应对野火的韧性策略综述及启示[J]. 现代园艺2023(23): 190-193, 197.
107 ANDREEVA-MORI A, OHGA K, KOBAYASHI K, et al. Flight test exploration of integrated wildfire response operations with crewed and uncrewed air assets[C]// AIAA SciTech 2024 Forum. Orlando, FL: AIAA, 2024.
[1] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[2] 陈梦佳, 白炜, 张成铭, 刘文艳, 高泽永. 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025, 40(1): 82-98.
[3] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[4] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[5] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[6] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[7] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[8] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[9] 张璐, 王伟, 贾国栋, 伊凯, 张振卿. 1 100年来小兴安岭火灾演化历史及其对环境变化的响应[J]. 地球科学进展, 2023, 38(11): 1173-1185.
[10] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[11] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[12] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[13] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[14] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
[15] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
阅读次数
全文


摘要