地球科学进展 ›› 2025, Vol. 40 ›› Issue (8): 767 -777. doi: 10.11867/j.issn.1001-8166.2025.058

综述与评述 上一篇    下一篇

气候变化下冰椎演化及其水文生态与灾害效应
罗栋梁1(), 刘佳1,2, 李晓英1, 杜柯飞1,3, 金会军4, 陈方方1,2, OLGA Makarieva5, 王青志6   
  1. 1. 中国科学院西北生态环境资源研究院 冰冻圈科学与冻土工程全国重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
    3. 兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
    4. 东北林业大学 生态学院,黑龙江 哈尔滨 150040
    5. Melnikov Permafrost Institute,Yakutsk 677010,Russia
    6. 青海大学 土木水利学院土木工程系,青海 西宁 810016
  • 收稿日期:2025-02-07 修回日期:2025-07-15 出版日期:2025-08-10

Evolution of Icings Under Climate Change: Hydro-ecological Effects and Associated Geohazards

Dongliang LUO1(), Jia LIU1,2, Xiaoying LI1, Kefei DU1,3, Huijun JIN4, Fangfang CHEN1,2, Makarieva OLGA5, Qingzhi WANG6   

  1. 1. State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. School of Surveying and Geo-informatics, Lanzhou Jiaotong University, Lanzhou 730070, China
    4. School of Ecology, Northeast Forestry University, Harbin 150040, China
    5. Melnikov Permafrost Institute, Yakutsk 677010, Russia
    6. Department of Civil Engineering, School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China
  • Received:2025-02-07 Revised:2025-07-15 Online:2025-08-10 Published:2025-07-29
  • Supported by:
    Western Young Scholars Project of the Chinese Academy of Sciences

冰椎不仅是高寒冻土区特有的一种水文地貌景观,通过在冬季冻结并储存大量基流而形成固体水库,还为冷生鱼类等提供越冬地,其形成与演化也会对冻土区的道路、桥梁、隧道和涵洞等构筑物的安全运营产生影响。实地勘查与遥感观测均揭示,冰椎在全球变暖背景下正经历以面积萎缩、融化提前和多年生冰体破碎化等为表征的退化,但关于其形成与演化机制及其对高寒冻土区生态水文过程的影响尚不明晰。通过整合相关文献,系统回顾了冰椎的分布与影响因素、从野外勘查到遥感技术与地球物理探测相结合的研究方法的演进及其水文、生态与灾害效应,并对未来研究方向进行了展望。当前河冰椎研究的重点正从北极亚北极宽阔河道向地形复杂的高亚洲等研究薄弱区拓展,未来应融合多源数据与人工智能技术,加强对其从平面分布到三维冰体特征的定量反演与动态预测,通过深化认识其形成与演化机制,发展适用于寒区水资源管理和灾害防治的预测模型,量化冰椎退化对冻土地貌和水文生态系统的影响,以促进高寒冻土区可持续发展。

Aufeis (icings) are unique cryohydrological features in frozen ground regions, acting as critical solid-water reservoirs by freezing and storing a substantial portion (up to 40%) of the winter baseflow in some basins. Ecologically, they also serve as keystone habitats that provide crucial unfrozen overwintering refugia for cryophilic fish and other aquatic organisms. Concurrently, their formation and evolution pose significant geohazards to engineering infrastructure such as roads, bridges, tunnels, and culverts. In the context of global warming, a synthesis of both long-term in-situ and remote sensing observations confirms that icings are undergoing significant degradation, characterized by shrinking areas, accelerated melt rates, and fragmentation of perennial ice bodies. However, the mechanisms governing their formation and evolution, as well as their broader impacts on eco-hydrological processes and sustainable development in these regions, remain inadequately understood. This study comprehensively reviews the current understanding of icing formation, distribution, and controlling factors (e.g., geology, climate, and permafrost). It traces the evolution of research methodologies, from foundational field surveys and historical mapping to modern approaches combining satellite remote sensing (e.g., NDSI and machine learning) and geophysical techniques (e.g., GPR, ERT, and NMR). This review also highlights the eco-hydrological and hazard-related impacts of changes in ice-riving. We further discuss future research directions, noting a shift in focus, from the broad river systems of the Arctic and subarctic regions to understudied areas such as High Mountain Asia. Future research priorities are identified, calling for a paradigm shift from two-dimensional spatial monitoring towards integrated, three-dimensional quantitative analysis and prediction. Key frontiers include: elucidating the fundamental physical mechanisms of icing formation through coupled modeling; leveraging artificial intelligence to combine multi-source data (e.g., satellite, UAV, geophysical) for accurate estimation of icing volume; quantifying the cascading impacts of icing degradation on geomorphology and ecosystems; and developing robust predictive models for water resource management and geohazard mitigation related to icing evolution. Such advancements are crucial for providing the robust scientific basis needed for sustainable development in Earth’s rapidly changing cold regions.

