地球科学进展 ›› 2025, Vol. 40 ›› Issue (4): 388 -400. doi: 10.11867/j.issn.1001-8166.2025.030

研究论文 上一篇    下一篇

泥石流视频图像跟踪检测方法研究
周杰1(), 巨能攀1(), 张燕2, 田华兵2, 何朝阳1   
  1. 1.成都理工大学 地质灾害防治与地质环境保护全国重点实验室,四川 成都 610059
    2.中国电力建设集团成都勘测设计研究院有限公司,四川 成都 610072
  • 收稿日期:2025-02-10 修回日期:2025-03-17 出版日期:2025-04-10
  • 通讯作者: 巨能攀 E-mail:454435023@qq.com;jnp@cdut.edu.cn
  • 基金资助:
    地质灾害防治与地质环境保护全国重点实验室(成都理工大学)开放基金(SKLGP2024K030)

Debris Flow Tracking and Detection Method Research Via Video Image Analysis

Jie ZHOU1(), Nengpan JU1(), Yan ZHANG2, Huabing TIAN2, Chaoyang HE1   

  1. 1.State Key Laboratory of Geological Hazard Prevention and Geological Environmental Protection, Chengdu University of Technology, Chengdu 610059, China
    2.POWERCHINA Chengdu Engineering Corporation Limited, Chengdu 610072, China
  • Received:2025-02-10 Revised:2025-03-17 Online:2025-04-10 Published:2025-06-03
  • Contact: Nengpan JU E-mail:454435023@qq.com;jnp@cdut.edu.cn
  • About author:ZHOU Jie, research areas include geological hazard monitoring and early warning. E-mail: 454435023@qq.com
  • Supported by:
    the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology)(SKLGP2024K030)

泥石流灾害频发且破坏性强,传统监测手段实时性差、误报率高,亟需高效精准的智能检测方法提升预警能力。基于此,提出基于YOLOv8框架的改进模型YOLOv8m-GCSlide,通过集成全局注意力机制特征提取模块(GCNet)强化泥石流动态特征感知,设计滑动损失函数优化分类边界,结合知识蒸馏技术生成轻量化模型YOLOv8n-GCSlide。构建多源视频数据集,采用0.25 s每帧提取策略平衡训练效率,融合数据增强与负样本提升泛化能力。实验表明,改进模型检测精确率达94.6%(较基线+1.2%),召回率88.0%(+0.7%),平均精度95.9%(+2.0%),推理速度244.1 FPS,参数量减少88.1%,性能优于主流轻量模型。实际案例测试中,模型在复杂地形下召回率为82.3%,误报率为4.2%,帧率为240.6 FPS。结果表明,全局注意力机制特征提取模块与损失函数能有效捕捉泥石流运动特征,模型压缩技术兼顾精度与效率,可为地质灾害预警系统提供高精度、低延时的端侧部署技术支持。

Debris flow disasters, known for their frequent occurrence and high destructiveness, are difficult to monitor effectively due to the limited real-time performance and high false-alarm rates of conventional monitoring methods. This critical limitation underscores the urgent need to develop highly efficient and precise intelligent detection techniques to substantially enhance early warning capabilities. To address the challenges of poor real-time performance and high false alarm rates in traditional debris flow monitoring systems, this study proposes an enhanced YOLOv8m-GCSlide model based on the YOLOv8 framework. The GlobalContext Network (GCNet) is integrated into the backbone network to improve spatial dependency modeling of dynamic fluid boundaries in complex terrains, while a Sliding Loss function (SlideLoss) is designed to dynamically adjust classification thresholds and mitigate sample imbalance. Knowledge distillation is applied to compress the model, resulting in a lightweight variant (YOLOv8n-GCSlide) with reduced computational complexity. A multi-source video dataset was constructed using publicly available resources, with frames extracted at 0.25-second intervals to balance feature retention and training efficiency. Data augmentation techniques, including random cropping, rotation, scaling, Gaussian blur, and color jittering, were used to enhance generalization, supplemented with negative samples (e.g., dry riverbeds and landslides) to reduce false positives. Experimental results show that the optimized model achieves 94.6% (+2.0%) detection accuracy, 88.0% recall, 95.9% mean Average Precision (mAP), and an inference speed of 244.1 FPS, outperforming mainstream lightweight models such as SwinTransformer and MobileNet variants. After compression, the model parameters were reduced by 88.1%, with the distilled version retaining 94.6% (+1.2%) accuracy and 88.0% (+0.7%) recall while maintaining an inference speed of 244.1 FPS. Field validation conducted in Sedongpu Gully, a high-risk debris flow region, confirmed the model’s practical applicability. Under complex environmental interference, the model achieved 82.3% recall, 4.2% false positive rate, and a processing speed of 240.6 FPS. The integration of global attention mechanisms and task-specific loss functions effectively captures dynamic motion features and suppress environmental noise. Additionally, model compression techniques help balance accuracy and computational efficiency, enabling edge deployment for real-time disaster warnings. This approach provides a robust technical foundation for intelligent geological hazard monitoring systems, emphasizing high precision, low latency, and adaptability to resource-constrained scenarios.

