地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.030

   

泥石流视频图像跟踪检测方法研究
周杰1,巨能攀1*,张燕2,田华兵2,何朝阳1   
  1. (1. 成都理工大学 地质灾害防治与地质环境保护全国重点实验室,四川 成都 610059; 2. 中国电力建设集团 成都勘测设计研究院有限公司,四川 成都 610072)
  • 基金资助:
    地质灾害防治与地质环境保护全国重点实验室开放基金(成都理工大学)(编号:SKLGP2024K030)资助. 作

Debris Flow Tracking and Detection Method Research via Video Image Analysis*

ZHOU Jie1, JU Nengpan1*, ZHANG Yan2, TIAN Huabing2, HE Chaoyang1   

  1. (1. State Key Laboratory of Geological Hazard Prevention and Geological Environmental Protection, Chengdu University of Technology, Chengdu 610059, China; 2. POWERCHINA Chengdu Engineering Corporation Limited, Chengdu 610072, China)
  • About author:ZHOU Jie, research areas include geological hazard monitoring and early warning. E-mail: 454435023@qq.com
  • Supported by:
    Project supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No. SKLGP2024K030).
泥石流灾害频发且破坏性强,传统监测手段实时性差、误报率高,亟需高效精准的智能检 测方法提升预警能力。基于此,提出基于YOLOv8 框架的改进模型YOLOv8m-GCSlide,通过集成 全局上下文注意力模块(GCNet)强化泥石流动态特征感知,设计滑动损失函数优化分类边界,结合 知识蒸馏技术生成轻量化模型YOLOv8n-GCSlide。构建多源视频数据集,采用0.25 s 每帧提取策 略平衡训练效率,融合数据增强与负样本提升泛化能力。实验表明,改进模型检测精确率达94.6% (较基线+1.2%),召回率88.0%(+0.7%),平均精度95.9%(+2.0%),推理速度244.1 FPS,参数量减少 88.1%,性能优于主流轻量模型。实际案例测试中,模型在复杂地形下召回率为82.3%,误报率为 4.2%,帧率为240.6 FPS。结果表明,全局注意力机制与损失函数有效捕捉泥石流运动特征,模型压 缩技术兼顾精度与效率,可为地质灾害预警系统提供高精度、低延时的端侧部署技术支持。 关键
Abstract:Debris flow disasters, characterized by their frequent occurrence and high destructiveness, are significantly constrained by the inadequate real-time performance and elevated false alarm rates inherent in conventional monitoring methodologies. This critical limitation underscores the urgent need to develop highly efficient and precise intelligent detection techniques to substantially enhance early warning capabilities. To address the challenges of poor real-time performance and high false alarm rates in traditional debris flow monitoring systems, an enhanced YOLOv8m-GCSlide model is proposed based on the YOLOv8 framework. The global context attention module (GCNet) is integrated into the backbone network to strengthen spatial dependency modeling of dynamic fluid boundaries in complex terrains, while a sliding loss function (SlideLoss) is designed to dynamically adjust classification thresholds and mitigate sample imbalance. Knowledge distillation is further applied to compress the model, resulting in a lightweight variant (YOLOv8n-GCSlide) with reduced computational complexity. A multi-source video dataset is constructed using publicly available resources, where frames are extracted at 0.25-second intervals to balance feature retention and training efficiency. Data augmentation techniques, including random cropping, rotation, scaling, Gaussian blur, and color jittering, are employed to enhance generalization, supplemented by negative samples (e.g., dry riverbeds, landslides) to reduce false positives. Experimental results demonstrate that the optimized model achieves 94.6%(+2.0%) detection accuracy, 88.0% recall, 95.9% mean average precision, and an inference speed of 244.1 FPS, outperforming mainstream lightweight models such as SwinTransformer and MobileNet variants. After compression, the model parameters are reduced by 88.1%, with a distilled version maintaining 94.6%(+1.2%) accuracy and 88.0% (+0.7%) recall while achieving 244.1 FPS. Field validation in Sedongpu Gully, a high-risk debris flow region, confirms practical applicability: under complex environmental interference, the model attains 82.3% recall, 4.2% false positive rate, and 240.6 FPS processing speed. The integration of global attention mechanisms and taskspecific loss functions is shown to effectively capture dynamic motion features and suppress environmental noise. Additionally, model compression techniques ensure a balance between accuracy and computational efficiency, enabling edge deployment for real-time disaster warnings. This approach provides a robust technical foundation for intelligent geological hazard monitoring systems, emphasizing high precision, low latency, and adaptability to resource-constrained scenarios.

中图分类号: 

[1] 李俊池, 李伟, 敬嵩, 赵璇, 詹文欢. 南海西北陆缘多期次海底滑坡的发育特征及形成机理研究[J]. 地球科学进展, 2025, 40(3): 315-330.
[2] 王凡, 张旭东, 任沂斌, 刘颖洁, 王浩宇, 李晓峰. 基于人工智能技术的海洋智能预报研究进展[J]. 地球科学进展, 2025, 40(2): 111-125.
[3] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[4] 马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展, 2020, 35(6): 551-560.
[5] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[6] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[7] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613.
[8] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[9] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[10] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
[11] 张大林, 刘希林. 崩岗泥砂流粒度特性及流体类型分析——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2014, 29(7): 810-818.
[12] 刘清华,余斌,唐川,李丽. 四川省都江堰市龙池地区泥石流危险性评价研究[J]. 地球科学进展, 2012, 27(6): 670-677.
[13] 曾 超,贺 拿,宋国虎. 泥石流作用下建筑物易损性评价方法分析与评价[J]. 地球科学进展, 2012, 27(11): 1211-1220.
[14] 鲁科,余斌,韩林,谢洪. 泥石流流域岩性的坚固系数与暴发频率的关系[J]. 地球科学进展, 2011, 26(9): 980-990.
[15] 薛东剑,何政伟 陶舒,张东辉. “5.12”震后区域地质灾害危险性评价研究[J]. 地球科学进展, 2011, 26(3): 311-318.
阅读次数
全文


摘要