中图分类号: 

图1 冰椎和冻土研究关键词共现网络 该网络基于Web of Science数据库检索的91篇文献,以多年冻土(permafrost)为主题(包括诸如冰椎和地下水等关键词),利用bibliometrix软件包(R v4.3.2)分析了冰椎关键词的关联。
Fig. 1 Keyword co-occurrence network of aufeisicingand permafrost research This network is generated from 91 publications retrieved from the Web of Science database, using bibliometrix (R v4.3.2) to analyze keyword co-occurrences. The analysis specifically highlights themes related to permafrost, including keywords such as aufeis (icing) and groundwater.
表1 河冰椎与河冰异同点对比
Table 1 Comparison of river icings and river ice
图2 黄河源区河冰椎及其影响(照片由罗栋梁摄于2024514日和16日) (a)沿214国道滨河湿地冻融侵蚀加剧;(b)冰椎导致扎陵湖南汤岔玛附近小桥受损。
Fig. 2 Impacts of river icings in the headwater area of the Yellow Riverphotos were taken by Luo Dongliang on May 14 and 162024respectively (a) Exacerbated freeze-thaw erosion of riparian wetlands along National Highway G214; (b) Damage to a small bridge near Tangchama, south of the Gyaring Lake.
图3 利用Landsat-8 OLI遥感影像提取的20132017年河冰椎空间分布 (a)基于RDRI指数(红波和近红外波段反射率之差除以近红外和短波红外波段反射率之和)44提取的青藏高原东北部2~4月河冰椎分布;(b)基于NDSI指数(绿波和短波红外波段反射率之差除以绿波和短波红外波段反射率之和)提取的西伯利亚因迪吉尔卡河流域5~6月河冰椎分布。
Fig. 3 Spatial distribution of river icings in 2013-2017extracted from Landsat-8 OLI images (a) River icings distributed in the northeastern Qinghai-Xizang Plateau from February to April, extracted using the RDRI index (difference between red and near-infrared band reflectance divided by the sum of near-infrared and shortwave-infrared band reflectance)44; (b) River icings distributed in Indigirka River northeast Siberia, from May to June, extracted using the NDSI index (difference between green and near-infrared band reflectance divided by the sum of green and shortwave-infrared band reflectance).
[1]
ZHAO Lin HU Guojie ZOU Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau [J]. Bulletin of the Chinese Academy of Sciences201934(11): 1 233-1 252.
赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响 [J]. 中国科学院院刊201934(11): 1 233-1 252.
[2]
WANG Y W WANG L ZHOU J, et al. Vanishing glaciers at southeast Tibetan Plateau have not offset the declining runoff at Yarlung Zangbo[J]. Geophysical Research Letters202148(21). DOI:10.1029/2021GL094651 .
[3]
YANG Y CHEN R S LIU G H, et al. Trends and variability in snowmelt in China under climate change[J]. Hydrology and Earth System Sciences202226(2): 305-329.
[4]
AN B S WANG W C YANG W, et al. Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau[J]. Science of the Total Environment2022, 816. DOI:10.1016/j.scitotenv.2021.151652 .
[5]
SOMMER C MALZ P SEEHAUS T C, et al. Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century[J]. Nature Communications202011(1). DOI: 10.1038/s41467-020-16818-0 .
[6]
TANG Z G DENG G HU G J, et al. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021[J]. Journal of Hydrology2022, 613. DOI:10.1016/j.jhydrol.2022.128438 .
[7]
CHENG Guodong JIN Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes [J]. Hydrogeology and Engineering Geology201340(1): 1-11.
程国栋, 金会军. 青藏高原多年冻土区地下水及其变化 [J]. 水文地质工程地质201340(1): 1-11.
[8]
DING Yongjian ZHANG Shiqiang WU Jinkui, et al. Recent progress on studies on cryospheric hydrological processes changes in China [J]. Advances in Water Science202031(5): 690-702.
丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展202031(5): 690-702.
[9]
DING Yongjian ZHANG Shiqiang CHEN Rensheng. Cryospheric Hydrology: decode the largest freshwater reservoir on Earth [J]. Bulletin of the Chinese Academy of Sciences202035(4): 414-424.
丁永建, 张世强, 陈仁升. 冰冻圈水文学:解密地球最大淡水库 [J]. 中国科学院院刊202035(4): 414-424.
[10]
