1 |
DRÉVILLON M, BOURDALLÉ-BADIE R, DERVAL C, et al. The GODAE/Mercator-Ocean global ocean forecasting system: results, applications and prospects[J]. Journal of Operational Oceanography, 2008, 1(1): 51-57.
|
2 |
BLOCKLEY E W, MARTIN M J, MCLAREN A J, et al. Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new global FOAM forecasts[J]. Geoscientific Model Development, 2014, 7(6): 2 613-2 638.
|
3 |
GUO Huadong, LIANG Dong, CHEN Fang, et al. Big Earth data facilitates sustainable development goals[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 874-884.
|
|
郭华东, 梁栋, 陈方, 等. 地球大数据促进联合国可持续发展目标实现[J]. 中国科学院院刊, 2021, 36(8): 874-884.
|
4 |
GANGOPADHYAY A, SCHMIDT A, AGEL L, et al. Multiscale forecasting in the western north Atlantic: sensitivity of model forecast skill to glider data assimilation[J]. Continental Shelf Research, 2013, 63: S159-S176.
|
5 |
LERMUSIAUX P F J, SCHRÖTER J, DANILOV S, et al. Multiscale modeling of coastal, shelf, and global ocean dynamics[J]. Ocean Dynamics, 2013, 63(11): 1 341-1 344.
|
6 |
MIYAZAWA Y, VARLAMOV S M, MIYAMA T, et al. Assimilation of high-resolution sea surface temperature data into an operational nowcast/forecast system around Japan using a multi-scale three-dimensional variational scheme[J]. Ocean Dynamics, 2017, 67(6): 713-728.
|
7 |
BURNETT W, HARPER S, PRELLER R, et al. Overview of operational ocean forecasting in the US navy: past, present, and future[J]. Oceanography, 2014, 27(3): 24-31.
|
8 |
HAIDVOGEL D B, ARANGO H, BUDGELL W P, et al. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system[J]. Journal of Computational Physics, 2008, 227(7): 3 595-3 624.
|
9 |
FRANCIS P A, JITHIN A K, EFFY J B, et al. High-resolution operational ocean forecast and reanalysis system for the Indian ocean[J]. Bulletin of the American Meteorological Society, 2020, 101(8): E1340-E1356.
|
10 |
CHAO Y H, HSU M K, CHEN H W, et al. Sieving nonlinear internal waves through path prediction[J]. International Journal of Remote Sensing, 2008, 29(21): 6 391-6 402.
|
11 |
SIMMONS H, CHANG M H, CHANG Y T, et al. Modeling and prediction of internal waves in the South China Sea[J]. Oceanography, 2011, 24(4): 88-99.
|
12 |
PACANOWSKI R C, PHILANDER S G H. Parameterization of vertical mixing in numerical models of tropical oceans[J]. Journal of Physical Oceanography, 1981, 11(11): 1 443-1 451.
|
13 |
TROUW K J M, ZIMMERMANN N, MATHYS M, et al. Numerical modelling of hydrodynamics and sediment transport in the surf zone: a sensitivity study with different types of numerical models[J]. Coastal Engineering Proceedings, 2012(33). DOI:10.9753/icce.v33.sediment.23 .
|
14 |
WANG H Y, LI X F. Expanding Horizons: U-Net enhancements for semantic segmentation, forecasting, and super-resolution in ocean remote sensing[J]. Journal of Remote Sensing, 2024, 4. DOI: 10.34133/remotesensing.0196 .
|
15 |
CHEN G, HUANG B X, CHEN X Y, et al. Deep blue AI: a new bridge from data to knowledge for the ocean science[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2022, 190. DOI: 10.1016/j.dsr.2022.103886 .
|
16 |
CHEN G, HUANG B X, YANG J, et al. Deep blue artificial intelligence for knowledge discovery of the intermediate ocean[J]. Frontiers in Marine Science, 2023, 9. DOI:10.3389/fmars.2022.1034188 .
