地球科学进展 ›› 2025, Vol. 40 ›› Issue (2): 111 -125. doi: 10.11867/j.issn.1001-8166.2025.011

大气海洋 上一篇    下一篇

基于人工智能技术的海洋智能预报研究进展
王凡(), 张旭东, 任沂斌, 刘颖洁, 王浩宇, 李晓峰()   
  1. 中国科学院海洋研究所,山东 青岛 266071
  • 收稿日期:2024-11-20 修回日期:2025-01-10 出版日期:2025-02-10
  • 通讯作者: 李晓峰 E-mail:fwang@qdio.ac.cn;lixf@qdio.ac.cn
  • 基金资助:
    国家自然科学基金创新群体项目(42221005)

Research Progress on Ocean Intelligent Forecasting Based on Artificial Intelligence Technology

Fan WANG(), Xudong ZHANG, Yibin REN, Yingjie LIU, Haoyu WANG, Xiaofeng LI()   

  1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2024-11-20 Revised:2025-01-10 Online:2025-02-10 Published:2025-04-02
  • Contact: Xiaofeng LI E-mail:fwang@qdio.ac.cn;lixf@qdio.ac.cn
  • About author:WANG Fan, research areas include physical oceanography and artificial intelligence in oceanography. E-mail: fwang@qdio.ac.cn
  • Supported by:
    the Innovation Group Project of the National Natural Science Foundation of China(42221005)

随着海洋大数据的快速积累以及人工智能技术的蓬勃发展,新时代的海洋智能预报正展示出更高的精度和轻量化的优势。海洋数据的类型可以根据观测方式划分为点观测数据和场观测数据,这些数据为海洋预报提供了基础支撑。结合海洋动力过程和现象的特点,海洋预报方法可分为3种主要类型:点到点预报、场到点预报和场到场预报。这些预报方式不仅涵盖了多种海洋现象,还适应不同的预报需求。通过案例分析,具体介绍:点到点的海洋内孤立波预报,实现了数据驱动的轻量化快速预报,通过耦合物理特征实现区域预报向全球海域预报的扩展;场到点的厄尔尼诺—南方涛动预报,通过更有效地提取和融合时间和空间信息,提高了厄尔尼诺—南方涛动预测精度,并开展了可解释性分析研究;场到场的中尺度涡旋和海冰等现象的智能预报,通过引入多模态融合方法,实现更精确、更稳定的多参数预报。最后,展望在大数据背景下的海洋智能预报发展方向,通过加强数据驱动方法与物理机制的结合,有望提高预报的精准度和实时性,为海洋环境监测、灾害预警及海洋资源的可持续利用提供技术支持。

With the rapid accumulation of marine big data and the robust development of Artificial Intelligence (AI) technology, intelligent marine forecasting has shown greater precision and efficiency in this new era. Marine data can be categorized into point- and field-observation data based on the observation methods, providing foundational support for marine forecasting. Marine forecasting methods can be divided into three main types based on the characteristics of the dynamic marine processes and phenomena: point-to-point, field-to-point, and field-to-field forecasting. These forecasting approaches not only cover a variety of marine phenomena but also address different forecasting requirements. Through a case analysis, this study specifically introduces intelligent forecasting models and results for point-to-point internal solitary wave forecasting, field-to-point El Niño-Southern Oscillation (ENSO) forecasting, and field-to-field phenomena such as mesoscale eddies and sea ice. Finally, it explores the development directions for intelligent marine forecasting in the context of big data, suggesting that enhancing the integration of data-driven methods with physical mechanisms can improve forecast accuracy and real-time responsiveness, thereby providing technical support for marine environmental monitoring, disaster warning, and the sustainable use of marine resources.

