地球科学进展 ›› 2024, Vol. 39 ›› Issue (11): 1156 -1168. doi: 10.11867/j.issn.1001-8166.2024.088

研究论文 上一篇    下一篇

中国东南沿海典型养殖海湾:三沙湾海—气界面甲烷扩散通量及影响因素研究
雷灵逸 1 , 2( ), 王飞鹏 2, 臧昆鹏 3, 吕小龙 2, 张智 2, 杨丽阳 1, 穆景利 2( )   
  1. 1.福州大学 环境与安全工程学院,福建 福州 350108
    2.闽江学院 地理与海洋学院 福建省海洋生物多样性保护与永续利用重点实验室,福建 福州 350122
    3.浙江工业大学 浙江碳中和创新研究院,浙江 杭州 310014
  • 收稿日期:2024-09-09 修回日期:2024-10-20 出版日期:2024-11-10
  • 通讯作者: 穆景利 E-mail:996337587@qq.com;jlmu@mju.edu.cn
  • 基金资助:
    福建省促进海洋与渔业产业高质量发展专项资金(FJHJF-TH-2023-3);福建省科技计划项目引导性项目(2023N01010293)

Research on Air-sea Flux and Influencing Factors of Methane in a Typical Mariculture Along the Southeastern Coast of China: the Sansha Bay

Lingyi LEI 1 , 2( ), Feipeng WANG 2, Kunpeng ZANG 3, Xiaolong LÜ 2, Zhi ZHANG 2, Liyang YANG 1, Jingli MU 2( )   

  1. 1.College of Environmental & Safety Engineering, Fuzhou University, Fuzhou 350108, China
    2.Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Geography and Oceanography, Minjiang University, Fuzhou 350122, China
    3.Zhejiang Innovative Institute of Carbon Neutrality, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2024-09-09 Revised:2024-10-20 Online:2024-11-10 Published:2025-01-17
  • Contact: Jingli MU E-mail:996337587@qq.com;jlmu@mju.edu.cn
  • About author:LEI Lingyi, research area includes marine environmental science. E-mail: 996337587@qq.com
  • Supported by:
    the Special Fund for Promoting High-Quality Development of Marine and Fisheries Industries in Fujian Province(FJHJF-TH-2023-3);Guidance Project of Fujian Provincial Science and Technology Program(2023N01010293)

科学评估海湾养殖区的溶存甲烷(CH4)和海—气扩散通量分布对于认识渔业养殖活动对大气CH4的区域性贡献具有重要意义。基于2023年4个季度现场考察,研究了福建省典型养殖海湾——三沙湾各季度、不同养殖区域表层海水的溶存CH4浓度、海—气扩散通量分布特征及影响因素,评估了海湾渔业养殖活动对大气CH4浓度变化的贡献。结果表明,海湾表层水体溶存CH4浓度为9.91~609.22 nmol/L,海—气扩散通量为3.46~1 188.15 μmol/(m2·d),CH4海—气扩散通量表现为夏季>秋季>春季>冬季。三沙湾内溶存CH4浓度及海—气扩散通量空间分布趋势一致,总体呈现由河口向湾口降低的趋势,CH4高值区域出现在养殖活动频繁的河口养殖区站位,其次为中部养殖区和东部养殖区,湾口养殖区为监测最低值区域。对三沙湾养殖区域的表层海水溶存CH4浓度、海—气扩散通量的时空分布特征及环境因素相关性分析表明,渔业养殖活动及陆源径流输入共同调控着海湾内CH4的时空分布格局。大型藻类养殖期间,养殖区域水体溶存CH4浓度、通量低于非大型藻类养殖期;夏季是CH4释放的高峰,这与鱼类养殖活动增多和丰水期径流输入密切相关。养殖海域的溶存CH4浓度及海—气扩散通量研究可为养殖业CH4控制减排提供科学支撑。

Evaluating the distribution and sea-air fluxes of dissolved methane (CH4) in mariculture areas is important for understanding how aquaculture contributes to regional CH4 emissions into the atmosphere. Seasonal field surveys conducted in 2023 were used to analyze the temporal and spatial variation of CH4 concentrations in surface water and CH4 air-sea flux in a typical aquaculture system in Sansha Bay, Fujian Province. The results showed that dissolved CH4 concentrations ranged from 9.91 to 609.22 nmol/L, with corresponding air-sea fluxes between 3.46 to 1 188.15 μmol/ (m2·d). Temporally, the CH4 air-sea fluxes were higher in summer and autumn compared to spring and winter. Spatially, CH4 concentrations and air-sea fluxes decreased consistently from the estuary to the bay