|
17 |
ZHU X X, TUIA D, MOU L C, et al. Deep learning in remote sensing: a review[J]. IEEE Geoscience & Remote Sensing Magazine, 2018, 5(4): 8-36.
|
18 |
SONNEWALD M, LGUENSAT R, JONES D C, et al. Bridging observations, theory and numerical simulation of the ocean using machine learning[J]. Environmental Research Letters, 2021, 16(7). DOI:10.48550/arXiv.2104.12506 .
|
19 |
CHEN S L, HU C M, BARNES B B, et al. Improving ocean color data coverage through machine learning[J]. Remote Sensing of Environment, 2019, 222: 286-302.
|
20 |
LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1 584-1 605.
|
21 |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
|
22 |
CAI S Z, MAO Z P, WANG Z C, et al. Physics-Informed Neural Networks (PINNs) for fluid mechanics: a review[J]. Acta Mechanica Sinica, 2021, 37(12): 1 727-1 738.
|
23 |
GASHLER M S, ASHMORE S C. Modeling time series data with deep Fourier neural networks[J]. Neurocomputing, 2016, 188: 3-11.
|
24 |
HAN X H, LI X H, YANG J S, et al. Enhanced offshore wind speed forecasts along the US east coast: a deep learning framework leveraging NDBC buoy data[J]. Ocean-Land-Atmosphere Research, 2023, 2. DOI: 10.34133/olar.0031 .
|
25 |
ZHANG X D, LI X F. Satellite data-driven and knowledge-informed machine learning model for estimating global internal solitary wave speed[J]. Remote Sensing of Environment, 2022, 283. DOI: 10.1016/j.rse.2022.113328 .
|
26 |
ZHANG X D, LI X F, ZHENG Q A. A machine-learning model for forecasting internal wave propagation in the Andaman Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3 095-3 106.
|
27 |
QIAN P, FENG B, LIU X D, et al. Tidal current prediction based on a hybrid machine learning method[J]. Ocean Engineering, 2022, 260. DOI: 10.1016/j.oceaneng.2022.111985 .
|
28 |
ZHU Z C, WANG Z F, DONG C M, et al. Physics informed neural network modelling for storm surge forecasting: a case study in the Bohai Sea, China[J]. Coastal Engineering, 2025, 197. DOI: 10.1016/j.coastaleng.2024.104686 .
|
29 |
WANG J, BETHEL B J, XIE W H, et al. A hybrid model for significant wave height prediction based on an improved empirical wavelet transform decomposition and long-short term memory network[J]. Ocean Modelling, 2024, 189. DOI:10.1016/j.ocemod.2024.102367 .
|
30 |
SUN Y, HU P, LI S Q, et al. Regional storm surge forecast method based on a neural network and the coupled ADCIRC-SWAN model[J]. Advances in Atmospheric Sciences, 2025, 42(1): 129-145.
|
31 |
DELAUNAY A, CHRISTENSEN H M. Interpretable deep learning for probabilistic MJO prediction[J]. Geophysical Research Letters, 2022, 49(16). DOI: 10.1029/2022GL098566 .
|
32 |
QIN M J, DU Z H, HU L S, et al. Deep learning for multi-timescales Pacific decadal oscillation forecasting[J]. Geophysical Research Letters, 2022, 49(6). DOI:10.1029/2021GL096479 .
|
33 |
HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7 775): 568-572.
|
34 |
ZHENG G, LI X F, ZHANG R H, et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29). DOI: 10.1126/sciadv.aba1482 .
|
35 |
WANG C, LI X F, ZHENG G. Tropical cyclone intensity forecasting using model knowledge guided deep learning model[J]. Environmental Research Letters, 2024, 19(2). DOI: 10.1088/1748-9326/ad1bde .
|
36 |
YANG N, LI X F. An individual motion-driven artificial intelligence method for precipitation forecasting using radar image sequencing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62. DOI:10.1109/TGRS.2024.3439871 .
