地球科学进展 ›› 2013, Vol. 28 ›› Issue (1): 62 -70. doi: 10.11867/j.issn.1001-8166.2013.01.0062

综述与评述 上一篇    下一篇

碳同位素技术在碳质气溶胶源解析中应用的研究进展
张世春,王毅勇,童全松   
  1. 中国科学院东北地理与农业生态研究所湿地生态与环境研究中心,吉林长春130012
  • 收稿日期:2012-09-13 修回日期:2012-11-05 出版日期:2013-01-10
  • 通讯作者: 张世春(1979-),男,辽宁抚顺人,助理研究员,主要从事大气环境化学和同位素技术方面的研究. E-mail:zhangshichun@neigae.ac.cn
  • 基金资助:

    国家自然科学青年科学基金项目“利用同位素C14和C13解析东北三江平原大气黑碳气溶胶来源的研究——以三江站为例”(编号:41205107);中国科学院知识创新工程前沿项目“东北大气气溶胶排放模拟研究”(编号:KZCX3-SW-NA10-01)资助.

The Use of Carbon Isotope Analysis in Source Apportionment of Carbonaceous Aerosols: A Reivew

Zhang Shichun, Wang Yiyong, Tong  Quansong   

  1. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130012, China
  • Received:2012-09-13 Revised:2012-11-05 Online:2013-01-10 Published:2013-01-10

概述了国内外14C和13C技术在大气碳质气溶胶源解析中应用的研究进展,指出14C在碳质气溶胶源解析研究中具有不可替代的独特优势,联合采用14C和13C技术有利于解决多种排放源的区分问题;随着碳质气溶胶组分分离技术的进步,对有机碳(OC)和黑碳(BC)等组分中14C 的研究获得重要进展;除需深入研究13C的分馏机制外,建立各种排放源在不同区域的δ13C值域“特征谱”的重要性也日益突出;结合14C和13C以外的其他示踪剂、模型和分析方法将提供更多关于气溶胶来源的信息,并减小来源贡献率估算的不确定性。

[WT5HZ]Abstract:[WT5BZ] The observation and source apportionment of carbonaceous aerosols is one of the focus of studies in the current scientific community. Radioactive (14C) and stable (13C) carbon isotopes have become useful tools in the source apportionment studies for carbonaceous aerosols. In this paper, we review the recent development of carbon isotope techniques, and explore its potential to be used for source apportionment for carbonaceous aerosols. It was pointed out that 14C has unique advantages in the quantitative distinguishment between fossil fuel and contemporary biomass combustion sources of atmospheric Organic Carbon (OC) and Black Carbon (BC), and that the combined 14C-13C analysis can better constrain the sources of carbonaceous aerosols. Recent progress towards isolating OC and BC from other components of the particles has made it appicable to perform 14C measurements for OC and BC seperately. As for 13C, it was proposed that while it is very important to investigate the isotopic fractionation mechanism of δ13C values of the carbonaceous aerosols, a regional δ13C signature map for the carbonacoues aerosols should be biult up aiming to facilitate explaining the δ13C variations and hence constraining the emisson sources. Future research that uses these carbon isotope techniques, in conjunction with other means such as Chemical Mass Balance (CMB) receptor models, statistical methods, air trajectory analysis and remote sensing, can provide unprecedented new insights into the sources and chemical characteristics of carbonaceous aerosols.

中图分类号: 

[1]IPCC. Climate change 2001:The scientific basis[C]∥Houghton J  T, Ding Y, Griggs D J,et al, eds.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.  Cambridge, United Kingdom and New York: C. U. Press, 2001.

[2]Forster P, Ramaswamy V, Artaxo P, et al. Changes in Atmospheric constituents and in radiative forcing[C]∥Solomon S, Qin D, Manning  M,et al, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate.Cambridge, United Kingdom and New York:  C. U. Press, 2007.

[3]Zhang X Y, Wang Y Q, Zhang X C, et al. Carbonaceous aerosol composition over various regions of China during 2006[J].Journal of Geophysical Research, 2008, 113, D14, doi: 10.1029/2007jd009525.

[4]Cao G, Zhang X, Gong S, et al. Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning[J]. Journal of Environmental Sciences, 2008, 20(1): 50-55.