mouth, with the highest values in the estuarine aquaculture area and the lowest in the bay mouth aquaculture area. Correlation analysis showed that aquacultural activities and terrestrial runoff inputs contributed to the spatiotemporal distribution of CH4 concentrations within the bay. In the macroalgae cultivation zones, CH4 production and emissions during farming periods were significantly lower than during non-farming periods. Additionally, the residual feed and feces generated by fish in cages may result in increased CH4 emissions. Notably, CH4 emissions peaked in summer, due to enhanced aquaculture activities and runoff inputs during the wet season. Future work should focus on investigating CH4 air-sea fluxes in mariculture areas to provide scientific support for CH4 control and emission reduction in aquaculture.

中图分类号: 

图1 福建省三沙湾海域区位及站点布设示意图
Fig. 1 Schematic diagram of the location and station layout of the sea area of Sansha BayFujian Province
表1 海面 10 m高度瞬时风速( U )均值
Table 1 The average of 10 m wind speedUnear the surface
图2 三沙湾表层海水溶存CH4 浓度时空变化
Fig. 2 Spatial and temporal variation of CH4 concentration in the surface seawater of Sansha Bay
图3 三沙湾水体CH4 浓度平面分布
Fig. 3 Horizontal distributions of CH4 concentration in the Sansha Bay
表2 三沙湾表层水体水环境参数季节变化
Table 2 Seasonal variation of water environment parameters in the surface waters of Sansha Bay
图4 三沙湾表层海水CH4 海—气扩散通量( F C H 4 )时空变化
Fig. 4 Spatial and temporal variations of CH4 air-sea fluxes F C H 4 in the surface seawater of Sansha Bay
图5 三沙湾CH4 海—气扩散通量( F C H 4 )平面分布
Fig. 5 Horizontal distributions of CH4 air-sea fluxes F C H 4 in the Sansha Bay
表3 各养殖区表层水体溶存 CH4 浓度( C C H 4 )及 CH4 海—气扩散通量( F C H 4 )与水环境参数的相关系数
Table 3 The Pearson correlations of dissolved CH4 concentration C C H 4 and air-sea fluxes F C H 4 with aquatic environmental parameters in surface waters of each aquaculture area
图6 基于典型相关性分析(CCA)的溶存CH4 浓度(a)和CH4 海—气扩散通量(b)与水环境参数的相关性
Fig. 6 Plot of the Canonical Correlation AnalysisCCAintegrating water environmental parameters with CH4 concentrationaand CH4 sea-air fluxb
表4 各季度表层水体溶存 CH4 浓度及海—气扩散通量与水环境参数的相关系数
Table 4 The Pearson correlations of dissolved CH 4 concentrations and air-sea fluxes in surface waters with water environment parameters in each quarter
图7 不同季节水体CH4 浓度(a~d)及海—气扩散通量(e~h)的潜在驱动因素
Fig. 7 Potential drivers of CH4 concentrationsa~dand air-sea fluxese~hin different seasons
表5 中国沿海养殖海湾及附近海域表层水体 CH4 浓度、饱和度和海—气扩散通量的比较
Table 5 Comparison of CH4 concentrationsaturation and air-sea fluxes in surface waters of China’s coastal aquaculture bays and nearby seas
1 WMO. The state of greenhouse gases in the atmosphere based on global observations through 2022 [R]. New York, 2023.
2 IPCC. Climate change 2021: the physical science basis: working group I contribution to the sixth assessment report of the intergovernmental panel on climate change [R]. Cambridge: Cambridge University Press, 2023.