中图分类号: 

图1 小尺度内孤立波传播预报技术路线(a)及其在苏禄—苏拉威西海的预报结果(b
(a)ISW为小尺度内孤立波;(b)虚线为模型预测1个半日潮周期位置,实线为2个潮周期后的预测位置
Fig. 1 The panel shows the flowchart of developing ISW forecast modelsaand the panel shows the model
results of Internal Solitary WavesISWforecastbin the Sulu-Celebes Seas
(a) ISW:Internal Solitary Waves; (b) The dashed line represents the predicted location for one semidiurnal tidal cycle, while the solid line represents the predicted
图2 基于聚类回归算法的小尺度内孤立波全球热点海域预测模型路线(a)和结果(b
(b)不同颜色的点表示不同的聚类类型
Fig. 2 Flowchart of the global hotspot prediction model for Internal Solitary WavesISWbased on clustering regression algorithmsaand resultsb
(b) Different colored points represent different clustering types
图3 STIEFSTPNet模型结构图以及模型预报效果
(a)STIEF模型结构图;(b)STPNet模型结构图;(c)STIEF模型有效预报长度效果图;(d)STPNet模型有效预报长度效果图;SSTA:海平面温度异常;SSS:海表盐度;SST:海表温度;SSSA:海表盐度异常
Fig. 3 STIEF and STPNet model structure and model forecasting effect
(a) Schematic diagram of the STIEF model; (b) Schematic diagram of the STPNet model; (c) Effective forecast length of the STIEF model; (d) Effective forecast length of the STPNet model; SSTA: Sea Surface Temperature Anomaly;SSS: Sea Surface Salinity; SST: Sea Surface Temperature; SSSA: Sea Surface Salinity Anomaly
图4 STIEFSTPNet可解释性分析
(a)显示由平均海平面温度异常(SSTA)与T300A训练的STIEF模型的霍夫莫勒图,显示了厄尔尼诺—南方涛动(ENSO)相关SSTA信号在10°S和10°N之间的平均带状传播;(b)由SSTA与T300A训练的STIEF模型的霍夫莫勒图,显示了ENSO相关SSTA信号在所有经度平均的经向传播;(c)与(a)相同除了信号为T300A信号;(d)与(b)相同,除了信号为T300A信号;(e)显示由SSTA与海表盐度异常(SSSA)训练的STPNet模型的霍夫莫勒图,显示了ENSO相关SSTA信号在10°S和10°N之间的平均带状传播;(f)由SSTA与SSSA训练的STPNet模型的霍夫莫勒图,显示了ENSO相关SSTA信号在所有经度平均的经向传播;(g)与(a)相同除了信号为SSSA信号;(h)与(b)相同,除了信号为SSSA信号
Fig. 4 STIEF and STPNet interpretability analysis
(a) Hofmammer plot showing the propagation of El Niño-Southern Oscillation (ENSO) -related Sea Surface Temperature Anomaly (SSTA) signals between 10°S and 10°N for the STIEF model trained with SSTA and T300A, averaged in a zonal band; (b) Hofmammer plot for the STIEF model trained with SSTA and T300A, showing the meridional propagation of ENSO-related SSTA signals averaged over all longitudes; (c) Same as (a) except for the signal being T300A; (d) Same as (b) except for the signal being T300A; (e) Hofmammer plot displaying the zonal propagation of ENSO-related SSTA signals between 10°S and 10°N for the STPNet model trained with SSTA and Sea Surface Salinity Anomaly (SSSA); (f) Hofmammer plot for the STPNet model trained with SSTA and SSSA, illustrating the meridional propagation of ENSO-related SSTA signals averaged over all longitudes; (g) Same as (a) except for the signal being SSSA; (h) Same as (b) except for the signal being SSSA
图5 基于AI的海洋中尺度涡预报流程
Fig. 5 Flowchart of AI-based ocean mesoscale eddy forecasting
图6 基于AI的北极海冰预报模型SICNet
Fig. 6 Arctic sea ice prediction model SICNet
1 DRÉVILLON M, BOURDALLÉ-BADIE R, DERVAL C, et al. The GODAE/Mercator-Ocean global ocean forecasting system: results, applications and prospects[J]. Journal of Operational Oceanography20081(1): 51-57.