[5]Cao J J, Lee S C, Chow J C, et al. Spatial and seasonal distributions of carbonaceous aerosols over China[J]. Journal of Geophysical Research, 2007, 112, D22, doi: 10.1029/2006jd008205.

[6]Carmichael G R, Sakurai T, Streets D, et al. MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings[J]. Atmospheric Environment, 2008, 42(15): 3 468-3 490.

[7]Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot[J]. Science, 2000, 288(5 468): 1 042-1 047.

[8]Xu B, Cao J, Hansen J, et al. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22 114-22 118.

[9]Kiehl J T. Twentieth century climate model response and climate sensitivity[J]. Geophysical Research Letters, 2007, 34, 22, doi: 10.1029/2007gl031383.

[10]Jones G S, Christidis N, Stott P A. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes[J]. Atmospheric Chemistry and Physics, 2011, 11(2): 799-816.

[11]Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(2): 423-428.

[12]Gustafsson O, Krusa M, Zencak Z, et al. Brown Clouds over South Asia: Biomass or Fossil Fuel Combustion?[J]. Science, 2009, 323(5 913): 495-498.

[13]Venkataraman C, Habib G, Eiguren-Fernandez A, et al. Residential biofuels in south Asia: Carbonaceous aerosol emissions and climate impacts[J]. Science, 2005, 307(5 714): 1 454-1 456.

[14]Cheng T T, Han Z W, Zhang R J, et al. Black carbon in a continental semi-arid area of Northeast China and its possible sources of fire emission[J]. Journal of Geophysical Research-Atmospheres, 2010, 115, doi: 10.1029/2009jd013523.

[15]McMeeking G R, Hamburger T, Liu D, et al. Black carbon measurements in the boundary layer over western and northern Europe[J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9 393-9 414.

[16]Widory D, Stéphane R, Moullec Y L, et al. The origin of atmospheric particles in Paris: A view through carbon and lead isotopes[J]. Atmospheric Environment, 2004, 38(7): 953-961.

[17]Ulevicius V, Bycenkiene S, Remeikis V, et al. Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions[J]. Atmospheric Research, 2010, 98(2/4): 190-200.

[18]Fisseha R, Saurer M, Jaggi M, et al. Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes[J]. Atmospheric Environment, 2009, 43(2): 431-437.

[19]Stuiver M, Polach H A. Reporting of C-14 data—Discussion[J]. Radiocarbon, 1977, 19(3): 355-363.

[20]Streets D G, Bond T C, Carmichael G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000[J].Journal of Geophysical Research, 2003, 108, D21, doi: 10.1029/2002jd003093.

[21]Cao G, Zhang X, Zheng F. Inventory of black carbon and organic carbon emissions from China[J]. Atmospheric Environment, 2006, 40(34): 6 516-6 527.

[22]Bond T C, Streets D G, Yarber K F, et al. A technology—Based global inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research: Atmospheres, 2004, 109, D14, doi: 10.1029/2003jd003697.

[23]Laj P, Klausen J, Bilde M, et al. Measuring atmospheric composition change[J]. Atmospheric Environment, 2009, 43(33): 5 351-5 414.

[24]Kirillova E N, Sheesley R J, Andersson A, et al. Natural abundance C-13 and C-14 analysis of water-soluble organic carbon in atmospheric aerosols[J].Analytical Chemistry, 2010, 82(19): 7 973-7 978.

[25]Ceburnis D, Garbaras A, Szidat S, et al. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis[J]. Atmospheric Chemistry and Physics, 2011, 11(16): 8 593-8 606.

[26]Szidat S, Jenk T M, Gaggeler H W, et al. Radiocarbon (C-14)-deduced biogenic and anthropogenic contributions to Organic Carbon (OC) of urban aerosols from Zurich, Switzerland[J]. Atmospheric Environment, 2004, 38(24): 4 035-4 044.

[27]Szidat S, Ruff M, Perron N, et al. Fossil and non-fossil sources of Organic Carbon (OC) and Elemental Carbon (EC) in Göteborg, Sweden[J]. Atmospheric Chemistry and Physics, 2009, 9(5): 1 521-1 535.

[28]Sun X, Hu M, Guo S, et al. 14C—Based source assessment of carbonaceous aerosols at a rural site[J]. Atmospheric Environment, 2012,doi:10.1016/j.atmosenv.2012.01.008.