3 WEBER T, WISEMAN N A, KOCK A. Global ocean methane emissions dominated by shallow coastal waters [J]. Nature Communications, 2019, 10(1). DOI: 10.1038/s41467-019-12541-7 .
4 DONG Y, YUAN J, LI J, et al. Divergent impacts of animal bioturbation on methane and nitrous oxide emissions from mariculture ponds [J]. Water Research, 2025, 270. DOI: 10.1016/j.watres.2024.122822 .
5 POCHON X, WOOD S A, KEELEY N B, et al. Accurate assessment of the impact of salmon farming on benthic sediment enrichment using foraminiferal metabarcoding [J]. Marine Pollution Bulletin, 2015, 100(1): 370-382.
6 HOU J, ZHANG G L, SUN M S, et al. Methane distribution, sources, and sinks in an aquaculture bay (Sanggou Bay, China)[J]. Aquaculture Environment Interactions, 2016, 8: 481-495.
7 LI Yue, TIAN Miao, JIANG Yawen, et al. Nitrogen and phosphorus discharge flux into the sea and pollution source structure in Sansha Bay,Fujian Province[J]. Journal of Ecology and Rural Environment, 2024, 40(11): 1 514-1 523.
李悦, 田淼, 姜亚雯,等. 福建省三沙湾氮、磷污染物入海量及来源结构 [J]. 生态与农村环境学报, 2024, 40(11): 1 514-1 523.
8 ZHANG G L, ZHANG J, KANG Y B, et al. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring [J]. Journal of Geophysical Research Oceans, 2004, 109(C7). DOI: 10.1029/2004JC002268 .
9 SUN M S, ZHANG G L, MA X, et al. Dissolved methane in the East China Sea: distribution, seasonal variation and emission [J]. Marine Chemistry, 2018, 202: 12-26.
10 YE W W, ZHANG G L, ZHENG W J, et al. Methane distributions and sea-to-air fluxes in the Pearl River Estuary and the northern South China sea [J]. Deep-Sea Research Part II—Topical Studies in Oceanography, 2019, 167: 34-45.
11 ZHANG G, ZHANG J, LIU S, et al. Methane in the Chang-jiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediment release and atmospheric fluxes [J]. Biogeochemistry, 2008, 91(1): 71-84.
12 CHEN C T A, WANG S L, LU X X, et al. Hydrogeochemistry and greenhouse gases of the Pearl River, its estuary and beyond [J]. Quaternary International, 2008, 186: 79-90.
13 TANG Chen. Effects on methane fluxes of the brackish C. malaccensis marsh conversion to aquaculture pond in Min River Estuary[D].Fuzhou: Fujian Normal University, 2021.
唐晨. 闽江河口短叶茳芏湿地围垦成养殖塘后对甲烷排放通量的影响[D]. 福州:福建师范大学, 2021.
14 YANG P, ZHANG L, LIN Y, et al. Significant inter-annual fluctuation in CO2 and CH4 diffusive fluxes from subtropical aquaculture ponds: implications for climate change and carbon emission evaluations [J]. Water Research, 2024, 249. DOI: 10.1016/j.watres.2023.120943 .
15 NIU Shujie, LI Maotian, TONG Meng, et al. Responses of distribution of water quality in the Sansha bay on the land discharge and aquaculture [J]. Marine Environmental Science, 2021, 40(1): 41-49.
牛淑杰, 李茂田, 同萌,等. 三沙湾水质分布特征对陆源污染、湾内养殖的响应 [J]. 海洋环境科学, 2021, 40(1): 41-49.
16 WEI Ming, JIANG Hong, CHEN Yunzhi, et al. Remote sensing study on aquaculture changes in Sansha bay [J]. Marine Environmental Science, 2020, 39(5): 759-767.