BROMBIERSTÄUDL D SCHMIDT S NÜSSER M. Distribution and relevance of aufeis (icing) in the upper Indus basin[J]. Science of the Total Environment2021, 780. DOI:10.1016/j.scitotenv.2021.146604 .
[11]
MAKARIEVA O SHIKHOV A NESTEROVA N, et al. Historical and recent aufeis in the Indigirka River Basin (Russia)[J]. Earth System Science Data201911(1): 409-420.
[12]
GAGARIN L WU Q B MELNIKOV A, et al. Morphometric analysis of groundwater icings: intercomparison of estimation techniques[J]. Remote Sensing202012(4). DOI:10.3390/rs12040692 .
[13]
ENSOM T MAKARIEVA O MORSE P, et al. The distribution and dynamics of aufeis in permafrost regions[J]. Permafrost and Periglacial Processes202031(3): 383-395.
[14]
TURCOTTE B DUBNICK A MCKILLOP R. Icing and aufeis in cold regions II: consequences and mitigation[J]. Canadian Journal of Civil Engineering202451(2): 125-139.
[15]
YOSHIKAWA K HINZMAN L D KANE D L. Spring and aufeis (icing) hydrology in Brooks range, Alaska[J]. Journal of Geophysical Research: Biogeosciences2007112(G4). DOI:10.1029/2006JG000294 .
[16]
WANG Wenhui CHE Fuqiang JIN Huijun, et al. Progress in studies on frost hazards along transport infrastructures in permafrost regions of northern Da Xing’anling Mountains in Northeast China (Ⅰ): thaw hazards [J]. Journal of Glaciology and Geocryology202547(2): 354-371.
王文辉, 车富强, 金会军, 等. 大兴安岭北部多年冻土区主要交通基础工程冻融灾害考察研究进展(Ⅰ):融沉灾害 [J]. 冰川冻土202547(2): 354-371.
[17]
LI Guoyu MA Wei WANG Xueli, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline [J]. Rock and Soil Mechanics201536(10): 2 963-2 973.
李国玉, 马巍, 王学力, 等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议 [J]. 岩土力学201536(10): 2 963-2 973.
[18]
JIN Huijun QIN Dahe YAO Tandong, et al. Glossary of cryospheric science[Z]. Beijing: China Meteorological Press, 2017: 231.
金会军, 秦大河, 姚檀栋, 等. 冰冻圈科学辞典[Z]. 北京: 气象出版社, 2017: 231.
[19]
GUO Ying QI Yongfei SHAN Wei. Research progress on investigation and control of highway salivary ice disease in China [J]. Journal of Natural Disasters202231(6): 15-26.
郭颖, 漆永飞, 单炜. 我国公路涎流冰病害调查及防治研究进展 [J]. 自然灾害学报202231(6): 15-26.
[20]
Viktor Vasilievich Shepelev. DAI Changlei, ZHANG Yiding, translated. Mechanism analysis of frozen spring and ice mound formation in cold regions [J]. Heilongjiang Water Resources20162(4): 24-31.
维克多·瓦西里耶维奇·舍佩廖夫 著. 戴长雷, 张一丁译. 寒区冻泉与冰丘形成机理分析 [J]. 黑龙江水利20162(4): 24-31.
[21]
EVERDINGEN V. Multi-language glossary of permafrost and related ground-ice terms [Z]. Boulder National Snow and Ice Data Center2005: 90.
[22]
ALEKSEEV V R. Long-term variability of the spring taryn-aufeises[J]. Ice and Snow201656(1): 73-92.
[23]
HURYN A D GOOSEFF M N HENDRICKSON P J, et al. Aufeis fields as novel groundwater-dependent ecosystems in the Arctic cryosphere[J]. Limnology and Oceanography202166(3): 607-624.
[24]
CRITES H. Distribution of icings (aufeis) in northwestern Canada: insights into groundwater conditions [D]. Canada, Ottawa, Ontario: Université d’Ottawa/University of Ottawa, 2019.
[25]
REEDYK S WOO M K PROWSE T D. Contribution of icing ablation to streamflow in a discontinuous permafrost area[J]. Canadian Journal of Earth Sciences199532(1): 13-20.
[26]
DALY S F ZUFELT J E FITZGERALD P, et al. Aufeis formation in Jarvis Creek and flood mitigation [R]. Hanover, NH: Cold Regions Research & Engineering Laboratory (CRREL), 2011.
[27]
DANN J. Communicating remote sensing surveys of aufeis in northeast Alaska with land managers [M]. Fairbanks, Alaska, USA: University of Alaska Fairbanks, 2023.
[28]
BROWN A. Declining Arctic River icings[J]. Nature Climate Change20177(5): 314.