2 BLOCKLEY E W, MARTIN M J, MCLAREN A J, et al. Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new global FOAM forecasts[J]. Geoscientific Model Development20147(6): 2 613-2 638.
3 GUO Huadong, LIANG Dong, CHEN Fang, et al. Big Earth data facilitates sustainable development goals[J]. Bulletin of Chinese Academy of Sciences202136(8): 874-884.
郭华东, 梁栋, 陈方, 等. 地球大数据促进联合国可持续发展目标实现[J]. 中国科学院院刊202136(8): 874-884.
4 GANGOPADHYAY A, SCHMIDT A, AGEL L, et al. Multiscale forecasting in the western north Atlantic: sensitivity of model forecast skill to glider data assimilation[J]. Continental Shelf Research201363: S159-S176.
5 LERMUSIAUX P F J, SCHRÖTER J, DANILOV S, et al. Multiscale modeling of coastal, shelf, and global ocean dynamics[J]. Ocean Dynamics201363(11): 1 341-1 344.
6 MIYAZAWA Y, VARLAMOV S M, MIYAMA T, et al. Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three-dimensional variational scheme[J]. Ocean Dynamics201767(6): 713-728.
7 BURNETT W, HARPER S, PRELLER R, et al. Overview of operational ocean forecasting in the US navy: past, present, and future[J]. Oceanography201427(3): 24-31.
8 HAIDVOGEL D B, ARANGO H, BUDGELL W P, et al. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system[J]. Journal of Computational Physics2008227(7): 3 595-3 624.
9 FRANCIS P A, JITHIN A K, EFFY J B, et al. High-resolution operational ocean forecast and reanalysis system for the Indian ocean[J]. Bulletin of the American Meteorological Society2020101(8): E1340-E1356.
10 CHAO Y H, HSU M K, CHEN H W, et al. Sieving nonlinear internal waves through path prediction[J]. International Journal of Remote Sensing200829(21): 6 391-6 402.
11 SIMMONS H, CHANG M H, CHANG Y T, et al. Modeling and prediction of internal waves in the South China Sea[J]. Oceanography201124(4): 88-99.
12 PACANOWSKI R C, PHILANDER S G H. Parameterization of vertical mixing in numerical models of tropical oceans[J]. Journal of Physical Oceanography198111(11): 1 443-1 451.
13 TROUW K J M, ZIMMERMANN N, MATHYS M, et al. Numerical modelling of hydrodynamics and sediment transport in the surf zone: a sensitivity study with different types of numerical models[J]. Coastal Engineering Proceedings2012(33). DOI:10.9753/icce.v33.sediment.23 .
14 WANG H Y, LI X F. Expanding Horizons: U-Net enhancements for semantic segmentation, forecasting, and super-resolution in ocean remote sensing[J]. Journal of Remote Sensing2024, 4. DOI: 10.34133/remotesensing.0196 .
15 CHEN G, HUANG B X, CHEN X Y, et al. Deep blue AI: a new bridge from data to knowledge for the ocean science[J]. Deep Sea Research Part I: Oceanographic Research Papers2022, 190. DOI: 10.1016/j.dsr.2022.103886 .
16 CHEN G, HUANG B X, YANG J, et al. Deep blue artificial intelligence for knowledge discovery of the intermediate ocean[J]. Frontiers in Marine Science2023, 9. DOI:10.3389/fmars.2022.1034188 .
17 ZHU X X, TUIA D, MOU L C, et al. Deep learning in remote sensing: a review[J]. IEEE Geoscience & Remote Sensing Magazine20185(4): 8-36.
18 SONNEWALD M, LGUENSAT R, JONES D C, et al. Bridging observations, theory and numerical simulation of the ocean using machine learning[J]. Environmental Research Letters202116(7). DOI:10.48550/arXiv.2104.12506 .
19 CHEN S L, HU C M, BARNES B B, et al. Improving ocean color data coverage through machine learning[J]. Remote Sensing of Environment2019222: 286-302.
