地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.083

   

中国近海沉积物中生物硅的分布及影响因素
张科1,2,韩玉1,2*,肖州2   
  1. (1. 海南热带海洋学院 崖州湾创新研究院,海南 三亚 572022;2. 海南热带海洋学院海洋科学技术学院,海南 三亚 572022)
  • 基金资助:
    海南热带海洋学院校级人才科研启动项目(编号:RHDRCZK202403);海南热带海洋学院崖州湾创新研究院重大科技计划项目(编号:2022CXYZD003)资助.

Distribution and Influencing Factors of Biogenic Silica in the Sediments of the Coastal Waters of China*

ZHANG Ke1, 2, HAN Yu1, 2*, XIAO Zhou2   

  1. (1. Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya Hainan 572022, China; 2. College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya Hainan 572022, China)
  • About author:ZHANG Ke, research areas include marine biogeochemistry of major nutrients. E-mail: smile_chole@126.com
  • Supported by:
    Project supported by Hainan Tropical Ocean University School-level Talent Research Start-up Project (Grant No. RHDRCZK202403);Major Science and Technology Project of Yazhou Bay Innovation Institute, Hainan Tropical Ocean University (Grant No. 2022CXYZD003).
硅作为地壳中含量第二丰富的元素,其生物地球化学循环与全球碳循环密切相关,在调节大气二氧化碳浓度、海洋初级生产力及海岸带富营养化等过程中发挥关键作用。生物硅(BSi)作为由生物体代谢产生的含硅化合物,其在沉积物中的埋藏是海洋硅移除的主要途径。然而,中国近海沉积物中生物硅的测定缺乏统一标准,导致不同研究数据可比性差。整理评估了预处理方法、提取试剂浓度、温度及时间等关键参数对生物硅测定结果的影响。结果表明,采用0.5 mol/L Na2CO3溶液,在85 ℃下不进行预处理直接提取8 小时,是中国近海沉积物生物硅测定的最适宜方案。收集整理了中国近海(渤海、黄海、东海和南海)沉积物中生物硅的含量及分布数据,对不同预处理和提取条件下的数据进行校正,分析了生物硅的空间分布特征及影响因素。结果表明,中国近海沉积物中生物硅含量范围为0.05%~3.82%,自北向南呈现递增趋势,不同海域表现出独特的平面和垂直分布特征。影响因素方面,水体初级生产力(尤其是硅藻生产力)、沉积物溶解速率(受温度、pH值、比表面积及铝含量等调控)以及人类活动(如营养盐输入和水动力改变)是关键驱动因素。为中国近海生物硅的后续研究提供了数据参考和方法借鉴。
Abstract: Silicon, the second most abundant element in Earth’s crust, is intricately linked to the global carbon cycle through its biogeochemical processes, playing a pivotal role in regulating atmospheric CO2 concentrations, marine primary productivity, and coastal eutrophication. Biogenic silica (BSi), a siliconcontaining compound produced by biological metabolism, serves as the primary pathway for silicon removal from the ocean via sedimentary burial. However, the lack of unified standards for BSi determination in China's offshore sediments has impeded data comparability across studies. An extensive evaluation was conducted to assess the effects of key parameters, including pretreatment methods, extractant concentration, temperature, and duration, on the measurement results of BSi. The findings demonstrate that the optimal analytical approach for determining BSi in China's coastal marine sediments involves extraction with 0.5 mol/L Na2CO3 solution at 85 °C for 8 hours, without any preliminary chemical pretreatment. This research compiles BSi content and distribution data from sediments in the Bohai, Yellow, East China, and South China Seas. It calibrates data generated under different pretreatment and extraction conditions against the optimal methodology, and analyzes spatial distribution characteristics and influencing factors. Results indicate that BSi content in China’s offshore sediments ranges from 0.05% to 3.82%, with an increasing trend from north to south, alongside distinct planar and vertical distribution patterns in different sea regions. Key influencing factors include water column primary productivity (particularly diatom productivity), sediment dissolution rates (regulated by temperature, pH, specific surface area, and aluminum content), and human activities (such as nutrient input and hydrodynamic changes). This study an improved data foundation and methodological framework for subsequent high-precision marine silicon cycle research, carbon sink assessment, and predictive modeling of coastal ecological evolution in China’s offshore areas, while simultaneously highlighting the urgent necessity for establishing national BSi standard reference materials and standardized analytical protocols.

中图分类号: 

[1] 罗栋梁, 刘佳, 李晓英, 杜柯飞, 金会军, 陈方方, OLGA Makarieva, 王青志. 气候变化下冰椎演化及其水文生态与灾害效应[J]. 地球科学进展, 2025, 40(8): 767-777.
[2] 鄂正阳, 丁哲, 梅徽阳, 张伟超, 李海松, 梁建军, 李平, 范桥辉. 溶解性黑碳特征结构、环境行为与生态效应研究进展[J]. 地球科学进展, 2025, 40(7): 725-736.
[3] 靳宇飞, 刘伟, 刘燚, 张茂亮, 徐胜. 滇西南澜沧断裂带温泉溶解无机碳释放通量与成因[J]. 地球科学进展, 2024, 39(9): 945-956.
[4] 祝唐刘, 刘智丹, 邹立, 钟希煌, 奚嘉鸿, 江雪艳. 莱州湾南岸陆海交互地层间隙水有色溶解有机物的光谱特征研究[J]. 地球科学进展, 2024, 39(6): 647-658.
[5] 雷灵逸, 王飞鹏, 臧昆鹏, 吕小龙, 张智, 杨丽阳, 穆景利. 中国东南沿海典型养殖海湾:三沙湾海—气界面甲烷扩散通量及影响因素研究[J]. 地球科学进展, 2024, 39(11): 1156-1168.
[6] 史军, 崔林丽, 顾宇丹, 唐娉. 气候变化背景下复合极端事件研究进展[J]. 地球科学进展, 2023, 38(8): 771-779.
[7] 郑旻, 罗敏, 潘彬彬, 陈多福. 海洋沉积物溶解氧消耗研究进展[J]. 地球科学进展, 2023, 38(3): 236-255.
[8] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[9] 舒乐乐, 常燕, 王建, 陈昊, 李照国, 赵林, 孟宪红. SHUD数值方法分布式水文模型介绍[J]. 地球科学进展, 2022, 37(7): 680-691.
[10] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[11] 杨笑影, 曹芳, 章炎麟. 大气低分子烷基胺的测量方法及研究进展[J]. 地球科学进展, 2022, 37(2): 120-134.
[12] 陈雨晴, 席海洋, 程文举, 赵欣悦. 河岸缓冲区氮传输及移除机制研究进展[J]. 地球科学进展, 2022, 37(10): 1037-1048.
[13] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[14] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[15] 苏飞, 罗佳琪, 朱晓倩, 童磊, 郑艳艳, 谢玉洁. 湖北省乡村生计弹性测度及其影响因素分析[J]. 地球科学进展, 2021, 36(11): 1117-1126.
阅读次数
全文


摘要