地球科学进展 ›› 2025, Vol. 40 ›› Issue (3): 315 -330. doi: 10.11867/j.issn.1001-8166.2025.021

研究论文 上一篇    

南海西北陆缘多期次海底滑坡的发育特征及形成机理研究
李俊池1,2,3(), 李伟1,2,3(), 敬嵩1,2, 赵璇1,2,3, 詹文欢1,2,3   
  1. 1.中国科学院南海海洋研究所,广东 广州 510301
    2.中国科学院边缘海与大洋地质重点实验室,广东 广州 510301
    3.中国科学院大学,北京 100049
  • 收稿日期:2025-01-13 修回日期:2025-02-13 出版日期:2025-03-10
  • 通讯作者: 李伟 E-mail:lijunchi23@mails.ucas.ac.cn;wli@scsio.ac.cn
  • 基金资助:
    中国科学院南海海洋研究所培育项目(SCSIO202206);海南省自然科学基金青年基金项目(425QN503)

Development Characteristics and Formation Mechanism of Multiple Submarine Landslides in the Northwestern Continental Margin of the South China Sea

Junchi LI1,2,3(), Wei LI1,2,3(), Song JING1,2, Xuan ZHAO1,2,3, Wenhuan ZHAN1,2,3   

  1. 1.South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    2.Key Laboratory of Ocean and Marginal Sea Geology, Chinese Academy of Sciences, Guangzhou 510301, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-01-13 Revised:2025-02-13 Online:2025-03-10 Published:2025-05-07
  • Contact: Wei LI E-mail:lijunchi23@mails.ucas.ac.cn;wli@scsio.ac.cn
  • About author:LI Junchi, research area includes the mechanism of submarine landslide. E-mail: lijunchi23@mails.ucas.ac.cn
  • Supported by:
    the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(SCSIO202206);The Youth Fund of the Natural Science Foundation of Hainan Province, China(425QN503)

海底滑坡多是经过漫长的地质作用,在多种因素共同作用下发生的。部分大型海底滑坡呈现多期次滑动,滑动过程复杂,但目前对多期次海底滑坡的发育特征及形成机理的认识还不够明确,这限制了对其发育模式的科学认知。基于高分辨率二维多道地震资料和钻孔数据,在南海西北陆缘开平凹陷识别出6期海底滑坡形成的块体搬运沉积体,根据区域层序地层格架,发现这些块体搬运沉积体主要分布在下韩江组和粤海组地层中,其中块体搬运沉积体1和块体搬运沉积体2发生于16.3~13.8 Ma,块体搬运沉积体3~6形成于10.4~5.3 Ma。地震剖面解释结果表明,块体搬运沉积体1和块体搬运沉积体2内部地质结构变形程度较大,受后期构造活动改造严重,而块体搬运沉积体3~6可识别出后壁和侧壁等典型滑坡特征。通过计算研究区各期块体搬运沉积体发生时的沉积速率,发现低海平面时期的高沉积速率可能为海底滑坡发生提供了重要的先决条件,沉积物快速堆积会使得孔隙流体无法及时排出,从而导致沉积物保持较高的孔隙压力,可能形成不稳定的软弱层,在区域断层活动与地震的触发下发生了多期大规模海底滑坡。

Submarine landslides are among the most common and destructive geological hazards on continental margins. Their development can significantly reshape seafloor morphology, generate high-density turbidity currents, and even trigger catastrophic tsunamis, posing serious threats to the safety and operation of sub-sea engineering infrastructures. The formation of submarine landslides typically involves long-term geological processes influenced by multiple interacting factors. Some large-scale submarine landslides exhibit multi-stage sliding events with complex movement histories. However, current understanding of the developmental characteristics and formation mechanisms of multi-phase submarine landslides remains limited, which hinders scientific insight into their evolutionary patterns. Based on high-resolution, two-dimensional (2D) multichannel seismic and borehole data, six phases of Mass Transport Deposits (MTDs) resulting from submarine landslides have been identified in the Kaiping Sag on the northwestern continental margin of the South China Sea. According to the established regional sequence stratigraphic framework, these MTDs are mainly concentrated within the Lower Hanjiang Formation and Yuehai Formation. Seismic interpretation results indicate that the internal structure of MTD 1 and 2 is highly deformed and significantly altered by subsequent geological processes, whereas MTD 3 to MTD 6 exhibit typical landslide features such as prominent headwall scarps and lateral margins. Calculation of sedimentation rates during the occurrence of each phase of MTDs reveals that high sedimentation rates occurring during periods of low sea level provided the necessary sediments for the occurrence of landslides. This rapid sediment accumulation likely prevented the timely expulsion of pore fluids, leading to elevated pore pressure within the sediments and the formation of unstable weak layers. In addition, the widespread development of tectonic normal faults (e.g., Shenkai Fault) and their intersecting relationships with all six MTDs strongly suggest that fault activity also played a significant role in triggering these landslides. This study provides new insights into the formation mechanisms of submarine landslides along the northwestern continental margin of the South China Sea, offering important scientific support for hydrocarbon exploration, geological hazard risk assessment, and disaster prevention and mitigation in the region.