卫明, 江洪, 陈芸芝,等. 三沙湾水产养殖变化的遥感研究 [J]. 海洋环境科学, 2020, 39(5): 759-767.
17 CHEN Siming. Spatiotemporal dynamics of mariculture area in Sansha Bay and its driving factors [J]. Chinese Journal of Ecology,2021,40(4):1 137-1 145.
陈思明. 三沙湾海水养殖区时空动态变化及其影响因素 [J]. 生态学杂志, 2021, 40(4): 1 137-1 145.
18 HUANG Yaling, LI Yue, CHEN Zhiping, et al. Spatiotemporal distributions of nutrients and their potential influencing factors in Sansha bay [J]. Marine Environmental Science,2023,42(3): 440-448.
黄亚玲, 李悦, 陈志平,等. 三沙湾营养盐时空分布特征及其潜在影响因素识别 [J]. 海洋环境科学, 2023, 42(3): 440-448.
19 ZHANG Zhi, LEI Lingyi, WANG Feipeng, et al. Assessment and spatial pattern of carbon sequestration potential of mariculture in Sansha Bay [J]. Ocean Development and Management, 2024, 41(2): 28-37.
张智, 雷灵逸, 王飞鹏,等. 三沙湾海水养殖固碳潜力评估与空间格局分析 [J]. 海洋开发与管理, 2024, 41(2): 28-37.
20 Editorial Board of China Bay Survey. Survey of China bays (Vol. 7) [M]. Beijing: China Ocean Press, 1994.
中国海湾志编纂委员会. 中国海湾志(第七分册):福建北部海湾[M]. 北京:海洋出版社, 1994.
21 LIN Hang. Tidal characteristics in the Sansha Bay of Fujian [J]. Journal of Fujian Fisheries, 2014, 36(4): 306-314.
林航. 福建三沙湾的潮汐特征 [J]. 福建水产, 2014, 36(4): 306-314.
22 YE Haitao, WANG Yigang, CAO Bing. Tidal prism of Sansha Bay and its water exchange with the open sea [J]. Journal of Hohai University (Natural Sciences), 2007(1): 96-98.
叶海桃, 王义刚, 曹兵. 三沙湾纳潮量及湾内外的水交换 [J]. 河海大学学报(自然科学版), 2007(1): 96-98.
23 海洋监测规范 第四部分:海水分析: [S].国家质量监督检验检疫总局&国家标准化管理委员会, 2008.
24 海水中溶解甲烷的测定 顶空平衡—气相色谱法: [S].中华人民共和国自然资源部,2018.
25 WEISS R F. The solubility of nitrogen, oxygen and argon in water and seawater [J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(4): 721-735.
26 WIESENBERG D A, GUINASSO N L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water [J]. Journal of Chemical & Engineering Data, 1979, 24: 356-360.
27 RAYMOND P A, COLE J J. Gas exchange in rivers and estuaries: choosing a gas transfer velocity [J]. Estuaries, 2001, 24(2): 312-317.
28 WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean [J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7 373-7 382.
29 DYER K R, CHRISTIE M C, FEATES N, et al. An investigation into processes influencing the morphodynamics of an intertidal mudflat, the Dollard estuary, the Netherlands: I. hydrodynamics and suspended sediment [J]. Estuarine Coastal and Shelf Science, 2000, 50(5): 607-625.
30 WELLS N S, CHEN J-J, MAHER D T, et al. Changing sediment and surface water processes increase CH4 emissions from human-impacted estuaries [J]. Geochimica et Cosmochimica Acta, 2020, 280: 130-147.
31 PANNEER S B, NATCHIMUTHU S, ARUNACHALAM L, et al. Methane and carbon dioxide emissions from inland waters in India-implications for large scale greenhouse gas balances [J]. Global Change Biology, 2014, 20(11): 3 397-3 407.
32 PEDERSEN M F, JOHNSEN K L. Nutrient (N and P) dynamics of the invasive macroalga Gracilaria vermiculophylla: nutrient uptake kinetics and nutrient release through decomposition [J]. Marine Biology, 2017, 164(8): 1-12.
