113 |
黄秀, 刘可禹, 邹才能, 等. 鄱阳湖浅水三角洲沉积体系三维定量正演模拟[J]. 地球科学, 2013, 38(5): 1 005-1 013.
|
114 |
HOBLEY D E J, ADAMS J M, NUDURUPATI S S, et al. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics[J]. Earth Surface Dynamics, 2017, 5(1): 21-46.
|
115 |
BANDARAGODA C, CASTRONOVA A, ISTANBULLUOGLU E, et al. Enabling collaborative numerical modeling in Earth sciences using knowledge infrastructure[J]. Environmental Modelling & Software, 2019, 120. DOI: 10.1016/j.envsoft.2019.03.020 .
|
116 |
BARNHART K R, HUTTON E W H, TUCKER G E, et al. Short communication: Landlabv2.0: a software package for Earth surface dynamics[J]. Earth Surface Dynamics, 2020, 8(2): 379-397.
|
117 |
PFEIFFER A, BARNHART K, CZUBA J, et al. NetworkSedimentTransporter: a Landlab component for bed material transport through river networks[J]. Journal of Open Source Software, 2020, 5(53). DOI: 10.21105/joss.02341 .
|
118 |
SALLES T, HUSSON L, LORCERY M, et al. Landscape dynamics and the Phanerozoic diversification of the biosphere[J]. Nature, 2023, 624: 115-121.
|
119 |
SALLES T, HUSSON L, REY P, et al. Hundred million years of landscape dynamics from catchment to global scale[J]. Science, 2023, 379(6 635): 918-923.
|
120 |
SALLES T, MALLARD C, ZAHIROVIC S. Gospl: global scalable paleo landscape evolution[J]. Journal of Open Source Software, 2020, 5(56). DOI: 10.21105/joss.02804 .
|
121 |
SUO Yanhui, FU Xinjian, LI Sanzhong, et al. Review on dynamic simulation of paleo-landscape[J]. Journal of Palaeogeography, 2024, 26(1): 165-171.
|
|
索艳慧, 付新建, 李三忠, 等. 古地貌动态模拟研究进展综述[J]. 古地理学报, 2024, 26(1): 165-171.
|
122 |
HU K L, DING P X, WANG Z B, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China[J]. Journal of Marine Systems, 2009, 77(1/2): 114-136.
|
123 |
COOPER C, EIDAM E, SEIM H, et al. Effects of sea ice on Arctic delta evolution: a modeling study of the Colville River delta, Alaska[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(9). DOI: 10.1029/2024JF007742 .
|
124 |
WANG J, CHU A, DAI Z J, et al. Delft3D model-based estuarine suspended sediment budget with morphodynamic changes of the channel-shoal complex in a mega fluvial-tidal delta[J]. Engineering Applications of Computational Fluid Mechanics, 2024, 18(1). DOI: 10.1080/19942060.2023.2300763 .
|
125 |
TANG Hong, LONG Guanyu, ZHANG Zhang, et al. Sedimentary characteristics and evolution laws of a sandy braided river delta based on sediment numerical simulation[J]. Acta Sedimentologica Sinica, 2024. DOI:10.14027/j.issn.1000-0550.2024.088 .
|
|
唐洪, 龙冠宇, 张章, 等. 基于沉积数值模拟的砂质辫状河三角洲沉积特征与演化规律研究[J].沉积学报, 2024. DOI:10.14027/j.issn.1000-0550.2024.088 .
|
126 |
HUANG X, GRIFFITHS C M, LIU J. Recent development in stratigraphic forward modelling and its application in petroleum exploration[J]. Australian Journal of Earth Sciences, 2015, 62(8): 903-919.
|
127 |
WANG Yangjun, YIN Taiju, DENG Zhihao, et al. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics[J]. Bulletin of Geological Science and Technology, 2016, 35(1): 44-52.
|
|
王杨君, 尹太举, 邓智浩, 等. 水动力数值模拟的河控三角洲分支河道演化研究[J]. 地质科技情报, 2016, 35(1): 44-52.