中图分类号: 

图1 泥石流灾害识别转化为语义分割
Fig. 1 Transforming debris flow disaster identification into semantic segmentation
表1 不同帧采样间隔下泥石流检测模型训练性能对比分析表
Table 1 Table of comparative analysis of training performance for debris flow detection models under varied frame sampling intervals
图2 泥石流灾害图像示例
(a)泥流型;(b)水石型;(c)泥石型;(d)山洪
Fig. 2 Image example of debris flow disaster
(a)Mudslides;(b)WaterRock Flow;(c)Mudstone Flow;(d)Torrential Flood
图3 泥石流灾害特征标签示例
(a)泥流型;(b)水石型;(c)泥石型;(d)山洪
Fig. 3 Feature tags example of debris flow disaster
(a) Mudslides;(b) WaterRock Flow;(c) Mudstone Flow;(d) Torrential Flood
图4 泥石流灾害样本增强
Fig. 4 Image enhancement of debris flow disaster
图5 非泥石流地质灾害事件负样本示例
(a) 干涸河床;(b) 河流;(c) 崩塌;(d) 滑坡
Fig. 5 Negative sample examples of non-debris flow geological hazard events
(a) Dry river-beds;(b) Rivers;(c) Collapse;(d) Landslide
表 2 各类型泥石流灾害样本占比
Table 2 Table of training results for different extraction intervals of debris flow disaster
图6 YOLOv8-GCSlides网络结构图
Fig. 6 YOLOv8-GCSlides network structure diagram
图7 卷积运算示意图
Fig.7 Convolution operation diagram
图8 GCNet模块结构图
Fig. 8 The block diagram of GCNet
图9 边界框计算示意图
Fig. 9 Schematic diagram of bounding box calculation
图10 CIoU计算示意图
Fig. 10 CIoU calculation diagram
图11 SlideLoss函数示意图
Fig. 11 Schematic diagram of SlideLoss function
表3 泥石流检测模型关键训练参数表
Table 3 key training parameters of debris flow detection model
表 4 泥石流检测消融实验
Table 4 Ablation test of debris flow detection
序号改进方法参数量/×106精确率/%召回率/%精确率均值/%GFLOPs全过程帧率/FPS
1Baseline(YOLOv8m)27.295.090.497.3110.0176.4
2+CGA27.7(+0.5)94.7(-0.3)91.2(+0.8)97.3(+0.0)112.3(+2.3)131.5(-44.9)
3+CSPC15.7(-11.5)95.5(+0.5)89.6(-0.8)96.9(-0.4)73.7(-36.3)201.8(+25.4)
4+ContextAggreation26.9(-0.3)94.9(-0.1)89.7(-0.7)97.3(+0.0)106.9(-3.1)169.4(-7.0)
5+ContextAggreation和GhostConv26.9(-0.3)94.9(-0.1)89.7(-0.7)97.3(+0.0)106.9(-3.1)174.9(-1.5)
6+ContextAggreation和SlideLoss26.9(-0.3)95.2(+0.2)89.7(-0.7)97.2(-0.1)106.9(-3.1)176.3(-0.1)
7+ContextAggreation和ShapeIoU26.9(-0.3)95.0(+0)90.2(-0.2)97.3(-0.0)106.9(-3.1)173.5(-2.9)
8+ContextGuided22.9(-4.3)95.9(+0.9)89.2(-1.2)97.0(-0.3)94.4(-15.6)177.6(+0.2)
9+ContextGuided和GIoU22.9(-4.3)95.6(+0.6)88.7(-1.7)96.8(-0.5)94.4(-15.6)176.3(-0.1)
10+ContextGuided和DIoU22.9(-4.3)94.6(-0.4)89.2(-1.2)96.8(-0.5)94.4(-15.6)181.3(4.9)
11+ContextGuided和SlideLoss22.9(-4.3)94.7(-0.3)89.1(-1.3)96.8(-0.5)94.4(-15.6)178.4(+2.0)
12+ContextGuided和FocalLoss22.9(-4.3)93.8(-1.2)85.4(-5)94.2(-3.1)94.4(-15.6)102.0(-74.4)
13+ContextGuided和InnerShapeIoU22.9(-4.3)95.2(+0.2)88.0(-2.4)96.6(-0.7)94.4(-15.6)178.0(+1.6)
14+ContextGuided和VFLoss22.9(-4.3)93.4(-1.6)85.6(-4.8)94.6(-0.7)94.4(-15.6)61.5(-114.9)
15+GCNet29.2(+2.0)95.4(+0.4)90.3(-0.1)97.1(-0.2)110.7(+0.7)174.0(-2.4)
16+GCNet和SlideLoss29.2(+2.0)95.6(+0.6)92.4(+2.0)97.3(+0.0)110.7(+0.7)174.5(-1.9)
17+GCNet、SlideLoss和ShapeIoU29.2(+2.0)95.0(+0.0)90.6(+0.2)97.3(+0.0)110.7(+0.7)174.5(-1.9)