20 LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review20207(10): 1 584-1 605.
21 RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics2019378: 686-707.
22 CAI S Z, MAO Z P, WANG Z C, et al. Physics-Informed Neural Networks (PINNs) for fluid mechanics: a review[J]. Acta Mechanica Sinica202137(12): 1 727-1 738.
23 GASHLER M S, ASHMORE S C. Modeling time series data with deep Fourier neural networks[J]. Neurocomputing2016188: 3-11.
24 HAN X H, LI X H, YANG J S, et al. Enhanced offshore wind speed forecasts along the US east coast: a deep learning framework leveraging NDBC buoy data[J]. Ocean-Land-Atmosphere Research2023, 2. DOI: 10.34133/olar.0031 .
25 ZHANG X D, LI X F. Satellite data-driven and knowledge-informed machine learning model for estimating global internal solitary wave speed[J]. Remote Sensing of Environment2022, 283. DOI: 10.1016/j.rse.2022.113328 .
26 ZHANG X D, LI X F, ZHENG Q A. A machine-learning model for forecasting internal wave propagation in the Andaman Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202114: 3 095-3 106.
27 QIAN P, FENG B, LIU X D, et al. Tidal current prediction based on a hybrid machine learning method[J]. Ocean Engineering2022, 260. DOI: 10.1016/j.oceaneng.2022.111985 .
28 ZHU Z C, WANG Z F, DONG C M, et al. Physics informed neural network modelling for storm surge forecasting: a case study in the Bohai Sea, China[J]. Coastal Engineering2025, 197. DOI: 10.1016/j.coastaleng.2024.104686 .
29 WANG J, BETHEL B J, XIE W H, et al. A hybrid model for significant wave height prediction based on an improved empirical wavelet transform decomposition and long-short term memory network[J]. Ocean Modelling2024, 189. DOI:10.1016/j.ocemod.2024.102367 .
30 SUN Y, HU P, LI S Q, et al. Regional storm surge forecast method based on a neural network and the coupled ADCIRC-SWAN model[J]. Advances in Atmospheric Sciences202542(1): 129-145.
31 DELAUNAY A, CHRISTENSEN H M. Interpretable deep learning for probabilistic MJO prediction[J]. Geophysical Research Letters202249(16). DOI: 10.1029/2022GL098566 .
32 QIN M J, DU Z H, HU L S, et al. Deep learning for multi-timescales Pacific decadal oscillation forecasting[J]. Geophysical Research Letters202249(6). DOI:10.1029/2021GL096479 .
33 HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature2019573(7 775): 568-572.
34 ZHENG G, LI X F, ZHANG R H, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances20206(29). DOI: 10.1126/sciadv.aba1482 .
35 WANG C, LI X F, ZHENG G. Tropical cyclone intensity forecasting using model knowledge guided deep learning model[J]. Environmental Research Letters202419(2). DOI: 10.1088/1748-9326/ad1bde .
36 YANG N, LI X F. An individual motion-driven artificial intelligence method for precipitation forecasting using radar image sequencing[J]. IEEE Transactions on Geoscience and Remote Sensing2024, 62. DOI:10.1109/TGRS.2024.3439871 .
37 YANG N, WANG C, LI X F. Evaluation of precipitation forecasting methods and an advanced lightweight model[J]. Environmental Research Letters202419(9). DOI: 10.1088/1748-9326/ad661f .
38 FAN S T, XIAO N H, DONG S. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering2020, 205. DOI: 10.1016/j.oceaneng.2020.107298 .
39 CUI Y Z, WU R H, ZHANG X, et al. Forecasting the eddying ocean with a deep neural network[J]. Nature Communications202516(1). DOI: 10.1038/s41467-025-57389-2 .
40 XIONG W, XIANG Y F, WU H, et al. AI-GOMS: large AI-driven global ocean modeling system[EB/OL]. 2023. [2025-01-04]. .
41 WANG X, WANG R Z, HU N Z, et al. XiHe: a data-driven model for global ocean eddy-resolving forecasting[EB/OL]. 2024. [2025-01-04]. .