|
128 |
LESSER G R, ROELVINK J A, van KESTER J A T M, et al. Development and validation of a three-dimensional morphological model[J]. Coastal Engineering, 2004, 51(8): 883-915.
|
129 |
STEVENS A W, MORITZ H R, ELIAS E P L, et al. Monitoring and modeling dispersal of a submerged nearshore berm at the mouth of the Columbia River, USA[J]. Coastal Engineering, 2023, 181. DOI: 10.1016/j.coastaleng.2023.104285 .
|
1 |
TAN Mingxuan, ZHU Xiaomin, ZHANG Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “Source-to-Sink” systems[J]. Natural Gas and Oil, 2020, 41(5): 1 107-1 118.
|
|
谈明轩, 朱筱敏, 张自力, 等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质, 2020, 41(5): 1 107-1 118.
|
2 |
XIE Xinong, LIN Changsong, LI Zhong, et al. Research reviews and prospects of sedimentary basin geodynamics in China[J]. Acta Sedimentologica Sinica, 2017, 35(5): 877-887.
|
|
解习农, 林畅松, 李忠, 等. 中国盆地动力学研究现状及展望[J]. 沉积学报, 2017, 35(5): 877-887.
|
3 |
XIE Xinong, REN Jianye, LEI Chao. Reviews and prospects of depositional basin dynamics[J]. Bulletin of Geological Science and Technology, 2012, 31(5): 76-84.
|
|
解习农, 任建业, 雷超. 盆地动力学研究综述及展望[J]. 地质科技情报, 2012, 31(5): 76-84.
|
4 |
LIU Qianghu, LI Zhiyao, CHEN Hehe, et al. Key geological issues and innovation directions in deep-time Source-to-Sink system of continental rift basins[J]. Earth Science, 2023, 48(12): 4 586-4 612.
|
|
刘强虎, 李志垚, 陈贺贺, 等. 陆相裂陷盆地深时源—汇系统关键地质问题及革新方向[J]. 地球科学, 2023, 48(12): 4 586-4 612.
|
5 |
TOFELDE S, BERNHARDT A, GUERIT L, et al. Times associated with Source-to-Sink propagation of environmental signals during landscape transience[J]. Frontiers in Earth Science, 2021, 9. DOI: 10.3389/feart.2021.628315 .
|
6 |
GUERIT L, BARRIER L, JOLIVET M, et al. Denudation intensity and control in the Chinese Tian Shan: new constraints from mass balance on catchment-alluvial fan systems[J]. Earth Surface Processes and Landforms, 2016, 41(8): 1 088-1 106.
|
7 |
MASON C C, ROMANS B W. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be: Panamint Valley, California[J]. Earth and Planetary Science Letters, 2018, 492: 130-143.
|
8 |
JONELL T N, CLIFT P D, HOANG L V, et al. Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam[J]. Basin Research, 2017, 29(): 659-683.
|
9 |
ALIZAI A, CLIFT P D, STILL J. Indus Basin sediment provenance constrained using garnet geochemistry[J]. Journal of Asian Earth Sciences, 2016, 126: 29-57.
|
10 |
BARKACH J H, MILLER C J, SELEGEAN J P, et al. Comparison of watershed sediment delivery estimates of 60 Michigan Rivers using the USACE Great Lakes regional trend line and the Syvitski and Milliman global BQART equation[J]. Journal of Hydrology, 2020, 582. DOI: 10.1016/j.jhydrol.2019.124460 .
|
11 |
MICHAEL N A, WHITTAKER A C, CARTER A, et al. Volumetric budget and grain-size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south-central Pyrenees[J]. Geological Society of America Bulletin, 2014, 126(3/4): 585-599.
|
12 |
HILTON R G, WEST A J. Mountains, erosion and the carboncycle[J]. Nature Reviews Earth & Environment, 2020, 1: 284-299.