|
37 |
YANG N, WANG C, LI X F. Evaluation of precipitation forecasting methods and an advanced lightweight model[J]. Environmental Research Letters, 2024, 19(9). DOI: 10.1088/1748-9326/ad661f .
|
38 |
FAN S T, XIAO N H, DONG S. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205. DOI: 10.1016/j.oceaneng.2020.107298 .
|
39 |
CUI Y Z, WU R H, ZHANG X, et al. Forecasting the eddying ocean with a deep neural network[J]. Nature Communications, 2025, 16(1). DOI: 10.1038/s41467-025-57389-2 .
|
40 |
XIONG W, XIANG Y F, WU H, et al. AI-GOMS: large AI-driven global ocean modeling system[EB/OL]. 2023. [2025-01-04]. .
|
41 |
WANG X, WANG R Z, HU N Z, et al. XiHe: a data-driven model for global ocean eddy-resolving forecasting[EB/OL]. 2024. [2025-01-04]. .
|
42 |
YANG N, WANG C, ZHAO M H, et al. LangYa: revolutionizing cross-spatiotemporal ocean forecasting[EB/OL]. 2024. [2025-01-04]. .
|
43 |
QI J F, ZHANG L L, YIN B S, et al. Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: a multi-model ensemble machine learning approach[J]. Dynamics of Atmospheres and Oceans, 2023. DOI:10.1016/j.dynatmoce.2023.101403 .
|
44 |
COSTA M O, CAMPOS R M, GUEDES S C. Enhancing the accuracy of metocean hindcasts with machine learning models[J]. Ocean Engineering, 2023, 287. DOI:10.1016/j.oceaneng.2023.115724 .
|
45 |
ZHOU S Y, WANG J K, CAO Y H, et al. Improving the accuracy of global ECMWF wave height forecasts with machine learning[J]. Ocean Modelling, 2024, 192. DOI: 10.1016/j.ocemod.2024.102450 .
|
46 |
JIA Y G, TIAN Z C, SHI X F, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports, 2019, 9(1). DOI: 10.1038/s41598-019-47886-y .
|
47 |
GUO D Q, AKYLAS T R, ZHAN P, et al. On the generation and evolution of internal solitary waves in the southern Red Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8 566-8 584.
|
48 |
GONG Y K, CHEN X E, XU J X, et al. An Internal Solitary Wave Forecasting Model in the Northern South China Sea (ISWFM-NSCS)[J]. Geoscientific Model Development, 2023, 16(10): 2 851-2 871.
|
49 |
MENG J M, ZHANG H, SUN L N, et al. Remote sensing techniques for detecting internal solitary waves: a comprehensive review and prospects[J]. IEEE Geoscience and Remote Sensing Magazine, 2024, 12(4): 46-78.
|
50 |
ALPERS W. Theory of radar imaging of internal waves[J]. Nature, 1985, 314: 245-247.
|
51 |
BAI X L, LI X F, LAMB K G, et al. Internal solitary wave reflection near Dongsha atoll, the South China Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7 978-7 991.
|
52 |
LI X F, JACKSON C R, PICHEL W G. Internal solitary wave refraction at Dongsha atoll, South China Sea[J]. Geophysical Research Letters, 2013, 40(12): 3 128-3 132.
|
53 |
ZHANG X D, LI X F. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes Seas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2 822-2 832.
|
54 |
LU K X, WANG J, ZHANG M. Study on prediction of internal solitary waves propagation in the southern Andaman Sea[J]. Journal of Oceanography, 2021, 77(4): 607-613.
|
55 |
TIMMERMANN A, AN S I, KUG J S, et al. El Niño-Southern Oscillation complexity[J]. Nature, 2018, 559(7 715): 535-545.
|
56 |
HENSON C, MARKET P, LUPO A, et al. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields[J]. International Journal of Biometeorology, 2017, 61(5): 857-867.