42 YANG N, WANG C, ZHAO M H, et al. LangYa: revolutionizing cross-spatiotemporal ocean forecasting[EB/OL]. 2024. [2025-01-04]. .
43 QI J F, ZHANG L L, YIN B S, et al. Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: a multi-model ensemble machine learning approach[J]. Dynamics of Atmospheres and Oceans2023. DOI:10.1016/j.dynatmoce.2023.101403 .
44 COSTA M O, CAMPOS R M, GUEDES S C. Enhancing the accuracy of metocean hindcasts with machine learning models[J]. Ocean Engineering2023, 287. DOI:10.1016/j.oceaneng.2023.115724 .
45 ZHOU S Y, WANG J K, CAO Y H, et al. Improving the accuracy of global ECMWF wave height forecasts with machine learning[J]. Ocean Modelling2024, 192. DOI: 10.1016/j.ocemod.2024.102450 .
46 JIA Y G, TIAN Z C, SHI X F, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports20199(1). DOI: 10.1038/s41598-019-47886-y .
47 GUO D Q, AKYLAS T R, ZHAN P, et al. On the generation and evolution of internal solitary waves in the southern Red Sea[J]. Journal of Geophysical Research: Oceans2016121(12): 8 566-8 584.
48 GONG Y K, CHEN X E, XU J X, et al. An Internal Solitary Wave Forecasting Model in the Northern South China Sea (ISWFM-NSCS)[J]. Geoscientific Model Development202316(10): 2 851-2 871.
49 MENG J M, ZHANG H, SUN L N, et al. Remote sensing techniques for detecting internal solitary waves: a comprehensive review and prospects[J]. IEEE Geoscience and Remote Sensing Magazine202412(4): 46-78.
50 ALPERS W. Theory of radar imaging of internal waves[J]. Nature1985314: 245-247.
51 BAI X L, LI X F, LAMB K G, et al. Internal solitary wave reflection near Dongsha atoll, the South China Sea[J]. Journal of Geophysical Research: Oceans2017122(10): 7 978-7 991.
52 LI X F, JACKSON C R, PICHEL W G. Internal solitary wave refraction at Dongsha atoll, South China Sea[J]. Geophysical Research Letters201340(12): 3 128-3 132.
53 ZHANG X D, LI X F. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes Seas[J]. IEEE Transactions on Geoscience and Remote Sensing202159(4): 2 822-2 832.
54 LU K X, WANG J, ZHANG M. Study on prediction of internal solitary waves propagation in the southern Andaman Sea[J]. Journal of Oceanography202177(4): 607-613.
55 TIMMERMANN A, AN S I, KUG J S, et al. El Niño-Southern Oscillation complexity[J]. Nature2018559(7 715): 535-545.
56 HENSON C, MARKET P, LUPO A, et al. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields[J]. International Journal of Biometeorology201761(5): 857-867.
57 HSIANG S M, MENG K C, CANE M A. Civil conflicts are associated with the global climate[J]. Nature2011476(7 361): 438-441.
58 HEANEY A K, SHAMAN J, ALEXANDER K A. El Niño-Southern Oscillation and under-5 diarrhea in Botswana[J]. Nature Communications201910(1). DOI: 10.1097/01.EE9.0000607268.40410.81 .
59 CANE M A, ZEBIAK S E, DOLAN S C. Experimental forecasts of El Niño[J]. Nature1986321: 827-832.
60 TANG Y M, ZHANG R H, LIU T, et al. Progress in ENSO prediction and predictability study[J]. National Science Review20185(6): 826-839.
61 HU J, WENG B, HUANG T Q, et al. Deep residual convolutional neural network combining dropout and transfer learning for ENSO forecasting[J]. Geophysical Research Letters202148(24). DOI: 10.1029/2021GL093531 .
62 WU R G, KIRTMAN B P, van den DOOL H. An analysis of ENSO prediction skill in the CFS retrospective forecasts[J]. Journal of Climate200922(7): 1 801-1 818.