|
13 |
LASAGA A C, SOLER J M, GANOR J, et al. Chemical weathering rate laws and global geochemical cycles[J]. Geochimica et Cosmochimica Acta, 1994, 58(10): 2 361-2 386.
|
14 |
MILLIMAN J D, SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544.
|
15 |
RICHTER F M, ROWLEY D B, DEPAOLO D J. Sr isotope evolution of seawater: the role of tectonics[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 11-23.
|
16 |
DIETZE E, MAUSSION F, AHLBORN M, et al. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments[J]. Climate of the Past, 2014, 10(1): 91-106.
|
17 |
DIBIASE R A, LAMB M P. Vegetation and wildfire controls on sediment yield in bedrock landscapes[J]. Geophysical Research Letters, 2013, 40(6): 1 093-1 097.
|
18 |
TOFELDE S, SAVI S, WICKERT A D, et al. Alluvial channel response to environmental perturbations: fill-terrace formation and sediment-signal disruption[J]. Earth Surface Dynamics, 2019, 7(2): 609-631.
|
19 |
WATKINS S E, WHITTAKER A C, BELL R E, et al. Straight from the source’s mouth: controls on field-constrained sediment export across the entire active Corinth Rift, central Greece[J]. Basin Research, 2020, 32(6): 1 600-1 625.
|
20 |
LI Y T, CLIFT P D, BÖNING P, et al. Continuous Holocene input of river sediment to the Indus Submarine Canyon[J]. Marine Geology, 2018, 406: 159-176.
|
21 |
CHURCH M. Geomorphic thresholds in riverine landscapes[J]. Freshwater Biology, 2002, 47(4): 541-557.
|
22 |
JEROLMACK D J, PAOLA C. Shredding of environmental signals by sediment transport[J]. Geophysical Research Letters, 2010, 37(19). DOI: 10.1029/2010GL044638 .
|
23 |
ALLEN J P. The attachment system in adolescence[M]. New York: The Guilford Press, 2008.
|
24 |
ARMITAGE S J, JASIM S A, MARKS A E, et al. The southern route “out of Africa”: evidence for an early expansion of modern humans into Arabia[J]. Science, 2011, 331(6 016): 453-456.
|
25 |
COULTHARD T J, van de WIEL M J. Climate, tectonics or morphology: what signals can we see in drainage basin sediment yields?[J]. Earth Surface Dynamics, 2013, 1(1): 13-27.
|
26 |
ROMANS B W, CASTELLTORT S, COVAULT J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
|
27 |
HOUSSAIS M, JEROLMACK D J. Toward a unifying constitutive relation for sediment transport across environments[J]. Geomorphology, 2017, 277: 251-264.
|
28 |
AMOS C L, JUDGE J T. Sediment transport on the eastern Canadian continental shelf[J]. Continental Shelf Research, 1991, 11(8/9/10): 1 037-1 068.
|
29 |
PHILLIPS C B, JEROLMACK D J. Self-organization of river channels as a critical filter on climate signals[J]. Science, 2016, 352(6 286): 694-697.
|
30 |
D’ARCY M, RODA-BOLUDA D C, WHITTAKER A C. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California[J]. Quaternary Science Reviews, 2017, 169: 288-311.
|
31 |
BATAILLE C P, RIDGWAY K D, COLLIVER L, et al. Early Paleogene fluvial regime shift in response to global warming: a subtropical record from the Tornillo Basin, West Texas, USA[J]. GSA Bulletin, 2019, 131(1/2): 299-317.
|
32 |
BROMMER M B, WELTJE G J, TRINCARDI F. Reconstruction of sediment supply from mass accumulation rates in the northern Adriatic Basin (Italy) over the past 19, 000 years[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F2). DOI: 10.1029/2008JF000987 .
|
33 |
RIMSTIDT J D, CHERMAK J A, SCHREIBER M E. Processes that control mineral and element abundances in shales[J]. Earth-Science Reviews, 2017, 171: 383-399.
