地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.026

   

北极海底冻土变化特征与温室气体研究进展∗
谢思敏1,2,杜志恒1,2*,王磊3,严芳萍1,崔浩4,陶长廉1,2,杨佼1,吴通华1,2,效存德4   
  1. (1. 中国科学院西北生态环境资源研究院 冰冻圈科学与冻土工程全国重点实验室,甘肃 兰州 730000; 2. 中国科学院大学,北京 100049;3. 中国科学院成都山地灾害与环境研究所,四川 成都 610299; 4. 北京师范大学 地表过程与水土风沙灾害风险防控全国重点实验室,北京 100875)
  • 基金资助:
    国家重点研发计划项目(编号:2020YFA0608500);冰冻圈科学与冻土工程重点实验室自主部署青年项目(编号:CSFSEZQ- 2410)资助.

Research Progress on the Characteristics of Changes and Greenhouse Gases in the Arctic Subsea Permafrost

XIE Simin1, 2, DU Zhiheng1, 2*, WANG Lei3, YANG Fangping1, CUI Hao4, TAO Changlian1, 2, YANG Jiao1, WU Tonghua1, 2, XIAO Cunde4   

  1. (1. State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China;4. State Key Laboratory of Earth Surface Processes and Hazards Risk Governance, Beijing Normal University, Beijing 100875, China)
  • About author:XIE Simin, research areas include Cryosphere and global change. E-mail: xiesimin22@mails.ucas.ac.cn
  • Supported by:
    Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0608500); The State Key Laboratory of Cryospheric Science and Frozen Soil Engineering (Grant No. CSFSE-ZQ-2410).
海底多年冻土是冰期—间冰期海平面变化过程中陆地多年冻土被海水淹没而形成的,主 要分布于北极大陆架区域,其分布范围存在很大的不确定性(面积为1.0×106~2.7×106 km2)。作为 地球系统重要的碳库,海底多年冻土储存着大量有机碳和甲烷(CH4)。在全球变暖的背景下,特别 是在北冰洋海水温度升高的背景下,海底多年冻土的快速退化可能导致碳释放风险加剧,进而影 响全球碳循环与气候变化。东西伯利亚海底多年冻土区已经观测到了CH4向大气释放的现象。然 而,关于海底多年冻土退化速率、碳库规模、温室气体释放量及其机制的研究仍较为有限。值得注 意的是,随着北极地区气候快速变暖、北大西洋暖流的北向扩张和增强引发的北冰洋大西洋化的 进程加剧,以及人类活动的持续增加,使得北极海底冻土CH4加速排放造成的气候风险加大,对未 来人类可持续发展的影响将愈发显著。基于此,系统总结了北极海底多年冻土的空间分布特征、 退化速率及其碳储量,综述了定点、航测和遥感卫星等方法在海底多年冻土区CH4监测与排放特征 研究中的应用,探讨了CH4排放的影响因素,强调了北极海底冻土变化特征及其碳循环研究对全球 气候变化的重要意义。同时,提出了未来研究应结合多种监测方法、加强国际合作、构建综合监测 体系,并充分考虑陆地与海洋因素的协同作用,以此深化对北极海底多年冻土区碳循环及其气候 效应的理解。
Abstract: Subsea permafrost, formed by the inundation of terrestrial permafrost due to the sea-level variations during the glacial-interglacial cycles, is mainly distributed across the Arctic continental shelf. However, there is a large uncertainty in its distribution extent (approximately 1~2.7 million square kilometers). Subsea permafrost is considered a significant carbon reservoir in the Earth system, which stores vast amounts of organic carbon (OC) and methane (CH4) gas. With global warming and rising temperatures of Arctic Ocean waters, subsea permafrost is undergoing rapid degradation, which may exacerbate carbon release risks. Consequently, the subsea permafrost plays a significant role in influencing the global carbon cycle and climate change. The large CH4 emissions into the atmosphere have been observed in the East Siberian subsea permafrost region. However, the rates of subsea permafrost degradation, the magnitude of carbon reservoirs and gas release are still not clear. In particular, due to the rapid Arctic warming, the northward expansion and intensification of the North Atlantic Current which exacerbates the Atlantification of the Arctic Ocean, and dramatic increases in human disturbance, the climate risk would increase by the accelerated emission of CH4 from Arctic subsea permafrost. These variations will influence the human sustainability in the future. This paper systematically summarizes the spatial distribution, degradation rates, and carbon storage in Arctic subsea permafrost. The applications of methods for CH4 monitoring in the subsea permafrost were reviewed, including the fixed-point observations, aerial surveys, and remote sensing. Furthermore, this paper discusses factors influencing CH4 emissions, highlights the importance of studying the characteristics of Arctic subsea permafrost and its carbon cycle for global climate change, and identifies current challenges and suggests future research directions.

中图分类号: 

[1] 向书旗, 陈静, 游超. 中国植被火燃烧格局与展望[J]. 地球科学进展, 2025, 40(2): 207-220.
[2] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[3] 陈梦佳, 白炜, 张成铭, 刘文艳, 高泽永. 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025, 40(1): 82-98.
[4] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[5] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[6] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[7] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[8] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[9] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[10] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[11] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[12] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[13] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[14] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
[15] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
阅读次数
全文


摘要