[29]Reddy C M, Pearson A, Xu L, et al. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and Black Carbon in environmental samples[J]. Environmental Science & Technology, 2002, 36(8): 1 774-1 782.

[30]Cachier H, Buat-Menard P, Fontugne M, et al. Source terms and source strengths of the carbonaceous aerosol in the tropics[J].Journal of Atmospheric Chemistry, 1985,3(4):469-489.

[31]Ma S X, Peng P A, Song J Z, et al. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China[J]. Atmospheric Research, 2010, 98(1): 176-182.

[32]Ho K F, Lee S C, Cao J J, et al. Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong[J]. Atmospheric Chemistry and Physics, 2006, 6: 4 569-4 576.

[33]Cao J J, Chow J C, Tao J, et al. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels[J]. Atmospheric Environment, 2011, doi: 10.1016/j.atmosenv.2010.10.056.

[34]Narukawa M, Kawamura K, Li S M, et al. Stable carbon isotopic ratios and ionic composition of the high-Arctic aerosols: An increase in delta C-13 values from winter to spring[J].Journal of Geophysical Research, 2008, 113, D2, doi: 10.1029/2007jd008755.

[35]Cachier H, Bremond M P, Buat-Menard P. Carbonaceous aerosols from different tropical biomass burning sources[J]. Nature, 1989, 340(6 232): 371-373.

[36]Lopez-Veneroni D. The stable carbon isotope composition of PM2.5 and PM10 in Mexico City Metropolitan area air[J]. Atmospheric Environment, 2009, 43(29): 4 491-4 502.

[37]Cheng Yu, Sheng Guoying, Min Yushun, et al. Preliminary study on stable carbon isotope distribution of individual N-Alkanes in aerosols[J]. Environmental Sciences,1998, 19(2): 12-15.[成玉, 盛国英, 闵育顺, 等. 气溶胶中正构烷烃单体化合物稳定碳同位素分布特征初步研究[J]. 环境科学, 1998, 19(2): 12-15.]

[38]Peng Lin, Bai Zhipeng, Zhu Tan, et al. Origin of atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in two Chinese cities using compound-specific stable carbon isotopic analysis[J]. Environmental Sciences, 2004, 25(Suppl.): 16-20.[彭林, 白志鹏, 朱坦, 等. 应用稳定碳同位素组成特征研究环境空气颗粒物中多环芳烃的来源[J]. 环境科学, 2004, 25(增刊): 16-20.]

[39]Peng Lin, Li Jian, Zhu Tan, et al. Carbon isotope characteristics of Polycyclic Aromatic Hydrocarbons in atmospheric particles and their source analysis in urban area of Zhengzhou City[J]. China Environmental Science, 2005, 25(1): 106-109.[彭林, 李剑, 朱坦, 等. 郑州空气颗粒物中 PAHs 的碳同位素特征及来源[J]. 中国环境科学, 2005, 25(1): 106-109.]

[40]Yuan Jin, Peng Lin, Li Fan, et al. Study on stable carbon isotope characteristics of atmospheric polycyclic aromatic hydrocarbons in urban area of Taiyuan, China[J]. Journal of Taiyuan University of Technolog, 2007, 38(6): 503-506.[袁进, 彭林, 李凡, 等. 太原城区空气颗粒物中多环芳烃的碳同位素组成研究[J]. 太原理工大学学报, 2007, 38(6): 503-506.]

[41]Cao Junji, Wang Yaqiang, Zhang Xiaoye, et al. Carbon isotope analysis of the carbonate in atmosphere and it’s implication to source[J].Chinese Science Bulletin, 2004,49(17):1 785-1 788.[曹军骥, 王亚强, 张小曳, 等. 大气中碳酸盐的碳同位素分析及其来源指示意义[J]. 科学通报, 2004, 49(17): 1 785-1 788.]

[42]Cao J J, Zhu C S, Chow J C, et al. Stable carbon and oxygen isotopic composition of carbonate in fugitive dust in the Chinese Loess Plateau[J]. Atmospheric Environment, 2008, 42(40): 9 118-9 122.

[43]Chen B, Kitagawa H, Jie D M, et al. Dust transport from northeastern China inferred from carbon isotopes of atmospheric dust carbonate[J]. Atmospheric Environment, 2008, 42(19): 4 790-4 796.