63 CHEN D K, CANE M A, KAPLAN A, et al. Predictability of El Niño over the past 148 years[J]. Nature2004428(6 984): 733-736.
64 BARNSTON A G, TIPPETT M K, L’HEUREUX M L, et al. Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing?[J]. Bulletin of the American Meteorological Society201293(5): 631-651.
65 PENLAND C. A stochastic model of IndoPacific sea surface temperature anomalies[J]. Physica D: Nonlinear Phenomena199698(2/3/4): 534-558.
66 LIMA C H R, LALL U, JEBARA T, et al. Statistical prediction of ENSO from subsurface sea temperature using a nonlinear dimensionality reduction[J]. Journal of Climate200922(17): 4 501-4 519.
67 CAPOTONDI A, SARDESHMUKH P D. Optimal precursors of different types of ENSO events[J]. Geophysical Research Letters201542(22): 9 952-9 960.
68 WEBSTER P J, YANG S. Monsoon and ENSO: selectively interactive systems[J]. Quarterly Journal of the Royal Meteorological Society1992118(507): 877-926.
69 jan van OLDENBORGH G, BALMASEDA M A, FERRANTI L, et al. Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years?[J]. Journal of Climate200518(16): 3 240-3 249.
70 WANG H Y, HU S N, LI X F. An interpretable deep learning ENSO forecasting model[J]. Ocean-Land-Atmosphere Research2023, 2. DOI: 10.34133/olar.0012 .
71 WANG H Y, HU S N, GUAN C, et al. The role of sea surface salinity in ENSO forecasting in the 21st century[J]. NPJ Climate and Atmospheric Science2024, 7. DOI:10.1038/s41612-024-00763-6 .
72 CHELTON D B, GAUBE P, SCHLAX M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J]. Science2011334(6 054): 328-332.
73 DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications2014, 5. DOI: 10.1038/ncomms4294 .
74 ZHANG Z G, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science2014345(6 194): 322-324.
75 FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of southern ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience20136: 608-612.
76 FRENGER I, MÜNNICH M, GRUBER N. Imprint of southern ocean mesoscale eddies on chlorophyll[J]. Biogeosciences201815(15): 4 781-4 798.
77 LIU Q, LIU Y J, LI X F. Characteristics of physical and biochemical parameters within mesoscale eddies in the southern ocean[J]. Environmental Science2023. DOI:10.5194/bg-2023-39 .
78 ROBINSON A R, CARTON J A, MOOERS C N K, et al. A real-time dynamical forecast of ocean synoptic/mesoscale eddies[J]. Nature1984309: 781-783.
79 MASINA S, PINARDI N. Mesoscale data assimilation studies in the middle adriatic sea[J]. Continental Shelf Research199414(12): 1 293-1 310.
80 SHRIVER J F, HURLBURT H E, SMEDSTAD O M, et al. 1/32° real-time global ocean prediction and value-added over 1/16° resolution[J]. Journal of Marine Systems200765(1/2/3/4): 3-26.
81 HURLBURT H E, CHASSIGNET E P, CUMMINGS J A, et al. Eddy-resolving global ocean prediction[M]// Ocean modeling in an eddying regime. Washington, D.C.: American Geophysical Union, 2008: 353-381.
82 SHCHEPETKIN A F, MCWILLIAMS J C. The Regional Oceanic Modeling System (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling20059(4): 347-404.
83 SHCHEPETKIN A F, MCWILLIAMS J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. Journal of Geophysical Research: Oceans2003108(C3). DOI: 10.1029/2001JC001047 .
84 BLECK R. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates[J]. Ocean Modelling20024(1): 55-88.
85 CHASSIGNET E P, SMITH L T, HALLIWELL G R, et al. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity[J]. Journal of Physical Oceanography200333(12): 2 504-2 526.
