[1] |
ZHAO Lin, HU Guojie, ZOU Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau [J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1 233-1 252.
|
|
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响 [J]. 中国科学院院刊, 2019, 34(11): 1 233-1 252.
|
[2] |
WANG Y W, WANG L, ZHOU J, et al. Vanishing glaciers at southeast Tibetan Plateau have not offset the declining runoff at Yarlung Zangbo[J]. Geophysical Research Letters, 2021, 48(21). DOI: 10.1029/2021GL094651 .
|
[3] |
YANG Y, CHEN R S, LIU G H, et al. Trends and variability in snowmelt in China under climate change[J]. Hydrology and Earth System Sciences, 2022, 26(2): 305-329.
|
[4] |
AN B S, WANG W C, YANG W, et al. Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau[J]. Science of the Total Environment, 2022, 816. DOI: 10.1016/j.scitotenv.2021.151652 .
|
[5] |
SOMMER C, MALZ P, SEEHAUS T C, et al. Rapid glacier retreat and downwasting throughout the European Alps in the early 21 st century[J]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-020-16818-0 .
|
[6] |
TANG Z G, DENG G, HU G J, et al. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021[J]. Journal of Hydrology, 2022, 613. DOI: 10.1016/j.jhydrol.2022.128438 .
|
[7] |
CHENG Guodong, JIN Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes [J]. Hydrogeology and Engineering Geology, 2013, 40(1): 1-11.
|
|
程国栋, 金会军. 青藏高原多年冻土区地下水及其变化 [J]. 水文地质工程地质, 2013, 40(1): 1-11.
|
[8] |
DING Yongjian, ZHANG Shiqiang, WU Jinkui, et al. Recent progress on studies on cryospheric hydrological processes changes in China [J]. Advances in Water Science, 2020, 31(5): 690-702.
|
|
丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702.
|
[9] |
DING Yongjian, ZHANG Shiqiang, CHEN Rensheng. Cryospheric Hydrology: decode the largest freshwater reservoir on Earth [J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(4): 414-424.
|
|
丁永建, 张世强, 陈仁升. 冰冻圈水文学:解密地球最大淡水库 [J]. 中国科学院院刊, 2020, 35(4): 414-424.
|
[10] |
BROMBIERSTÄUDL D, SCHMIDT S, NÜSSER M. Distribution and relevance of aufeis (icing) in the upper Indus basin[J]. Science of the Total Environment, 2021, 780. DOI: 10.1016/j.scitotenv.2021.146604 .
|
[11] |
MAKARIEVA O, SHIKHOV A, NESTEROVA N, et al. Historical and recent aufeis in the Indigirka River Basin (Russia)[J]. Earth System Science Data, 2019, 11(1): 409-420.
|
[12] |
GAGARIN L, WU Q B, MELNIKOV A, et al. Morphometric analysis of groundwater icings: intercomparison of estimation techniques[J]. Remote Sensing, 2020, 12(4). DOI: 10.3390/rs12040692 .
|
[13] |
ENSOM T, MAKARIEVA O, MORSE P, et al. The distribution and dynamics of aufeis in permafrost regions[J]. Permafrost and Periglacial Processes, 2020, 31(3): 383-395.
|
[14] |
TURCOTTE B, DUBNICK A, MCKILLOP R. Icing and aufeis in cold regions II: consequences and mitigation[J]. Canadian Journal of Civil Engineering, 2024, 51(2): 125-139.
|
[15] |
YOSHIKAWA K, HINZMAN L D, KANE D L. Spring and aufeis (icing) hydrology in Brooks range, Alaska[J]. Journal of Geophysical Research: Biogeosciences, 2007, 112(G4). DOI: 10.1029/2006JG000294 .
|
[16] |
WANG Wenhui, CHE Fuqiang, JIN Huijun, et al. Progress in studies on frost hazards along transport infrastructures in permafrost regions of northern Da Xing’anling Mountains in Northeast China (Ⅰ): thaw hazards [J]. Journal of Glaciology and Geocryology, 2025, 47(2): 354-371.
|
|
王文辉, 车富强, 金会军, 等. 大兴安岭北部多年冻土区主要交通基础工程冻融灾害考察研究进展(Ⅰ):融沉灾害 [J]. 冰川冻土, 2025, 47(2): 354-371.
|
[17] |
LI Guoyu, MA Wei, WANG Xueli, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline [J]. Rock and Soil Mechanics, 2015, 36(10): 2 963-2 973.
|
|
李国玉, 马巍, 王学力, 等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议 [J]. 岩土力学, 2015, 36(10): 2 963-2 973.
|
[18] |
JIN Huijun, QIN Dahe, YAO Tandong, et al. Glossary of cryospheric science[Z]. Beijing: China Meteorological Press, 2017: 231.
|
|
金会军, 秦大河, 姚檀栋, 等. 冰冻圈科学辞典[Z]. 北京: 气象出版社, 2017: 231.
