地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.040

   

夏季极端高温预测模型系统及实际应用
张井勇1,3,杨占梅2,4,吴凌云5   
  1. (1.中国科学院大气物理研究所 地球系统数值模拟与应用全国重点实验室,北京 100029;2.湖南工商大学 资源环境学院,湖南 长沙 410205;3. 中国科学院大学 地球与行星科学学院,北京 100049; 4. 碳中和与智慧能源湖南省重点实验室,湖南 长沙 410205;5. 中国科学院大气物理 研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京 100029)
  • 基金资助:
    国家重点研发计划项目(编号:2018YFA0606500);国家重大科技基础设施项目(编号:2023-EL-ZD-00068)资助.

The Prediction Model System for Summer Hot Extremes and Its Practical Application

ZHANG Jingyong1, 3, YANG Zhanmei2, 4, WU Lingyun5   

  1. (1. State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 2. School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China; 3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4. Hunan Provincial Key Laboratory of Carbon Neutrality and Intelligent Energy, Changsha 410205, China; 5. State Key Laboratory of Atmospheric Physics and Earth Fluid Dynamics Numerical Simulation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China)
  • About author:ZHANG Jingyong, research areas include Earth system numerical simulation and climate prediction, carbon neutrality and climate change. E-mail: zjy@mail.iap.ac.cn
  • Supported by:
    Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0606500); National Large Scientific and Technological Infrastructure Project (Grant No. 2023-EL-ZD-00068).
夏季极端高温是我国最主要的气象灾害之一,对人们的健康与生命、社会经济的稳定发展 以及生态环境的平衡等均造成严重威胁。面向防范和应对高温相关灾害风险的国家重大需求,基 于科学新认识我们自主研发了我国夏季极端高温预测模型系统并开展了实际应用。2018 年以来 该预测模型系统的实际预测表明,其总体上能够比较准确地预测出我国夏季极端高温的空间分布 与异常,展现出稳定而良好的预报效果。2025 年5 月运用该模型系统开展的预测显示,2025 年夏 季我国平均高温日数为12.55 天,比常年(1991—2020 年气候平均态)偏多2.69 天,极端高温影响总 体明显偏重、灾害风险明显偏高、区域差异性大。长江中下游地区、华南地区、四川盆地、新疆南 部、江苏与安徽北部高温日数偏多最为明显。京津平原地区、山东、河南、陕西南部地区、东北少部 分地区、甘肃部分地区以及宁夏北部等地极端高温明显偏多。最后,针对我国夏季极端高温的防 范提出了建议。
Abstract:Summer hot extremes, one of major meteorological disasters over China, have severe impacts on people's lives and health, economic and social development, and natural ecosystem. To address the nation’s critical need to prevent and deal with hot-temperature-related disaster risks, we have independently developed a prediction model system for summer hot extremes over China based on obtained new scientific understanding. The developed model system can relatively accurately predict the spatial pattern and anomalies of summer hot extremes since 2018 over China, signifying stable and good prediction skills. In May 2025, by using the prediction model system we predicted that summer hot days in 2024 will be 12.55 days, which are 2.69 more days than those in normal years (1991-2020 average); hot extremes in this summer will have more severe effects, significant above-average disaster risks and larger regional differences. The most significant more-than-normal hot extremes will occur over the middle and lower reaches of the Yangtze River basin, South China, the Sichuan Basin, southern Xinjiang, northern Jiangsu and Anhui, followed by Beijing-Tianjin Plain, Shandong, Henan, southern Shaanxi, parts of Northeast China, parts of Gansu, and northern Ningxia. We further provide response suggestions for preventing and reducing hot extremes over China.

中图分类号: 

[1] 谢思敏, 杜志恒, 王磊, 严芳萍, 崔浩, 陶长廉, 杨佼, 吴通华, 效存德. 北极海底冻土变化特征与温室气体研究进展[J]. 地球科学进展, 2025, 40(4): 360-373.
[2] 向书旗, 陈静, 游超. 中国植被火燃烧格局与展望[J]. 地球科学进展, 2025, 40(2): 207-220.
[3] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[4] 陈梦佳, 白炜, 张成铭, 刘文艳, 高泽永. 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025, 40(1): 82-98.
[5] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[6] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[7] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[8] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[9] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[10] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[11] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[12] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[13] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[14] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[15] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
阅读次数
全文


摘要