中图分类号: 

图1 南海西北陆缘开平凹陷位置与二维地震测线、块体搬运沉积体(MTDs)分布图
(a)南海西北陆缘开平凹陷地理位置,黑点划线代表珠江口盆地的分布范围;(b)南海西北陆缘开平凹陷二维地震测线及MTDs分布,黑色直线代表了二维地震测线,其中粗直线分别表示地震剖面所在的位置,不同颜色的色块表示了各期次块体搬运沉积体的分布范围
Fig. 1 Map showing the location of the Kaiping Sag in the Northwestern Margin of the South China Sea and the distribution of 2D seismic survey lines and Mass Transport DepositsMTDs
(a) Geographic location of the Kaiping Sag, the dotted line represents the distribution range of the Pearl River Mouth Basin; (b) 2D seismic line and MTDs distribution in the Kaiping Sag. The black solid lines represent the 2D seismic survey lines, where the thick straight lines indicate the locations of the seismic profiles. The different colored blocks indicate the distribution ranges of MTDs from various periods
图2 南海西北陆缘开平凹陷的层序地层柱状图
层序界面引自参考文献[30],珠江口盆地相对海平面变化曲线改自参考文献[27
Fig. 2 Schematic stratigraphy columns of Kaiping Sag in the northwestern margin of the South China Sea
The stratigraphic interface is cited from reference [30], and the relative sea level change curve of the Pearl River Mouth Basin was adapted from reference [27
图3 南海西北陆缘开平凹陷区域的地震相划分
Fig. 3 Seismic facies division of Kaiping Sag in the northwestern margin of the South China Sea
图4 开平凹陷zjk09a剖面地震地质综合解释
(a)SE-NW已解释的地震剖面zjk09a;(b)放大的地震剖面显示了MTD3的后壁陡坎、顶界面和底界面;(c)MTD3顶界面上的侵蚀沟槽;(d)MTD3~MTD5垂向叠置发育形成多期次MTDs复合体;图中横向的长实线代表区域地层界面,垂向红色实线表示断层,红色箭头表示上盘运动方向
Fig. 4 Integrated seismic and geological interpretation of profile zjk09a in Kaiping Sag
(a) Interpreted SE-NW seismic profile zjk09a; (b) Enlarged seismic profile showing the headwall scarp, top boundary and bottom boundary of MTD3; (c) Erosive grooves on the top boundary of MTD3; (d) Vertical stacking of MTD3, MTD4, and MTD5 forming a multi-period MTDs complex. The horizontal long solid lines in the figure represent regional stratigraphic interfaces, the vertical red solid lines represent faults, and the red arrows indicate the movement direction of the upper wall
图5 开平凹陷zz09剖面地震地质综合解释
(a)SW-NE已解释的地震剖面zz09;(b)放大的地震剖面显示了MTD2底部密集的断层系统;(c)MTD6上部发育大规模沉积物波;图中横向的长实线代表区域地层界面,垂向红色实线表示断层,红色箭头表示上盘运动方向
Fig. 5 Integrated seismic and geological interpretation of profile zz09 in Kaiping Sag
(a) Interpreted SW-NE seismic profile zz09; (b) Enlarged seismic profile showing the dense fault system at the bottom of MTD2; (c) Large-scale sediment waves developed in the upper part of MTD6. The horizontal long solid lines in the figure represent regional stratigraphic interfaces, the vertical red solid lines repweiresent faults, and the red arrows indicate the movement direction of the upper wall
图6 开平凹陷zqne18剖面地震地质综合解释
(a)SW-NE已解释的地震剖面zqne18; (b)放大的地震剖面显示了MTD3的侧壁及MTD3被断层切割错开; (c)MTD1与楔形体; (d)MTD3与MTD4垂向叠置发育; 图中横向的长实线代表区域地层界面,垂向红色实线表示断层,红色箭头表示上盘运动方向
Fig. 6 Integrated seismic and geological interpretation of profile zqne18 in Kaiping Sag
(a) Interpreted SW-NE seismic profile zqne18; (b) Enlarged seismic profile showing the side wall of MTD3 and the offset of MTD3 by faults; (c) MTD1 and the wedge body; (d) Vertical stacking of MTD3 and MTD4. The horizontal long solid lines in the figure represent regional stratigraphic interfaces, the vertical red solid lines represent faults, and the red arrows indicate the movement direction of the upper wall
图7 开平凹陷MTD3的厚度分布与趾部
(a)二维地震数据中MTD3的厚度分布情况; (b)测线zjk10中MTD3趾部区域的解释剖面
Fig. 7 Thickness distribution and toe region of MTD3 in Kaiping Sag
(a) The thickness distribution of MTD3 in 2D seismic data; (b) The toe area of MTD3 in survey line zjk10