图12 改进实验性能雷达图
Fig. 12 Improve experimental performance
图13 IoU损失函数对比
Fig. 13 Comparison of IoU loss functions
表5 常用网络替换训练效果
Table 5 Mainstream network replacement training effect
图14 模型性能对比
Fig. 14 Model performance comparison
图15 特征提取可视化
(a) 检测图;(b) 基线网络;(c) 改进网络
Fig. 15 Feature extraction visualization
(a) Detection diagram;(b) Baseline;(c) GCSlide
图16 色东普泥石流沟监控布设示意图
Fig. 16 Schematic diagram of monitoring layout for Sedongpu debris flow ditch
图17 色东普沟泥石流检测结果混淆矩阵
results in Sedongpu Gully
Fig. 17 Confusion matrix of debris flow detection
1 CHEN Gongyan, LI Ting, CHEN Jun, et al. Primary establishment of an early warning model of debris flow hazards in Nyingchi City of Tibetan autonomous region based on raster runoff simulation[J]. The Chinese Journal of Geological Hazard and Control202334(1): 110-120.
陈宫燕, 李婷, 陈军, 等. 基于栅格径流汇流模拟的西藏林芝市泥石流灾害预警模型初探[J]. 中国地质灾害与防治学报202334(1): 110-120.
2 HOU R N, WU M Y, LI Z, et al. Big disaster from small watershed: insights into the failure and disaster-causing mechanism of a debris flow on 25 September 2021 in Tianquan, China[J]. International Journal of Disaster Risk Science202415(4): 622-639.
3 DU Y, LIU H, LI H, et al. Exploring the initiating mechanism, monitoring equipment and warning indicators of gully-type debris flow for disaster reduction: a review[J]. Natural Hazards2024120(15): 13 667-13 692.
4 LI Maoyue, Hongyu LÜ, HE Xiangmei, et al. Surrounding vehicle recognition and information map construction technology in automatic driving[J]. Journal of Automotive Safety and Energy202213(1): 131-141.
李茂月, 吕虹毓, 河香梅, 等. 自动驾驶中周围车辆识别与信息地图构建技术[J]. 汽车安全与节能学报202213(1): 131-141.
5 ALSUWAYLIMI A A. Enhanced YOLOv8-seg instance segmentation for real-time submerged debris detection[J]. IEEE Access202412: 117 833-117 849.
6 CHEN A, LIN D, GAO Q Q. Enhancing brain tumor detection in MRI images using YOLO-NeuroBoost model[J]. Frontiers in Neurology2024, 15. DOI:10.3389/fneur.2024.1445882 .
7 ZHANG Z Z, CHEN P J, SHI X S, et al. Text-guided neural network training for image recognition in natural scenes and medicine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202143(5): 1 733-1 745.
8 MAO Tianya, YU Lei, ZHOU Xiaohui, et al. Human behavior recognition method in infrared image based on improved MobileNet V1[J]. Journal of Liaoning Technical University (Natural Science)202342(3): 362-369.
毛天雅, 余磊, 周啸辉, 等. 基于改进MobileNet V1的红外图像人体行为识别方法[J]. 辽宁工程技术大学学报(自然科学版)202342(3): 362-369.
9 ZHOU Xiaohui, YU Lei, HE Qian, et al. Research on human action recognition in infrared images based on improved ResNet-18[J]. Laser & Infrared202151(9): 1 178-1 184.
周啸辉, 余磊, 何茜, 等. 基于改进ResNet-18的红外图像人体行为识别方法研究[J]. 激光与红外202151(9): 1 178-1 184.
10 CAO X H, SU Y X, GENG X, et al. YOLO-SF: YOLO for fire segmentation detection[J]. IEEE Access202311: 111 079-111 092.