|
34 |
MADOF A S, HARRIS A D, CONNELL S D. Nearshore along-strike variability: is the concept of the systems tract unhinged?[J]. Geology, 2016, 44(4): 315-318.
|
35 |
DRAUT A E, CLIFT P D. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes[J]. Earth-Science Reviews, 2013, 116: 57-84.
|
36 |
PETTER A L, STEEL R J, MOHRIG D, et al. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. Geological Society of America Bulletin, 2013, 125(3/4): 578-593.
|
37 |
CHEN X Y, ZHANG Z J, YUAN X J, et al. The evolution of Permian Source-to-Sink systems and tectonics implications in the NW Junggar Basin, China: evidence from detrital zircon geochronology[J]. Minerals, 2022, 12(9). DOI: 10.3390/min12091169 .
|
38 |
ALLEN P A. Sediment routing systems: the fate of sediment from Source to Sink[M]. Cambridge: Cambridge University Press, 2017.
|
39 |
ALLEN P A. From landscapes into geological history[J]. Nature, 2008, 451: 274-276.
|
40 |
ZHU Xiaomin, LIU Qianghu, TAN Mingxuan, et al. Comprehensive investigation of deep-time Source-to-Sink systems: case study of the Shaleitian area[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1 781-1 797.
|
|
朱筱敏, 刘强虎, 谈明轩, 等. 深时源—汇系统综合研究和沙垒田实例分析[J]. 沉积学报, 2023, 41(6): 1 781-1 797.
|
41 |
SHAO Longyi, WANG Xuetian, LI Yanan, et al. Review on palaeogeographic reconstruction of deep-time Source-to-Sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81.
|
|
邵龙义, 王学天, 李雅楠, 等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报, 2019, 21(1): 67-81.
|
42 |
SYVITSKI J P M, MILLIMAN J D. Daniel[J]. The Journal of Geology, 2007, 115(1): 1-19.
|
43 |
BLUM M, MARTIN J, MILLIKEN K, et al. Paleovalley systems: insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169.
|
44 |
SØMME T O, HELLAND-HANSEN W, MARTINSEN O J, et al. Relationships between morphological and sedimentological parameters in Source-to-Sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387.
|
45 |
ROMANS B W, GRAHAM S A. A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science, 2013, 5: 69-94.
|
46 |
COVAULT J A, ROMANS B W, GRAHAM S A, et al. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: insights from tectonically active southern California[J]. Geology, 2011, 39(7): 619-622.
|
47 |
HELLAND-HANSEN W, SØMME T O, MARTINSEN O J, et al. Deciphering Earth’s natural hourglasses: perspectives on Source-to-Sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1 008-1 033.
|
48 |
ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130.
|
49 |
ALLEN P A. Time scales of tectonic landscapes and their sediment routing systems[J]. Geological Society, London, Special Publications, 2008, 296(1): 7-28.
|
50 |
MEADE R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States[J]. The Journal of Geology, 1982, 90(3): 235-252.
|
51 |
MEADE R H. Transport and deposition of sediments in estuaries[M]. Colorado: Geological Society of America, 1972.
|
52 |
WALSH J P, WIBERG P L, AALTO R, et al. Source-to-Sink research: economy of the Earth’s surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6.
|
53 |
TUCKER G E, HUTTON E W H, PIPER M D, et al. CSDMS: a community platform for numerical modeling of Earth surface processes[J]. Geoscientific Model Development, 2022, 15(4): 1 413-1 439.
|
54 |
TUCKER G E, SLINGERLAND R, SYVITSKI J. A community approach to modeling earthscapes[M]. Oxford: Academic Press, 2022.
|
55 |
XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins: basic idea, conceptual systems and controlling sand models[J]. China Offshore Oil and Gas, 2013, 25(4): 1-11.
|
|
徐长贵. 陆相断陷盆地源—汇时空耦合控砂原理: 基本思想、概念体系及控砂模式[J]. 中国海上油气, 2013, 25(4): 1-11.