[29]
MORSE P D WOLFE S A. Long-term river icing dynamics in discontinuous permafrost, subarctic Canadian shield[J]. Permafrost and Periglacial Processes201728(3): 580-586.
[30]
PAVELSKY T M ZARNETSKE J P. Rapid decline in river icings detected in Arctic Alaska: implications for a changing hydrologic cycle and river ecosystems[J]. Geophysical Research Letters201744(7): 3 228-3 235.
[31]
TURCOTTE B DUBNICK A MCKILLOP R, et al. Icing and aufeis in cold regions I: the origin of overflow[J]. Canadian Journal of Civil Engineering202451(2): 93-108.
[32]
POLLARD W H. Icing processes associated with high Arctic perennial springs, Axel Heiberg Island, Nunavut, Canada[J]. Permafrost and Periglacial Processes200516(1): 51-68.
[33]
YOU Y H YANG M B YU Q H, et al. Investigation of an icing near a tower foundation along the Qinghai-Tibet power transmission line[J]. Cold Regions Science and Technology2016121: 250-257.
[34]
HU X G POLLARD W H. Ground icing formation: experimental and statistical analyses of the overflow process[J]. Permafrost and Periglacial Processes19978(2): 217-235.
[35]
HU X G POLLARD W H. The hydrologic analysis and modelling of river icing growth, north fork pass, Yukon territory, Canada[J]. Permafrost and Periglacial Processes19978(3): 279-294.
[36]
MAKARIEVA O NESTEROVA N SHIKHOV A, et al. Giant aufeis: unknown glaciation in north-eastern Eurasia according to landsat images 2013-2019[J]. Remote Sensing202214(17). DOI:10.3390/rs14174248 .
[37]
ZEMLIANSKOVA A A ALEKSEEV V R SHIKHOV A N, et al. Long-term dynamics of the huge anmangynda aufeis in the north-east of Russia (1962-2021)[J]. Water Resources202350(1): S89-S99.
[38]
KANE D L. Physical mechanics of aufeis growth[J]. Canadian Journal of Civil Engineering19818(2): 186-195.
[39]
LIU W B FORTIER R MOLSON J, et al. A conceptual model for talik dynamics and icing formation in a river floodplain in the continuous permafrost zone at Salluit, Nunavik (Quebec), Canada[J]. Permafrost and Periglacial Processes202132(3): 468-483.
[40]
BROMBIERSTÄUDL D SCHMIDT S NÜSSER M. Spatial and temporal dynamics of aufeis in the Tso Moriri Basin, eastern Ladakh, India[J]. Permafrost and Periglacial Processes202334(1): 81-93.
[41]
YDE J C KNUDSEN N T. Observations of debris-rich naled associated with a major glacier surge event, Disko Island, West Greenland[J]. Permafrost and Periglacial Processes200516(4): 319-325.
[42]
WOHL E SCAMARDO J E. Aufeis as a major forcing mechanism for channel avulsion and implications of warming climate[J]. Geophysical Research Letters202249(20). DOI:10.1029/2022GL100246 .
[43]
CAREY K L. Icings developed from surface water and ground water [R]. US Army, Cold Regions Research and Engineering Research, 1973.
[44]
LI H J LI H Y WANG J, et al. Revealing the river ice phenology on the Tibetan Plateau using Sentinel-2 and Landsat 8 overlapping orbit imagery [J]. Journal of Hydrology2023, 619. DOI:10.1016/j.jhydrol.2023.129285 .
[45]
KANG Jun YU Wenbing GUO Ming, et al. Road icing in Gansu Province and its mitigation [J]. Journal of Glaciology and Geocryology200628(4): 602-606.
康军, 喻文兵, 郭明, 等. 甘肃道路冰锥病害及防治技术 [J]. 冰川冻土200628(4): 602-606.
[46]
MORSE P D WOLFE S A. Geological and meteorological controls on icing (aufeis) dynamics (1985 to 2014) in subarctic Canada[J]. Journal of Geophysical Research: Earth Surface2015120(9): 1 670-1 686.
[47]
TERRY N GRUNEWALD E BRIGGS M, et al. Seasonal subsurface thaw dynamics of an aufeis feature inferred from geophysical methods[J]. Journal of Geophysical Research: Earth Surface2020125(3). DOI:10.1029/2019JF005345 .