11 XIAO Yang, GUO Yonggang, WEI Luning. Design and implementation of a debris flow monitoring and warning system in southeast Tibet[J]. Acta Geologica Sichuan202444(4): 708-715.
肖烊, 郭永刚, 卫璐宁. 藏东南地区泥石流监测预警系统设计与实现[J]. 四川地质学报202444(4): 708-715.
12 LI Lin, LI Tao, HE Zhilin, et al. Monitoring and early warning of landslide and debris flow disaster chain risk based on experimental simulation[J]. Bulletin of Soil and Water Conservation202444(2): 167-175.
李林, 李涛, 何治林, 等. 基于试验模拟的滑坡泥石流灾害链风险监测预警[J]. 水土保持通报202444(2): 167-175.
13 China Association of Geological Hazard Prevention Engineering. Technical specification for debris flow disaster prevention engineering investigation: T/CA [S]. Wuhan: China University of Geosciences Press, 2018.
中国地质灾害防治工程行业协会. 泥石流灾害防治工程勘查规范: T/CA [S].武汉:中国地质大学出版社,2018.
14 Ministry of Water Resources of the People’s Republic of China. Technical guidelines for the preparation of mountain torrent disaster prevention plans: [S]. Beijing: China Water & Power Press, Jan.2024.
中华人名共和国水利部. 山洪灾害防御预案编制技术导则: [S].北京:中国水利水电出版社,2024.
15 GitHub-CVHub 520/X-AnyLabeling: effortless data labeling with AI support from segment anything and other awesome models.[EB/OL]. [2024-09-17]. .
16 WANG D M, QIAN Y, LU J Y, et al. Ea-yolo: efficient extraction and aggregation mechanism of YOLO for fire detection[J]. Multimedia Systems202430(5): 287. DOI:10.1007/s00530-024-01489-4 .
17 LI Mao, XIAO Yangyi, ZONG Wangyuan, et al. Lightweight chestnut fruit recognition method based on improved YOLOv8 Model [J]. Journal of Agricultural Engineering202440(1): 201-209.
李茂, 肖洋轶, 宗望远, 等. 基于改进YOLOv8模型的轻量化板栗果实识别方法[J]. 农业工程学报202440(1): 201-209.
18 LIU M X, LI R X, HOU M X, et al. SD-YOLOv8: an accurate Seriola dumerili detection model based on improved YOLOv8[J]. Sensors202424(11). DOI:10.3390/s24113647 .
19 LIU M G, ZHANG M, CHEN X L, et al. YOLOv8-LMG: an improved bearing defect detection algorithm based on YOLOv8[J]. Processes202412(5). DOI:10.3390/pr12050930 .
20 WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF conference on computer vision and pattern recognition. Salt Lake City, UT, USA: IEEE, 2018: 7794-7803.
21 CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE, 2019: 1 971-1 980.
22 XUE Z Y, XU R J, BAI D, et al. YOLO-tea: a tea disease detection model improved by YOLOv5[J]. Forests202314(2). DOI:10.3390/f14020415 .
23 LI S, YUAN M Z, WANG W H, et al. Enhanced YOLO- and wearable-based inspection system for automotive wire harness assembly[J]. Applied Sciences202414(7). DOI:10.3390/app14072942 .
24 WANG M J, LI Y D, ZHOU J, et al. GCNet: probing self-similarity learning for generalized counting network[J]. Pattern Recognition2024. DOI:10.1016/j.patcog.2024.110513 .
25 LIAN Z, CHEN L, SUN L C, et al. GCNet: graph completion network for incomplete multimodal learning in conversation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202345(7): 8 419-8 432.