|
56 |
WANG Chengshan, LIN Changsong. Development status and trend of sedimentology in China in recent ten years[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1 217-1 229.
|
|
王成善, 林畅松. 中国沉积学近十年来的发展现状与趋势[J]. 矿物岩石地球化学通报, 2021, 40(6): 1 217-1 229.
|
57 |
GONG Chenglin, LIU Li, SHAO Dali, et al. Depositional patterns of the Bengal-Nicobar Fan system since the Late Mio-cene: seesaw-like stepwise changes and the source-sink model[J]. Earth Science Frontiers, 2022, 29(4): 25-41.
|
|
龚承林, 刘力, 邵大力, 等. 晚中新世以来孟加拉—尼科巴扇跷跷板式沉积转换及其源—汇成因机制[J]. 地学前缘, 2022, 29(4): 25-41.
|
58 |
LIANG W D, GARZANTI E, HU X M, et al. Tracing erosion patterns in South Tibet: balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa Block[J]. Basin Research, 2022, 34(1): 411-439.
|
59 |
LIU Li, ZHU Dicheng, ZHANG Liangliang, et al. To decipher the “Source-to-Sink” system using the depth profile of zircon ages[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6): 1 135-1 144.
|
|
刘力, 朱弟成, 张亮亮, 等. 用锆石年龄的深度剖面来重新认识源—汇系统[J]. 矿物岩石地球化学通报, 2022, 41(6): 1 135-1 144.
|
60 |
ZHANG J Y, SYLVESTER Z, COVAULT J. How do basin margins record long-term tectonic and climatic changes?[J]. Geology, 2020, 48(9): 893-897.
|
61 |
GONG C L, STEEL R J, WANG Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101.
|
62 |
MARTINSEN O J, SØMME T O, THURMOND J B, et al. Source-to-Sink systems on passive margins: theory and practice with an example from the Norwegian continental margin[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7(1): 913-920.
|
63 |
SUN Shu, WANG Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 792-810.
|
|
孙枢, 王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报, 2009, 27(5): 792-810.
|
64 |
GU Xiaozhong, MA Liqiao. Numerical simulation of a delta depositional system and it’s applications[J].Acta Petrolei Sinica, 1993, 14(2): 1-11.
|
|
顾晓忠, 马立桥. 三角洲沉积体系的数值模拟及其应用[J]. 石油学报, 1993,14(2): 1-11.
|
65 |
WOLF L, HUISMANS R S, ROUBY D, et al. Links between faulting, topography, and sediment production during continental rifting: insights from coupled surface process, thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(3). DOI: 10.1029/2021JB023490 .
|
66 |
GÉRARD B, ROUBY D, HUISMANS R S, et al. Impact of inherited foreland relief on retro-foreland basin architecture[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3). DOI:10.1029/2022JB024967 .
|
67 |
ZOU Bo, WANG Guozhi, DENG Jianghong. Evidence for apatite fission track of Pliocene rapid uplift of Zhongdian region on southeastern margin of Tibetan Plateau,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(2): 227-236.
|
|
邹波, 王国芝, 邓江红. 青藏高原东南缘中甸地区上新世快速隆升的磷灰石裂变径迹证据[J]. 成都理工大学学报(自然科学版), 2014, 41(2): 227-236.
|
68 |
YANG Shouye, WANG Zhongbo. Rare earth element compositions of the sediments from the major tributaries and the main stream of the Changjiang River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 31-39.
|
|
杨守业, 王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报, 2011, 30(1): 31-39.
|
69 |
SHARMA S, BHATTACHARYA J P, RICHARDS B. Source-to-sink sediment budget analysis of the Cretaceous ferron sandstone, Utah, U.S.A., using the fulcrum approach[J]. Journal of Sedimentary Research, 2017, 87(6): 594-608.