[44]Wang G, Kawamura K, Cheng C, et al. Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, Ketocarboxylic acids, and α-dicarbonyls in size-resolved atmospheric particles from Xi’an City, China[J]. Environmental Science & Technology, 2012, 46(9): 4 783-4 791.

[45]Wang G, Xie M, Hu S, et al. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: Implications for dust and coal burning emission and secondary aerosol formation[J]. Atmospheric Chemistry and  Physics, 2010, 10(13): 6 087-6 096.

[46]Liu G, Zhang X, Teng W, et al. Isotopic composition of organic carbon and elemental carbon in PM2.5 in Hangzhou, China[J]. Chinese Science Bulletin, 2007, 52(17): 2 435-2 437.[47]Chen Yingjun,Cai Weiwei,Huang Guopei,et al. Stable carbon isotope of black carbon from typical emission sources in China[J]. Environmental Science, 2012, 33(3): 673-678.[陈颖军, 蔡伟伟, 黄国培, 等. 典型排放源黑碳的稳定碳同位素组成研究[J]. 环境科学, 2012,33(3): 673-678.]

[48]Huang Jie, Kang Shichang, Shen Chengde, et al. Composition and seasonal variations of carbon isotopes in aerosols of Lhasa, Tibet[J]. Environmental Sciences, 2010, 31(5): 1 139-1 145.[黄杰, 康世昌, 沈承德, 等. 拉萨市气溶胶中碳同位素的组成及季节变化[J].环境科学, 2010, 31(5): 1 139-1 145.]

[49]Wang H, Kawamura K. Stable carbon isotopic composition of low-molecular-weight dicarboxylic acids and ketoacids in remote marine aerosols[J].Journal of  Geophysical Resarch: Atmospheres, 2006, 111, D7, doi: 10.1029/2005jd006466.

[50]Ballentine D C, Macko S A, Turekian V C. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants: Implications for biomass burning[J]. Chemical Geology, 1998, 152(1/2): 151-161.

[51]Turekian V C, Macko S, Ballentine D, et al. Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: Laboratory studies[J]. Chemical Geology, 1998, 152(1/2): 181-192.

[52]Ning Youfeng, Liu Weiguo, Zhang Qingle. Variations of carbon isotopic compositions of plants and their products of burns[J]. Geochimica, 2004, 33(5): 482-482.[宁有丰, 刘卫国, 张庆乐. 植物体燃烧前后碳同位素组成的变化[J]. 地球化学, 2004, 33(5): 482-482.]

[53]Huang L, Brook J R, Zhang W, et al. Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: A new dimension for source characterization and apportionment[J]. Atmospheric Environment, 2006, 40(15): 2 690-2 705.

[54]Currie L A. Evolution and multidisciplinary frontiers of 14C aerosol science[J]. Radiocarbon, 2000, 42(1): 115-126.

[55]Huang J, Kang S C, Shen C D, et al. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on C-14 measurements in Lhasa, Tibet[J]. Atmospheric Research, 2010, 96(4): 553-559.

[56]Levin I, Hammer S, Kromer B, et al. Radiocarbon observations in atmospheric CO2: Determining fossil fuel CO2 over Europe using Jungfraujoch observations as background[J]. Science of the Total Environment, 2008, 391(2/3): 211-216.

[57]Heal M R, Naysmith P, Cook G T, et al. Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK[J]. Atmospheric Environment, 2011, 45(14): 2 341-2 348.

[58]Handa D, Nakajima H, Arakaki T, et al. Radiocarbon analysis of BC and OC in PM13 aerosols at Cape Hedo, Okinawa, Japan, during long-range transport events from East Asian countries[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 1 125-1 128.

[59]Uchida M, Kumata H, Koike Y, et al. Radiocarbon-based source apportionment of Black Carbon (BC) in PM10 aerosols from residential area of suburban Tokyo[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 1 120-1 124.

[60]Fushimi A, Wagai R, Uchida M, et al. Radiocarbon (14C) diurnal variations in fine particles at sites downwind from Tokyo, Japan in summer[J]. Environmental Science & Technology, 2011, 45(16): 6 784-6 792.

[61]Ke L, Ding X, Tanner R L, et al. Source contributions to carbonaceous aerosols in the Tennessee Valley Region[J]. Atmospheric Environment, 2007, 41(39): 8 898-8 923.