[48]
SIMAKOV A S SHILNIKOVSKAYA Z G. The map of the naleds of the North-East of the USSR [CM]. A Brief Explanatory Note, The North-Eastern Geological Survey of the Main Directorate of Geology and Subsoil Protection, 1958.
[49]
MARKOV M L VASILENKO N G GUREVICH E V. Icing fields of the BAM zone: expeditionary investigations, SPb. [M]. St. Petersburg: Nestor-History, 2016.
[50]
KENNEDY B POULIOT D MANSEAU M, et al. Assessment of Landsat-based terricolous macrolichen cover retrieval and change analysis over caribou ranges in northern Canada and Alaska[J]. Remote Sensing of Environment2020, 240. DOI:10.1016/j.rse.2020.111694 .
[51]
HALL D K ROSWELL C. The origin of water feeding icings on the eastern North Slope of Alaska[J]. Polar Record198120(128): 433-438.
[52]
HARDEN D BARNES P REIMNITZ E. Distribution and character of naleds in northeastern Alaska[J]. Arctic197730(1): 28-40.
[53]
BERNARD, FRIEDT J M KUSCHEL E, et al. Icings: their structure and influence on the hydrological network of a small Arctic glacier forefield[J]. Permafrost and Periglacial Processes202536(3): 498-517.
[54]
WOODWARD J BURKE M J. Applications of ground-penetrating radar to glacial and frozen materials[J]. Journal of Environmental and Engineering Geophysics200712(1): 69-85.
[55]
KANE D L SLAUGHTER C W. Seasonal regime and hydrological significance of stream icings in central Alaska [C]//Role of snow and ice in hydrology: proceedings of the Banff Symposia. Banff, Alberta, Canada: International Assocaition of Hydrological Science, 19731: 528-540.
[56]
DOWNES C M THEBERGE J B SMITH S M. The influence of insects on the distribution, microhabitat choice, and behaviour of the Burwash caribou herd[J]. Canadian Journal of Zoology198664(3): 622-629.
[57]
YU W B HAN F L YI X, et al. Cut-slope icing prevention: case study of the seasonal frozen area of western China[J]. Journal of Cold Regions Engineering201630(3). DOI:10.1061/(ASCE)CR.1943-5495.0000105 .
[58]
LU Y YU W B YI X, et al. Designing and numerical simulations of aufeis mitigation structure on cut-slope roadway[J]. Cold Regions Science and Technology2017141: 201-208.
[59]
MAKARIEVA O SHIKHOV A NESTEROVA N, et al. Aufeis of the north-east of Russia in changing climate[C]// Proceedings of the 22nd international northern research basins symposium and workshop. Yellowknife, Canada: Cold Regions Research Centre at Wilfrid Laurier University, 2019.
[1] 陈心怡, 崔腾飞, 潘忆遥, 陈一帆, 李紫函, 伏钱琛, 杨瑞强. 北极陆地环境新型有机污染物的传输及其影响[J]. 地球科学进展, 2025, 40(8): 831-846.
[2] 何春阳, 刘小平, 王伟, 黄庆旭, 刘志锋, 廖威林, 朱国梁. 全球城镇化趋势及其对气候变化的影响[J]. 地球科学进展, 2025, 40(6): 577-591.
[3] 张井勇, 杨占梅, 吴凌云. 夏季极端高温预测模型系统及实际应用[J]. 地球科学进展, 2025, 40(5): 516-524.
[4] 谢思敏, 杜志恒, 王磊, 严芳萍, 崔浩, 陶长廉, 杨佼, 吴通华, 效存德. 北极海底冻土变化特征与温室气体研究进展[J]. 地球科学进展, 2025, 40(4): 360-373.
[5] 周杰, 巨能攀, 张燕, 田华兵, 何朝阳. 泥石流视频图像跟踪检测方法研究[J]. 地球科学进展, 2025, 40(4): 388-400.
[6] 张勇勇, 康文蓉, 赵文智. 地下水依赖植被适应机制与稳态转换研究进展[J]. 地球科学进展, 2025, 40(3): 243-254.
[7] 李俊池, 李伟, 敬嵩, 赵璇, 詹文欢. 南海西北陆缘多期次海底滑坡的发育特征及形成机理研究[J]. 地球科学进展, 2025, 40(3): 315-330.
[8] 向书旗, 陈静, 游超. 中国植被火燃烧格局与展望[J]. 地球科学进展, 2025, 40(2): 207-220.
[9] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[10] 陈梦佳, 白炜, 张成铭, 刘文艳, 高泽永. 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025, 40(1): 82-98.
[11] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[12] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[13] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[14] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[15] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
阅读次数
全文


摘要