|
70 |
ZHU Hongtao, YANG Xianghua, ZHOU Xinhuai, et al. Sediment transport pathway characteristics of continental lacustrine basins based on 3-D seismic data: an example from Dongying Formation of western slope of Bozhong sag[J]. Earth Science, 2013, 38(1): 121-129.
|
|
朱红涛, 杨香华, 周心怀, 等. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例[J]. 地球科学, 2013, 38(1): 121-129.
|
71 |
TANG Wu, XIE Xiaojun, XIONG Lianqiao, et al. Coupling relationship and genetic mechanisms of shelf-edge delta and deep-water fan Source-to-Sink: a case study in Paleogene Zhuhai Formation in south subsag of Baiyun Sag, Pearl River Mouth Basin, China[J]. Petroleum Exploration and Development, 2024, 51(3): 513-525.
|
|
唐武, 谢晓军, 熊连桥, 等. 陆架边缘三角洲—深水扇源汇耦合关系及成因机制[J]. 石油勘探与开发, 2024, 51(3): 513-525.
|
72 |
YANG S Y, JUNG H S, LIM D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93-120.
|
73 |
MANDAL S K, KAPANNUSCH R, SCHERLER D, et al. Cosmogenic nuclide tracking of sediment recycling from a frontal siwalik range in the northwestern Himalaya[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(12). DOI: 10.1029/2023JF007164 .
|
74 |
ZHU Hongtao, XU Changgui, ZHU Xiaomin, et al. Advances of the Source-to-Sink units and coupling model research in continental basin[J]. Journal of Earth Science, 2017, 42(11): 1 851-1 870.
|
|
朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 1 851-1 870.
|
75 |
SALLES T. eSCAPE: regional to global scale landscape evolution model v2.0[J]. Geoscientific Model Development, 2019, 12(9): 4 165-4 184.
|
76 |
CAMPFORTS B, SHOBE C M, STEER P, et al. HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution[J]. Geoscientific Model Development, 2020, 13(9): 3 863-3 886.
|
77 |
CHEN H, WANG X Y, LU H Y, et al. Anthropogenic impacts on Holocene fluvial dynamics in the Chinese Loess Plateau, an evaluation based on landscape evolution modeling[J]. Geomorphology, 2021, 392. DOI: 10.1016/j.geomorph.2021.107935 .
|
78 |
GARCIA-ESTÈVE C, CANIVEN Y, CATTIN R, et al. Morphotectonic evolution of an alluvial fan: results of a joint analog and numerical modeling approach[J]. Geosciences, 2021, 11(10). DOI: 10.3390/geosciences11100412 .
|
79 |
BARNHART K R, GLADE R C, SHOBE C M, et al. Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution[J]. Geoscientific Model Development, 2019, 12(4): 1 267-1 297.
|
80 |
HUTTON E W H, SYVITSKI J P M. Sedflux 2.0: an advanced process-response model that generates three-dimensional stratigraphy[J]. Computers & Geosciences, 2008, 34(10): 1 319-1 337.
|
81 |
LIN Chengyan, CHEN Bingyi, REN Lihua, et al. A review of depositional numerical simulation and a case study[J]. Acta Geologica Sinica, 2023, 97(8): 2 756-2 773.
|
|
林承焰, 陈柄屹, 任丽华, 等. 沉积数值模拟研究现状及实例[J]. 地质学报, 2023, 97(8): 2 756-2 773.
|
82 |
HARRIS A D, COVAULT J A, BAUMGARDNER S, et al. Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: sea-level modulation of deltaic avulsion processes[J]. Marine and Petroleum Geology, 2020, 111: 807-814.
|
83 |
HAWIE N, DESCHAMPS R, GRANJEON D, et al. Multi-scale constraints of sediment source to sink systems in frontier basins: a forward stratigraphic modelling case study of the Levant region[J]. Basin Research, 2017, 29(): 418-445.
|
84 |
CSATO I, GRANJEON D, CATUNEANU O, et al. A three-dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary[J]. Basin Research, 2013, 25(2): 121-148.