33 DAI X J, HU R, LUO H T, et al. Effects of the decomposition of Gracilaria lemaneiformis on seawater quality [J]. Journal of Tropical Oceanography, 2021, 40(1): 91-98.
34 SUN F, ZHANG X, ZHANG Q, et al. Seagrass (zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling [J]. Applied and Environmental Microbiology, 2015, 81(19): 6 901-6 914.
35 LIN H Y, HU J Y, ZHU J, et al. Tide- and wind-driven variability of water level in Sansha Bay, Fujian, China [J]. Frontiers of Earth Science, 2017, 11(2): 332-346.
36 ZHAO H D, KAO S J, ZHAI W D, et al. Effects of stratification, organic matter remineralization and bathymetry on summertime oxygen distribution in the Bohai Sea, China [J]. Continental Shelf Research, 2017, 134: 15-25.
37 DU Hong, ZHENG Bing, CHEN Weizhou, et al. Variation of water chemical factors and assessment of water quality of Shen’ao Bay [J]. Oceanologia et Limnologia Sinica, 2010, 41(6): 816-823.
杜虹, 郑兵, 陈伟洲,等. 深澳湾海水养殖区水化因子的动态变化与水质量评价 [J]. 海洋与湖沼, 2010, 41(6): 816-823.
38 CHEN Y, DONG S L, WANG F, et al. Carbon dioxide and methane fluxes from feeding and no-feeding mariculture ponds [J]. Environmental Pollution, 2016, 212: 489-497.
39 YE W W, SUN H, LI Y H, et al. Greenhouse gas emissions from fed mollusk mariculture: a case study of a Sinonovacula constricta farming system [J]. Agriculture, Ecosystems & Environment, 2022, 336. DOI: 10.1016/j.agee.2022.108029 .
40 HOU Jing, ZHANG Guiling, YE Wangwang, et al. Methane distribution and air-sea fluxs in the Sanggou Bay in spring and autumn[J]. Advences in Marine Science, 2017, 35(2): 267-277.
侯静, 张桂玲, 叶旺旺,等. 桑沟湾春、秋季溶存CH4的分布及海—气交换通量 [J]. 海洋科学进展, 2017, 35(2): 267-277.
41 ZANG K P, ZHANG G, XU X M, et al. Impact of air-sea exchange on the spatial distribution of atmospheric methane in the Dalian Bay and adjacent coastal area, China [J]. Chemosphere, 2020, 251. DOI: 10.1016/j.chemosphere.2020.126412 .
42 YANG J, ZHANG G L, ZHENG L X, et al. Seasonal variation of fluxes and distributions of dissolved methane in the North Yellow Sea [J]. Continental Shelf Research, 2010, 30(2): 187-192.
43 YE W W, ZHANG G L, ZHU Z Y, et al. Methane distribution and sea-to-air flux in the East China Sea during the summer of 2013: impact of hypoxia [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 124: 74-83.
44 LIN H, CHEN Z, HU J, et al. Numerical simulation of the hydrodynamics and water exchange in Sansha Bay [J]. Ocean Engineering, 2017, 139: 85-94.
45 LIN H, CHEN Z, HU J, et al. Impact of cage aquaculture on water exchange in Sansha Bay [J]. Continental Shelf Research, 2019, 188. DOI:10.1016/j.csr.2019.103963 .
46 ZINDLER C, BRACHER A, MARANDINO C A, et al. Sulphur compounds, methane, and phytoplankton: interactions along a north-south transit in the western Pacific Ocean [J]. Biogeosciences, 2013, 10(5): 3 297-3 311.
47 SHAN Sen, QI Yuanzhi, LUO Chunle, et al. Carbon isotopic constrains on the sources and controls of the terrestrial carbon transported in the four large Rivers in China [J]. Advances in Earth Science, 2020, 35(9): 948-961.