86 GURVAN M, the NEMO team. NEMO ocean engine[M]. Scientific Notes of Climate Modelling Center2017.
87 JOHN S S, ARI S. MU-Net: modified U-Net architecture for automatic ocean eddy detection[J]. IEEE Geoscience and Remote Sensing Letters202219: 1-5.
88 LGUENSAT R, SUN M, FABLET R, et al. EddyNet: a deep neural network for pixel-wise classification of oceanic eddies[C]// IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium. Valencia, Spain: IEEE, 2018: 1 764-1 767.
89 SUN X, ZHANG M, DONG J Y, et al. A deep framework for eddy detection and tracking from satellite sea surface height data[J]. IEEE Transactions on Geoscience and Remote Sensing202159(9): 7 224-7 234.
90 LIU Y J, ZHENG Q A, LI X F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters202148(17). DOI:10.1029/2021GL094772 .
91 MA C Y, LI S Q, WANG A N, et al. Altimeter observation-based eddy nowcasting using an improved conv-LSTM network[J]. Remote Sensing201911(7). DOI: 10.3390/rs11070783 .
92 DU Y L, HUANG J H, CHEN J S, et al. Enhanced transformer framework for multivariate mesoscale eddy trajectory prediction[J]. Journal of Marine Science and Engineering202412(10). DOI: 10.3390/jmse12101759 .
93 ZHOU Y, REN T, CHEN K R, et al. Graph-based memory recall recurrent neural network for mid-term sea-surface height anomaly forecasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202417: 6 642-6 657.
94 WANG X N, WANG X G, YU M, et al. MesoGRU: deep learning framework for mesoscale eddy trajectory prediction[J]. IEEE Geoscience and Remote Sensing Letters1993, 19. DOI: 10.1109/LGRS.2021.3087835 .
95 WANG X G, LI C, WANG X N, et al. Spatio-temporal attention-based deep learning framework for mesoscale eddy trajectory prediction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202215: 3 853-3 867.
96 CHEN X Y, CHEN G, GE L Y, et al. Medium-range forecasting of oceanic eddy trajectory[J]. International Journal of Digital Earth202417(1). DOI:10.1080/17538947.2023.2300325 .
97 GE L Y, HUANG B X, CHEN X Y, et al. Medium-range trajectory prediction network compliant to physical constraint for oceanic eddy[J]. IEEE Transactions on Geoscience and Remote Sensing2023, 61. DOI: 10.1109/TGRS.2023.3298020 .
98 ZHANG X M, HUANG B X, CHEN G, et al. Global oceanic mesoscale eddies trajectories prediction with knowledge-fused neural network[J]. IEEE Transactions on Geoscience and Remote Sensing2024, 62. DOI:10.1109/TGRS.2024.3388040 .
99 CUI Y Z, WU R H, ZHANG X, et al. Forecasting the eddying ocean with a deep neural network[J]. Nature Communications202516(1). DOI: 10.1038/s41467-025-57389-2 .
100 KE Changqing, JIN Xin, SHEN Xiaoyi, et al. Comparison of Antarctic and Arctic seaice variations and their impact factors[J]. Chinese Journal of Polar Research202032(1): 1-12.
柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究202032(1): 1-12.
101 LI Xiaoming, ZHANG Qiang. Observation of Arctic Sea ice cover by spaceborne synthetic aperture radar[J]. Haiyang Xuebao201941(4): 145-146.
李晓明, 张强. 星载合成孔径雷达北极海冰覆盖观测[J]. 海洋学报201941(4): 145-146.
102 ZHAO Jinping, SHI Jiuxin, WANG Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science201530(9): 985-995.
赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展201530(9): 985-995.
103 LIU Jiping, LEI Ruibo, SONG Mirong, et al. Development and challenge of sea ice model adapting to rapid polar sea ice changes[J]. Transactions of Atmospheric Sciences202144(1): 12-25.
刘骥平, 雷瑞波, 宋米荣, 等. 适应极地快速变化海冰模式的研发与挑战[J]. 大气科学学报202144(1): 12-25.