|
[19] |
GUO Ying, QI Yongfei, SHAN Wei. Research progress on investigation and control of highway salivary ice disease in China [J]. Journal of Natural Disasters, 2022, 31(6): 15-26.
|
|
郭颖, 漆永飞, 单炜. 我国公路涎流冰病害调查及防治研究进展 [J]. 自然灾害学报, 2022, 31(6): 15-26.
|
[20] |
Viktor Vasilievich Shepelev. DAI Changlei, ZHANG Yiding, translated. Mechanism analysis of frozen spring and ice mound formation in cold regions [J]. Heilongjiang Water Resources, 2016, 2(4): 24-31.
|
|
维克多·瓦西里耶维奇·舍佩廖夫 著. 戴长雷, 张一丁译. 寒区冻泉与冰丘形成机理分析 [J]. 黑龙江水利, 2016, 2(4): 24-31.
|
[21] |
EVERDINGEN V. Multi-language glossary of permafrost and related ground-ice terms [Z]. Boulder National Snow and Ice Data Center,2005: 90.
|
[22] |
ALEKSEEV V R. Long-term variability of the spring taryn-aufeises[J]. Ice and Snow, 2016, 56(1): 73-92.
|
[23] |
HURYN A D, GOOSEFF M N, HENDRICKSON P J, et al. Aufeis fields as novel groundwater-dependent ecosystems in the Arctic cryosphere[J]. Limnology and Oceanography, 2021, 66(3): 607-624.
|
[24] |
CRITES H. Distribution of icings (aufeis) in northwestern Canada: insights into groundwater conditions [D]. Canada, Ottawa, Ontario: Université d’Ottawa/University of Ottawa, 2019.
|
[25] |
REEDYK S, WOO M K, PROWSE T D. Contribution of icing ablation to streamflow in a discontinuous permafrost area[J]. Canadian Journal of Earth Sciences, 1995, 32(1): 13-20.
|
[26] |
DALY S F, ZUFELT J E, FITZGERALD P, et al. Aufeis formation in Jarvis Creek and flood mitigation [R]. Hanover, NH: Cold Regions Research & Engineering Laboratory (CRREL), 2011.
|
[27] |
DANN J. Communicating remote sensing surveys of aufeis in northeast Alaska with land managers [M]. Fairbanks, Alaska, USA: University of Alaska Fairbanks, 2023.
|
[28] |
BROWN A. Declining Arctic River icings[J]. Nature Climate Change, 2017, 7(5): 314.
|
[29] |
MORSE P D, WOLFE S A. Long-term river icing dynamics in discontinuous permafrost, subarctic Canadian shield[J]. Permafrost and Periglacial Processes, 2017, 28(3): 580-586.
|
[30] |
PAVELSKY T M, ZARNETSKE J P. Rapid decline in river icings detected in Arctic Alaska: implications for a changing hydrologic cycle and river ecosystems[J]. Geophysical Research Letters, 2017, 44(7): 3 228-3 235.
|
[31] |
TURCOTTE B, DUBNICK A, MCKILLOP R, et al. Icing and aufeis in cold regions I: the origin of overflow[J]. Canadian Journal of Civil Engineering, 2024, 51(2): 93-108.
|
[32] |
POLLARD W H. Icing processes associated with high Arctic perennial springs, Axel Heiberg Island, Nunavut, Canada[J]. Permafrost and Periglacial Processes, 2005, 16(1): 51-68.
|
[33] |
YOU Y H, YANG M B, YU Q H, et al. Investigation of an icing near a tower foundation along the Qinghai-Tibet power transmission line[J]. Cold Regions Science and Technology, 2016, 121: 250-257.
|
[34] |
HU X G, POLLARD W H. Ground icing formation: experimental and statistical analyses of the overflow process[J]. Permafrost and Periglacial Processes, 1997, 8(2): 217-235.
|
[35] |
HU X G, POLLARD W H. The hydrologic analysis and modelling of river icing growth, north fork pass, Yukon territory, Canada[J]. Permafrost and Periglacial Processes, 1997, 8(3): 279-294.
|
[36] |
MAKARIEVA O, NESTEROVA N, SHIKHOV A, et al. Giant aufeis: unknown glaciation in north-eastern Eurasia according to landsat images 2013-2019[J]. Remote Sensing, 2022, 14(17). DOI: 10.3390/rs14174248 .
|
[37] |
ZEMLIANSKOVA A A, ALEKSEEV V R, SHIKHOV A N, et al. Long-term dynamics of the huge anmangynda aufeis in the north-east of Russia (1962-2021)[J]. Water Resources, 2023, 50(1): S89-S99.
|
[38] |
KANE D L. Physical mechanics of aufeis growth[J]. Canadian Journal of Civil Engineering, 1981, 8(2): 186-195.
|
[39] |
LIU W B, FORTIER R, MOLSON J, et al. A conceptual model for talik dynamics and icing formation in a river floodplain in the continuous permafrost zone at Salluit, Nunavik (Quebec), Canada[J]. Permafrost and Periglacial Processes, 2021, 32(3): 468-483.