单森, 齐远志, 罗春乐,等. 中国主要河流输送陆源碳的同位素特征及影响因素 [J]. 地球科学进展, 2020, 35(9): 948-961.
48 WANG Xiaofeng, YUAN Xingzhong, CHEN Huai, et al. Review of CO2 and CH4 emissions from rivers [J]. Environmental Science, 2017, 38(12): 5 352-5 366.
王晓锋, 袁兴中, 陈槐,等. 河流CO2与CH4排放研究进展 [J]. 环境科学, 2017, 38(12): 5 352-5 366.
49 WANG Y M, PAN J, YANG J, et al. Patterns and processes of free-living and particle-associated bacterioplankton and archaeaplankton communities in a subtropical river-bay system in South China [J]. Limnology and Oceanography, 2020, 65: S161-S179.
50 OSUDAR R, KLINGS K W, WAGNER D, et al. Effect of salinity on microbial methane oxidation in freshwater and marine environments [J]. Aquatic Microbial Ecology, 2018, 80(2): 181-192.
51 BORGES A V, SPEECKAERT G, CHAMPENOIS W, et al. Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the southern bight of the North Sea [J]. Ecosystems, 2018, 21(4): 583-599.
52 YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales [J]. Nature, 2014, 507(7 493): 488-491.
53 BOUWMAN L, BEUSEN A, GLIBERT P M, et al. Mariculture: significant and expanding cause of coastal nutrient enrichment [J]. Environmental Research Letters, 2013, 8(4). DOI: 10.1088/1748-9326/8/4/044026 .
54 LENIHAN H S. Physical-biological coupling on oyster reefs: how habitat structure influences individual performance [J]. Ecological Monographs, 1999, 69(3): 251-275.
55 GREEN D S, BOOTS B, CROWE T P. Effects of non-indigenous oysters on microbial diversity and ecosystem functioning [J]. PLoS ONE, 2012, 7(10). DOI: 10.1371/journal.pone.0048410 .
56 LOOMAN A, SANTOS I R, TAIT D R, et al. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream [J]. Science of the Total Environment, 2016, 550: 645-657.
57 YU Kunlong, LI Min, ZHAO Yu, et al. Effects of dissolved organic nitrogen components on evolution of diatom-dinoflagellates in Laizhou Bay and related dynamics [J]. Periodical of Ocean University of China, 2024, 54(8): 83-97.
于坤隆, 李敏, 赵宇,等. 溶解有机氮组分对莱州湾硅藻—甲藻演变的影响及其动力学研究 [J]. 中国海洋大学学报(自然科学版), 2024, 54(8): 83-97.
58 LI Lingling, XUE Bin, YAO Shuchun. The significance and application of the research on production and oxidation of methane in lake sediments [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 634-645, 607.
李玲玲, 薛滨, 姚书春. 湖泊沉积物甲烷的产生和氧化研究的意义及应用 [J]. 矿物岩石地球化学通报, 2016, 35(4): 634-645, 607.
59 KHAHIL M I, BAGGS E M. CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations [J]. Soil Biology & Biochemistry, 2005, 37(10): 1 785-1 794.
[1] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[2] 杨笑影, 曹芳, 章炎麟. 大气低分子烷基胺的测量方法及研究进展[J]. 地球科学进展, 2022, 37(2): 120-134.
[3] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[4] 张翔, 陈能成, 胡楚丽, 彭小婷. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10): 1048-1057.
[5] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[6] 刘贤赵, 张勇, 宿庆, 田艳林, 王庆, 全斌. 陆生植物氮同位素组成与气候环境变化研究进展[J]. 地球科学进展, 2014, 29(2): 216-226.
[7] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[8] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[9] 宫响,史洁,高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素[J]. 地球科学进展, 2012, 27(5): 539-548.
[10] 张佩芳,许建初. 云南境内澜沧江流域土地利用时空变化特征及动因分析[J]. 地球科学进展, 2003, 18(6): 947-953.
阅读次数
全文


摘要