|
57 |
HSIANG S M, MENG K C, CANE M A. Civil conflicts are associated with the global climate[J]. Nature, 2011, 476(7 361): 438-441.
|
58 |
HEANEY A K, SHAMAN J, ALEXANDER K A. El Niño-Southern Oscillation and under-5 diarrhea in Botswana[J]. Nature Communications, 2019, 10(1). DOI: 10.1097/01.EE9.0000607268.40410.81 .
|
59 |
CANE M A, ZEBIAK S E, DOLAN S C. Experimental forecasts of El Niño[J]. Nature, 1986, 321: 827-832.
|
60 |
TANG Y M, ZHANG R H, LIU T, et al. Progress in ENSO prediction and predictability study[J]. National Science Review, 2018, 5(6): 826-839.
|
61 |
HU J, WENG B, HUANG T Q, et al. Deep residual convolutional neural network combining dropout and transfer learning for ENSO forecasting[J]. Geophysical Research Letters, 2021, 48(24). DOI: 10.1029/2021GL093531 .
|
62 |
WU R G, KIRTMAN B P, van den DOOL H. An analysis of ENSO prediction skill in the CFS retrospective forecasts[J]. Journal of Climate, 2009, 22(7): 1 801-1 818.
|
63 |
CHEN D K, CANE M A, KAPLAN A, et al. Predictability of El Niño over the past 148 years[J]. Nature, 2004, 428(6 984): 733-736.
|
64 |
BARNSTON A G, TIPPETT M K, L’HEUREUX M L, et al. Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing?[J]. Bulletin of the American Meteorological Society, 2012, 93(5): 631-651.
|
65 |
PENLAND C. A stochastic model of IndoPacific sea surface temperature anomalies[J]. Physica D: Nonlinear Phenomena, 1996, 98(2/3/4): 534-558.
|
66 |
LIMA C H R, LALL U, JEBARA T, et al. Statistical prediction of ENSO from subsurface sea temperature using a nonlinear dimensionality reduction[J]. Journal of Climate, 2009, 22(17): 4 501-4 519.
|
67 |
CAPOTONDI A, SARDESHMUKH P D. Optimal precursors of different types of ENSO events[J]. Geophysical Research Letters, 2015, 42(22): 9 952-9 960.
|
68 |
WEBSTER P J, YANG S. Monsoon and ENSO: selectively interactive systems[J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(507): 877-926.
|
69 |
jan van OLDENBORGH G, BALMASEDA M A, FERRANTI L, et al. Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years?[J]. Journal of Climate, 2005, 18(16): 3 240-3 249.
|
70 |
WANG H Y, HU S N, LI X F. An interpretable deep learning ENSO forecasting model[J]. Ocean-Land-Atmosphere Research, 2023, 2. DOI: 10.34133/olar.0012 .
|
71 |
WANG H Y, HU S N, GUAN C, et al. The role of sea surface salinity in ENSO forecasting in the 21st century[J]. NPJ Climate and Atmospheric Science, 2024, 7. DOI:10.1038/s41612-024-00763-6 .
|
72 |
CHELTON D B, GAUBE P, SCHLAX M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J]. Science, 2011, 334(6 054): 328-332.
|
73 |
DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5. DOI: 10.1038/ncomms4294 .
|
74 |
ZHANG Z G, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6 194): 322-324.
|
75 |
FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of southern ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6: 608-612.
|
76 |
FRENGER I, MÜNNICH M, GRUBER N. Imprint of southern ocean mesoscale eddies on chlorophyll[J]. Biogeosciences, 2018, 15(15): 4 781-4 798.
|
77 |
LIU Q, LIU Y J, LI X F. Characteristics of physical and biochemical parameters within mesoscale eddies in the southern ocean[J]. Environmental Science, 2023. DOI:10.5194/bg-2023-39 .
|
78 |
ROBINSON A R, CARTON J A, MOOERS C N K, et al. A real-time dynamical forecast of ocean synoptic/mesoscale eddies[J]. Nature, 1984, 309: 781-783.