|
[40] |
BROMBIERSTÄUDL D, SCHMIDT S, NÜSSER M. Spatial and temporal dynamics of aufeis in the Tso Moriri Basin, eastern Ladakh, India[J]. Permafrost and Periglacial Processes, 2023, 34(1): 81-93.
|
[41] |
YDE J C, KNUDSEN N T. Observations of debris-rich naled associated with a major glacier surge event, Disko Island, West Greenland[J]. Permafrost and Periglacial Processes, 2005, 16(4): 319-325.
|
[42] |
WOHL E, SCAMARDO J E. Aufeis as a major forcing mechanism for channel avulsion and implications of warming climate[J]. Geophysical Research Letters, 2022, 49(20). DOI: 10.1029/2022GL100246 .
|
[43] |
CAREY K L. Icings developed from surface water and ground water [R]. US Army, Cold Regions Research and Engineering Research, 1973.
|
[44] |
LI H J, LI H Y, WANG J, et al. Revealing the river ice phenology on the Tibetan Plateau using Sentinel-2 and Landsat 8 overlapping orbit imagery [J]. Journal of Hydrology, 2023, 619. DOI: 10.1016/j.jhydrol.2023.129285 .
|
[45] |
KANG Jun, YU Wenbing, GUO Ming, et al. Road icing in Gansu Province and its mitigation [J]. Journal of Glaciology and Geocryology, 2006, 28(4): 602-606.
|
|
康军, 喻文兵, 郭明, 等. 甘肃道路冰锥病害及防治技术 [J]. 冰川冻土, 2006, 28(4): 602-606.
|
[46] |
MORSE P D, WOLFE S A. Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1 670-1 686.
|
[47] |
TERRY N, GRUNEWALD E, BRIGGS M, et al. Seasonal subsurface thaw dynamics of an aufeis feature inferred from geophysical methods[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(3). DOI: 10.1029/2019JF005345 .
|
[48] |
SIMAKOV A S, SHILNIKOVSKAYA Z G. The map of the naleds of the North-East of the USSR [CM]. A Brief Explanatory Note, The North-Eastern Geological Survey of the Main Directorate of Geology and Subsoil Protection, 1958.
|
[49] |
MARKOV M L, VASILENKO N G, GUREVICH E V. Icing fields of the BAM zone: expeditionary investigations, SPb. [M]. St. Petersburg: Nestor-History, 2016.
|
[50] |
KENNEDY B, POULIOT D, MANSEAU M, et al. Assessment of Landsat-based terricolous macrolichen cover retrieval and change analysis over caribou ranges in northern Canada and Alaska[J]. Remote Sensing of Environment, 2020, 240. DOI: 10.1016/j.rse.2020.111694 .
|
[51] |
HALL D K, ROSWELL C. The origin of water feeding icings on the eastern North Slope of Alaska[J]. Polar Record, 1981, 20(128): 433-438.
|
[52] |
HARDEN D, BARNES P, REIMNITZ E. Distribution and character of naleds in northeastern Alaska[J]. Arctic, 1977, 30(1): 28-40.
|
[53] |
BERNARD, FRIEDT J M, KUSCHEL E, et al. Icings: their structure and influence on the hydrological network of a small Arctic glacier forefield[J]. Permafrost and Periglacial Processes, 2025, 36(3): 498-517.
|
[54] |
WOODWARD J, BURKE M J. Applications of ground-penetrating radar to glacial and frozen materials[J]. Journal of Environmental and Engineering Geophysics, 2007, 12(1): 69-85.
|
[55] |
KANE D L, SLAUGHTER C W. Seasonal regime and hydrological significance of stream icings in central Alaska [C]//Role of snow and ice in hydrology: proceedings of the Banff Symposia. Banff, Alberta, Canada: International Assocaition of Hydrological Science, 1973, 1: 528-540.
|
[56] |
DOWNES C M, THEBERGE J B, SMITH S M. The influence of insects on the distribution, microhabitat choice, and behaviour of the Burwash caribou herd[J]. Canadian Journal of Zoology, 1986, 64(3): 622-629.
|
[57] |
YU W B, HAN F L, YI X, et al. Cut-slope icing prevention: case study of the seasonal frozen area of western China[J]. Journal of Cold Regions Engineering, 2016, 30(3). DOI: 10.1061/(ASCE)CR.1943-5495.0000105 .
|
[58] |
LU Y, YU W B, YI X, et al. Designing and numerical simulations of aufeis mitigation structure on cut-slope roadway[J]. Cold Regions Science and Technology, 2017, 141: 201-208.
|
[59] |
MAKARIEVA O, SHIKHOV A, NESTEROVA N, et al. Aufeis of the north-east of Russia in changing climate[C]// Proceedings of the 22nd international northern research basins symposium and workshop. Yellowknife, Canada: Cold Regions Research Centre at Wilfrid Laurier University, 2019.
|