26 ZHANG Y, MA Y L, LI Y L, et al. Intelligent analysis method of dam material gradation for asphalt-core rock-fill dam based on enhanced Cascade Mask R-CNN and GCNet[J]. Advanced Engineering Informatics2023, 56. DOI:10.1016/j.aei.2023.102001 .
27 CHEN X, FAN C Y, SHI J J, et al. Underwater target detection and embedded deployment based on lightweight YOLO_GN[J]. The Journal of Supercomputing202480(10): 14 057-14 084.
28 JIANG T, ZHOU J, XIE B B, et al. Improved YOLOv8 model for lightweight pigeon egg detection[J]. Animals202414(8). DOI:10.3390/ani14081226 .
29 LI Y J, HU Z Y, ZHANG Y X, et al. DDEYOLOv9: network for detecting and counting abnormal fish behaviors in complex water environments[J]. Fishes20249(6). DOI:10.3390/fishes9060242 .
30 YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition2024, 155. DOI:10.1016/j.patcog.2024.110714 .
31 SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision2020128(2): 336-359.
32 ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: evolution of optical flow estimation with deep networks[J/OL]. ArXiv, 2016. [2025-03-08]. . DOI:10.48550/arXiv.1612.01925 .
33 BERTASIUS G, WANG H, TORRESANI L. Is space-time attention all you need for video understanding?[J/OL]. ArXiv2021.[2025-04-29]. .
34 KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[J/OL]. ArXiv2021. [2025-03-08]. . DOI:10.48550/arXiv.2004.11362 .
35 GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J/OL]. ArXiv2014. [2025-03-29]. .
36 HÜBL J, KOGELNIG A, SURINACH E, et al. A review on acoustic monitoring of debris flow[C/OL].DEBRIS FLOWS, 2012: 73-82. [2025-03-29]. .
37 RAMACHANDRAM D, TAYLOR G W. Deep multimodal learning: a survey on recent advances and trends[J]. IEEE Signal Processing Magazine201734(6): 96-108.
[1] 李俊池, 李伟, 敬嵩, 赵璇, 詹文欢. 南海西北陆缘多期次海底滑坡的发育特征及形成机理研究[J]. 地球科学进展, 2025, 40(3): 315-330.
[2] 王凡, 张旭东, 任沂斌, 刘颖洁, 王浩宇, 李晓峰. 基于人工智能技术的海洋智能预报研究进展[J]. 地球科学进展, 2025, 40(2): 111-125.
[3] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[4] 马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展, 2020, 35(6): 551-560.
[5] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[6] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[7] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613.
[8] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[9] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[10] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[11] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[12] 刘清华,余斌,唐川,李丽. 四川省都江堰市龙池地区泥石流危险性评价研究[J]. 地球科学进展, 2012, 27(6): 670-677.
[13] 曾 超,贺 拿,宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220.
[14] 鲁科,余斌,韩林,谢洪. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990.
[15] 薛东剑,何政伟 陶舒,张东辉. “5.12”震后区域地质灾害危险性评价研究[J]. 地球科学进展, 2011, 26(3): 311-318.
阅读次数
全文


摘要