|
79 |
MASINA S, PINARDI N. Mesoscale data assimilation studies in the middle adriatic sea[J]. Continental Shelf Research, 1994, 14(12): 1 293-1 310.
|
80 |
SHRIVER J F, HURLBURT H E, SMEDSTAD O M, et al. 1/32° real-time global ocean prediction and value-added over 1/16° resolution[J]. Journal of Marine Systems, 2007, 65(1/2/3/4): 3-26.
|
81 |
HURLBURT H E, CHASSIGNET E P, CUMMINGS J A, et al. Eddy-resolving global ocean prediction[M]// Ocean modeling in an eddying regime. Washington, D.C.: American Geophysical Union, 2008: 353-381.
|
82 |
SHCHEPETKIN A F, MCWILLIAMS J C. The Regional Oceanic Modeling System (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4): 347-404.
|
83 |
SHCHEPETKIN A F, MCWILLIAMS J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. Journal of Geophysical Research: Oceans, 2003, 108(C3). DOI: 10.1029/2001JC001047 .
|
84 |
BLECK R. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates[J]. Ocean Modelling, 2002, 4(1): 55-88.
|
85 |
CHASSIGNET E P, SMITH L T, HALLIWELL G R, et al. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity[J]. Journal of Physical Oceanography, 2003, 33(12): 2 504-2 526.
|
86 |
GURVAN M, the NEMO team. NEMO ocean engine[M]. Scientific Notes of Climate Modelling Center, 2017.
|
87 |
JOHN S S, ARI S. MU-Net: modified U-Net architecture for automatic ocean eddy detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
88 |
LGUENSAT R, SUN M, FABLET R, et al. EddyNet: a deep neural network for pixel-wise classification of oceanic eddies[C]// IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium. Valencia, Spain: IEEE, 2018: 1 764-1 767.
|
89 |
SUN X, ZHANG M, DONG J Y, et al. A deep framework for eddy detection and tracking from satellite sea surface height data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7 224-7 234.
|
90 |
LIU Y J, ZHENG Q A, LI X F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17). DOI:10.1029/2021GL094772 .
|
91 |
MA C Y, LI S Q, WANG A N, et al. Altimeter observation-based eddy nowcasting using an improved conv-LSTM network[J]. Remote Sensing, 2019, 11(7). DOI: 10.3390/rs11070783 .
|
92 |
DU Y L, HUANG J H, CHEN J S, et al. Enhanced transformer framework for multivariate mesoscale eddy trajectory prediction[J]. Journal of Marine Science and Engineering, 2024, 12(10). DOI: 10.3390/jmse12101759 .
|
93 |
ZHOU Y, REN T, CHEN K R, et al. Graph-based memory recall recurrent neural network for mid-term sea-surface height anomaly forecasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 6 642-6 657.
|
94 |
WANG X N, WANG X G, YU M, et al. MesoGRU: deep learning framework for mesoscale eddy trajectory prediction[J]. IEEE Geoscience and Remote Sensing Letters, 1993, 19. DOI: 10.1109/LGRS.2021.3087835 .
|
95 |
WANG X G, LI C, WANG X N, et al. Spatio-temporal attention-based deep learning framework for mesoscale eddy trajectory prediction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3 853-3 867.
|
96 |
CHEN X Y, CHEN G, GE L Y, et al. Medium-range forecasting of oceanic eddy trajectory[J]. International Journal of Digital Earth, 2024, 17(1). DOI:10.1080/17538947.2023.2300325 .
|
97 |
GE L Y, HUANG B X, CHEN X Y, et al. Medium-range trajectory prediction network compliant to physical constraint for oceanic eddy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3298020 .
|
98 |
ZHANG X M, HUANG B X, CHEN G, et al. Global oceanic mesoscale eddies trajectories prediction with knowledge-fused neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62. DOI:10.1109/TGRS.2024.3388040 .