|
85 |
TAMIRU H, DINKA M O. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 2021, 36. DOI: 10.1016/j.ejrh.2021.100855 .
|
86 |
TUCKER G, LANCASTER S, GASPARINI N, et al. The Channel-Hillslope Integrated Landscape Development model (CHILD)[M]. Boston, MA: Springer US, 2001.
|
87 |
LI H P, PLINK-BJÖRKLUND P. Applying information theory and Bayesian inference to paleoenvironmental interpretation[J]. Geophysical Research Letters, 2019, 46(24): 14 477-14 485.
|
88 |
SALLES T, DING X S, BROCARD G. pyBadlands: a framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time[J]. PLoS ONE, 2018, 13(4). DOI: 10.1371/journal.pone.019555 .
|
89 |
COULTHARD T J, MACKLIN M G, KIRKBY M J. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27(3): 269-288.
|
90 |
TUCKER G E, SLINGERLAND R L. Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 12 229-12 243.
|
91 |
GAILLETON B, MALATESTA L C, CORDONNIER G, et al. CHONK 1.0: landscape evolution framework: cellular automata meets graph theory[J]. Geoscientific Model Development, 2024, 17(1): 71-90.
|
92 |
DENSMORE A L, ELLIS M A, ANDERSON R S. Landsliding and the evolution of normal-fault-bounded mountains[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B7): 15 203-15 219.
|
93 |
WANG Xuetian, SHAO Longyi, KENNETH A E, et al. Using BQART model to reconstruct paleo-relief in deep time based on quantitative paleogeography: a case study from the Late Permian central Emeishan Large Igneous Province[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1 461-1 480.
|
|
王学天, 邵龙义, Kenneth A E, 等. 基于定量古地理的BQART模型深时古地势重建方法: 以晚二叠世峨眉山大火成岩省内带为例[J]. 沉积学报, 2022, 40(6): 1 461-1 480.
|
94 |
GARCIA-CASTELLANOS D, JIMÉNEZ-MUNT I. Topographic evolution and climate aridification during continental collision: insights from computer simulations[J]. PLoS ONE, 2015, 10(8). DOI: 10.1371/journal.pone.0132252 .
|
95 |
HANCOCK G, WILLGOOSE G. Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: declining equilibrium landforms[J]. Water Resources Research, 2001, 37(7): 1 981-1 992.
|
96 |
HARBAUGH J W. Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations[M]. Tulsa, Okla: SEPM (Society for Sedimentary Geology), 1999.
|
97 |
GRANJEON D. 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys[J]. International Association of Sedimentologists, 2014, 46: 453-472.
|
98 |
HARRIS A D, BAUMGARDNER S E, SUN T, et al. A poor relationship between sea level and deep-water sand delivery[J]. Sedimentary Geology, 2018, 370: 42-51.
|
99 |
HARRIS A D, COVAULT J A, MADOF A S, et al. Three-dimensional numerical modeling of eustatic control on continental-margin sand distribution[J]. Journal of Sedimentary Research, 2016, 86(12): 1 434-1 443.
|
100 |
LIU Yanfeng, DUAN Taizhong, HUANG Yuan, et al. Deep learning-based geological modeling driven by sedimentary process simulation[J]. Natural Gas and Oil, 2023(1): 226-237.
|
|
刘彦锋, 段太忠, 黄渊, 等. 沉积过程模拟驱动下的深度学习地质建模方法[J]. 石油与天然气地质, 2023(1): 226-237.
|
101 |
GVIRTZMAN Z, CSATO I, GRANJEON D. Constraining sediment transport to deep marine basins through submarine channels: the Levant margin in the Late Cenozoic[J]. Marine Geology, 2014, 347: 12-26.
|
102 |
BUSSON J, JOSEPH P, MULDER T, et al. High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: controls and dynamic of the progradation[J]. Sedimentary Geology, 2019, 379: 77-96.