[62]Ding X, Zheng M, Edgerton E S, et al. Contemporary or fossil origin: Split of Eestimated secondary organic carbon in the aoutheastern United States[J]. Environmental Science & Technology, 2008, 42(24): 9 122-9 128.

[63]Shao Min, Li Jinlong, Tang Xiaoyan. Study on source identification for carbonaceous aerosols—The application of Accelerator Mass Spectrometry[J]. Journal of Nuclear and Radiochemistry, 1996, 18(4): 234-238.[邵敏, 李金龙, 唐孝炎. 大气气溶胶含碳组分的来源研究: 加速器质谱法[J]. 核化学与放射化学, 1996, 18(4): 234-238.]

[64]Yang F, He K, Ye B, et al. One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai[J]. Atmospheric Chemistry and Physics, 2005, 5: 1 449-1 457.

[65]Song Jianzhong, He Lulu, Peng Ping’an, et al. Chemical and isotopic composition of Humic-Like Substances (HULIS) in Ambient Aerosols in Guangzhou, South China[J]. Aerosol Science and Technology, 2011, 46(5): 533-546.

[66]Clayton G D, Arnold J R, Patty F A. Determination of sources of particulate atmospheric carbon[J]. Science, 1955, 122(3 173): 751-753.

[67]Guo Zhiyu, Li Kun, Chen Tiemei, et al. Accelerator mass spectrometry, principles, techniques and its progress[J]. Atomic Energy Science and Technology,1989, 23(6): 76-80.[郭之虞, 李坤, 陈铁梅, 等. 加速器质谱计的原理及其技术与进展[J]. 原子能科学技术, 1989, 23(6): 76-80.]

[68]Xu L, Zheng M, Ding X, et al. Modern and fossil contributions to polycyclic aromatic hydrocarbons in PM2.5 from North Birmingham, Alabama in the Southeastern U.S[J]. Environmental Science & Technology, 2011, 46(3): 1 422-1 429.

[69]Wozniak A S, Bauer J E, Dickhut R M, et al. Isotopic characterization of aerosol organic carbon components over the eastern United States[J]. Journal of Geophys Research, 2012, 117(D13): D13 303.

[70]Wozniak A S, Bauer J E, Dickhut R M. Characteristics of water-soluble organic carbon associated with aerosol particles in the eastern United States[J]. Atmospheric Environment, 2012, 46: 181-188.

[71]Andersson A, Sheesley R J, Kruså M, et al. 14C—Based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site[J]. Atmospheric Environment, 2011, 45(1): 215-222.

[72]Zhang Y L, Liu D, Shen C D, et al. Development of a preparation system for the radiocarbon analysis of organic carbon in carbonaceous aerosols in China[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(17/18): 2 831-2 834.

[73]Currie L A, Linick T W, Sheffield A E, et al. Microchemical and molecular dating[J]. Radiocarbon, 1989, 31(3): 448-463.

[74]Zencak Z, Elmquist M, Gustafsson . Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method[J]. Atmospheric Environment, 2007, 41(36): 7 895-7 906.

[75]Szidat S, Jenk T M, Gäggeler H W, et al. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223/224: 829-836.

[76]Gilardoni S, Vignati E, Wilson J. Using measurements for evaluation of black carbon modeling[J]. Atmospheric Chemistry and Physics, 2011, 11: 439-455.

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[3] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[4] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[5] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[6] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[7] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[8] 陈小梅, 闫俊华, 林媚珍, 褚国伟, 吴建平, 张德强. 南亚热带森林植被恢复演替中土壤有机碳组分及其稳定[J]. 地球科学进展, 2016, 31(1): 86-93.
[9] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[10] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[11] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[12] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[13] 沈文杰,张华,孙永革,林杨挺,梁婷,杨志军,周永章. 二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述[J]. 地球科学进展, 2012, 27(6): 613-623.
[14] 黄国培,陈颖军,田崇国,唐建辉,潘晓辉,王艳,李军. 海洋溶解态黑碳的研究进展[J]. 地球科学进展, 2012, 27(12): 1326-1336.
[15] 阚泽忠,金立新,李忠惠,杨振鸿,张 华,包雨函. 成都经济区不同地貌景观区土壤有机碳分布特征及储量估算[J]. 地球科学进展, 2012, 27(10): 1126-1133.
阅读次数
全文


摘要