|
99 |
CUI Y Z, WU R H, ZHANG X, et al. Forecasting the eddying ocean with a deep neural network[J]. Nature Communications, 2025, 16(1). DOI: 10.1038/s41467-025-57389-2 .
|
100 |
KE Changqing, JIN Xin, SHEN Xiaoyi, et al. Comparison of Antarctic and Arctic seaice variations and their impact factors[J]. Chinese Journal of Polar Research, 2020, 32(1): 1-12.
|
|
柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究, 2020, 32(1): 1-12.
|
101 |
LI Xiaoming, ZHANG Qiang. Observation of Arctic Sea ice cover by spaceborne synthetic aperture radar[J]. Haiyang Xuebao, 2019, 41(4): 145-146.
|
|
李晓明, 张强. 星载合成孔径雷达北极海冰覆盖观测[J]. 海洋学报, 2019, 41(4): 145-146.
|
102 |
ZHAO Jinping, SHI Jiuxin, WANG Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985-995.
|
|
赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
|
103 |
LIU Jiping, LEI Ruibo, SONG Mirong, et al. Development and challenge of sea ice model adapting to rapid polar sea ice changes[J]. Transactions of Atmospheric Sciences, 2021, 44(1): 12-25.
|
|
刘骥平, 雷瑞波, 宋米荣, 等. 适应极地快速变化海冰模式的研发与挑战[J]. 大气科学学报, 2021, 44(1): 12-25.
|
104 |
SHU Qi, QIAO Fangli, SONG Zhenya. The hindcast and forecast of Arctic sea ice from FIO-ESM[J]. Acta Oceanologica Sinica, 2013, 35(5): 37-45.
|
|
舒启, 乔方利, 宋振亚. 地球系统模式FIO-ESM对北极海冰的模拟和预估[J]. 海洋学报, 2013, 35(5): 37-45.
|
105 |
YUAN X J, CHEN D K, LI C H, et al. Arctic sea ice seasonal prediction by a linear Markov model[J]. Journal of Climate, 2016, 29(22): 8 151-8 173.
|
106 |
YANG Q H, MU L J, WU X R, et al. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model[J]. Atmospheric Research, 2019, 227: 14-23.
|
107 |
REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7 743): 195-204.
|
108 |
CHI J, KIM H C. Prediction of Arctic sea ice concentration using a fully data driven deep neural network[J]. Remote Sensing, 2017, 9(12). DOI: 10.3390/rs9121305 .
|
109 |
KIM Y J, KIM H C, HAN D, et al. Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks[J]. The Cryosphere, 2020, 14(3): 1 083-1 104.
|
110 |
ANDERSSON T R, HOSKING J S, PÉREZ-ORTIZ M, et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-25257-4 .
|
111 |
REN Y B, LI X F, ZHANG W H. A data-driven deep learning model for weekly sea ice concentration prediction of the pan-Arctic during the melting season[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60. DOI: 10.1109/TGRS.2022.3177600 .
|
112 |
REN Y B, LI X F. Predicting the daily sea ice concentration on a subseasonal scale of the pan-Arctic during the melting season by a deep learning model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3279089 .
|
113 |
ZHU Y C, ZHANG R H, MOUM J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022, 9(8). DOI:10.1093/nsr/nwac044 .
|
114 |
PARTEE S, ELLIS M, RIGAZZI A, et al. Using Machine Learning at scale in numerical simulations with SmartSim: an application to ocean climate modeling[J]. Journal of Computational Science, 2022, 62. DOI: 10.1016/j.jocs.2022.101707 .
|
115 |
SHEN D L, BAO S W, PIETRAFESA L J, et al. Improving numerical model predicted float trajectories by deep learning[J]. Earth and Space Science, 2022, 9(9). DOI:10.1029/2022EA002362 .
|
116 |
BI K F, XIE L X, ZHANG H H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7 970): 533-538.
|