|
130 |
ALOSAIRI Y, ALSULAIMAN N. Hydro-environmental processes governing the formation of hypoxic parcels in an inverse estuarine water body: model validation and discussion[J]. Marine Pollution Bulletin, 2019, 144: 92-104.
|
131 |
TROOST T A, DESCLAUX T, LESLIE H A, et al. Do microplastics affect marine ecosystem productivity?[J]. Marine Pollution Bulletin, 2018, 135: 17-29.
|
132 |
BERGEN K J, JOHNSON P A, de HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6 433). DOI: 10.1126/science.aau0323 .
|
133 |
XU Changgui, DU Xiaofeng, XU Wei, et al. New advances of the “Source-to-Sink” system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38(1): 1-11.
|
|
徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地“源—汇”系统研究新进展[J]. 石油与天然气地质, 2017, 38(1): 1-11.
|
103 |
HAWIE N, COVAULT J A, SYLVESTER Z. Grain-size and discharge controls on submarine-fan depositional patterns from forward stratigraphic models[J]. Frontiers in Earth Science, 2019, 7. DOI: 10.3389/feart.2019.00334 .
|
104 |
ZHANG Zhijie, ZHOU Chuanmin, YUAN Xuanjun, et al. Source-to-Sink system and palaeogeographic reconstruction of Permian in the Junggar Basin, northwestern China[J]. Acta Geologica Sinica, 2023, 97(9): 3 006-3 023.
|
|
张志杰, 周川闽, 袁选俊, 等. 准噶尔盆地二叠系源—汇系统与古地理重建[J]. 地质学报, 2023, 97(9): 3 006-3 023.
|
105 |
BRUNEAU B, CHAUVEAU B, BAUDIN F, et al. 3D stratigraphic forward numerical modelling approach for prediction of organic-rich deposits and their heterogeneities[J]. Marine and Petroleum Geology, 2017, 82: 1-20.
|
106 |
YIN X D, HUANG W H, LU S F, et al. The connectivity of reservoir sand bodies in the Liaoxi Sag, Bohai Bay Basin: insights from three-dimensional stratigraphic forward modeling[J]. Marine and Petroleum Geology, 2016, 77: 1 081-1 094.
|
107 |
GRIFFITHS C M, DYT C, PARASCHIVOIU E, et al. Sedsim in hydrocarbon exploration[M]. Boston, MA: Springer, 2001.
|
108 |
HUANG X, DYT C, GRIFFITHS C, et al. Numerical forward modelling of ‘fluxoturbidite’ flume experiments using Sedsim[J]. Marine and Petroleum Geology, 2012, 35(1): 190-200.
|
109 |
SALLES T, MARCHÈS E, DYT C, et al. Simulation of the interactions between gravity processes and contour currents on the Algarve Margin (South Portugal) using the stratigraphic forward model Sedsim[J]. Sedimentary Geology, 2010, 229(3): 95-109.
|
110 |
YANG Qian, FENG Xiuli, LI Mengshuai. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea[J]. Acta Geologica Sinica, 2022, 96(4): 1 412-1 420.
|
|
杨茜, 冯秀丽, 李梦帅. 南海北部莺琼陆坡浊流沉积数值模拟分析[J]. 地质学报, 2022, 96(4): 1 412-1 420.
|
111 |
RAVESTEIN J J, GRIFFITHS C M, DYT C P, et al. Multi-scale stratigraphic forward modelling of the Surat Basin for geological storage of CO2 [J]. Terra Nova, 2015, 27(5): 346-355.
|
112 |
LIU Jianliang, LIU Keyu. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling[J]. Science China: Earth Sciences, 2020, 51(1): 150-158.
|
|
刘建良, 刘可禹. 碳酸盐岩地层完整性分析及其影响因素定量评价:来自地层正演模拟的启示[J]. 中国科学: 地球科学, 2020, 51(1): 150-158.
|
113 |
HUANG Xiu, LIU Keyu, ZOU Caineng, et al. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang Lake, southern China[J]. Earth Science, 2013, 38(5): 1 005-1 013.
|