104 SHU Qi, QIAO Fangli, SONG Zhenya. The hindcast and forecast of Arctic sea ice from FIO-ESM[J]. Acta Oceanologica Sinica201335(5): 37-45.
舒启, 乔方利, 宋振亚. 地球系统模式FIO-ESM对北极海冰的模拟和预估[J]. 海洋学报201335(5): 37-45.
105 YUAN X J, CHEN D K, LI C H, et al. Arctic sea ice seasonal prediction by a linear Markov model[J]. Journal of Climate201629(22): 8 151-8 173.
106 YANG Q H, MU L J, WU X R, et al. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model[J]. Atmospheric Research2019227: 14-23.
107 REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature2019566(7 743): 195-204.
108 CHI J, KIM H C. Prediction of Arctic sea ice concentration using a fully data driven deep neural network[J]. Remote Sensing20179(12). DOI: 10.3390/rs9121305 .
109 KIM Y J, KIM H C, HAN D, et al. Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks[J]. The Cryosphere202014(3): 1 083-1 104.
110 ANDERSSON T R, HOSKING J S, PÉREZ-ORTIZ M, et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning[J]. Nature Communications202112(1). DOI:10.1038/s41467-021-25257-4 .
111 REN Y B, LI X F, ZHANG W H. A data-driven deep learning model for weekly sea ice concentration prediction of the pan-Arctic during the melting season[J]. IEEE Transactions on Geoscience and Remote Sensing2022, 60. DOI: 10.1109/TGRS.2022.3177600 .
112 REN Y B, LI X F. Predicting the daily sea ice concentration on a subseasonal scale of the pan-Arctic during the melting season by a deep learning model[J]. IEEE Transactions on Geoscience and Remote Sensing2023, 61. DOI: 10.1109/TGRS.2023.3279089 .
113 ZHU Y C, ZHANG R H, MOUM J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review20229(8). DOI:10.1093/nsr/nwac044 .
114 PARTEE S, ELLIS M, RIGAZZI A, et al. Using Machine Learning at scale in numerical simulations with SmartSim: an application to ocean climate modeling[J]. Journal of Computational Science2022, 62. DOI: 10.1016/j.jocs.2022.101707 .
115 SHEN D L, BAO S W, PIETRAFESA L J, et al. Improving numerical model predicted float trajectories by deep learning[J]. Earth and Space Science20229(9). DOI:10.1029/2022EA002362 .
116 BI K F, XIE L X, ZHANG H H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature2023619(7 970): 533-538.
[1] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[2] 黄春林, 侯金亮, 李维德, 顾娟, 张莹, 韩伟孝, 王维真, 温小虎, 朱高峰. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(5): 441-452.
[3] 王姣娥, 黄洁. 交通—区域发展交互的理论创新与实践应用[J]. 地球科学进展, 2022, 37(2): 177-186.
[4] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[5] 马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展, 2020, 35(6): 551-560.
[6] 王卷乐,王明明,石蕾,高孟绪,陈明奇,郑晓欢,王超,王玉洁. 科学数据管理态势及其对我国地球科学领域的启示[J]. 地球科学进展, 2019, 34(3): 306-315.
[7] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[8] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[9] 谢榕, 刘亚文, 李翔翔. 大数据环境下卫星对地观测数据集成系统的关键技术[J]. 地球科学进展, 2015, 30(9): 855-862.
[10] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[11] 谢榕, 刘亚文, 李翔翔. 大数据环境下卫星对地观测数据集成系统的关键技术[J]. 地球科学进展, 2015, 30(8): 855-862.
[12] 余星. 海底岩石地球化学研究中的#cod#x0201c;大数据#cod#x0201d;#cod#x02014;#cod#x02014;PetDB及其应用[J]. 地球科学进展, 2014, 29(2): 306-314.
[13] 肖义越; 戴桦; 陈辉. 专家系统在地球科学中的应用[J]. 地球科学进展, 1993, 8(1): 49-54.
阅读次数
全文


摘要