1 HAMPTON M A, LEE H J, LOCAT J. Submarine landslides[J]. Reviews of Geophysics199634(1): 33-59.
2 SHAN Z G, WU H, NI W D, et al. Recent technological and methodological advances for the investigation of submarine landslides[J]. Journal of Marine Science and Engineering202210(11). DOI: 10.3390/jmse10111728 .
3 WU N, NUGRAHA H D, ZHONG G F, et al. The role of mass-transport complexes in the initiation and evolution of submarine canyons[J]. Sedimentology202269(5): 2 181-2 202.
4 GALES J A, MCKAY R M, de SANTIS L, et al. Climate-controlled submarine landslides on the Antarctic continental margin[J]. Nature Communications202314(1). DOI: 10.1038/s41467-023-38240-y .
5 LI W, LI S, ALVES T M, et al. Initiation and evolution of an isolated submarine canyon system on a low-gradient continental slope[J]. Geomorphology2023, 434. DOI: 10.1016/j.geomorph.2023.108746 .
6 HE Ke, WANG Yufeng, CHENG Qiangong, et al. Research on the substrate entrainment dynamics of rock avalanches: state-of-the-art[J]. Journal of Engineering Geology202432(3): 904-917.
何可, 王玉峰, 程谦恭, 等. 高速远程滑坡底部裹挟机理研究现状及展望[J]. 工程地质学报202432(3): 904-917.
7 YIN Yueping, WANG Wenpei, XING Aiguo, et al. Research on dynamic erosion mechanism of submarine landslide: review and prospects[J]. The Chinese Journal of Geological Hazard and Control202536(1): 1-15.
殷跃平, 王文沛, 邢爱国, 等. 海底滑坡动力侵蚀机理研究: 回顾与展望[J]. 中国地质灾害与防治学报202536(1): 1-15.
8 HAFLIDASON H, SEJRUP H P, NYGÅRD A, et al. The Storegga Slide: architecture, geometry and slide development[J]. Marine Geology2004213(1/2/3/4): 201-234.
9 KRASTEL S, LI W, URLAUB M, et al. Mass wasting along the NW African continental margin[J]. Geological Society, London, Special Publications2019477(1): 151-167.
10 MICALLEF A, MASSON D G, BERNDT C, et al. Development and mass movement processes of the north-eastern Storegga Slide[J]. Quaternary Science Reviews200928(5/6): 433-448.
11 GEORGIOPOULOU A, MASSON D G, WYNN R B, et al. Sahara Slide: age, initiation, and processes of a giant submarine slide[J]. Geochemistry, Geophysics, Geosystems201011(7). DOI: 10.1029/2010GC003066 .
12 JING S, ALVES T M, OMOSANYA K O, et al. Long-term slope instability induced by the reactivation of mass transport complexes: an underestimated geohazard on the Norwegian continental margin[J]. Geological Society of America Bulletin2023136(3). DOI: 10.1130/B36816.1 .
13 HU Guanghai, LIU Zhongchen, SUN Yongfu, et al. Advances in the research on sediment failure on submarine slope[J]. Coastal Engineering200423(1): 63-72.
胡光海, 刘忠臣, 孙永福, 等. 海底斜坡土体失稳的研究进展[J]. 海岸工程200423(1): 63-72.
14 HU Guanghai, LIU Zhenxia, FANG Junwei. A review of submarine slope stability studies at home and abroad[J]. Advances in Marine Science200624(1): 130-136.
胡光海, 刘振夏, 房俊伟. 国内外海底斜坡稳定性研究概况[J]. 海洋科学进展200624(1): 130-136.
15 GUAN Z, CHEN K Y, HE M, et al. Recurrent mass transport deposits and their triggering mechanisms in the Kaiping Sag, Pearl River Mouth Basin[J]. Marine and Petroleum Geology201673: 419-432.
16 CHEN H J, ZHAN W H, LI L Q, et al. Occurrence of submarine canyons, sediment waves and mass movements along the northern continental slope of the South China Sea[J]. Journal of Earth System Science2017126(5). DOI: 10.1007/s12040-017-0844-9 .
17 YAO Bochu. Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology & Quaternary Geology199616(2): 1-13.
姚伯初. 南海海盆新生代的构造演化史[J]. 海洋地质与第四纪地质199616(2): 1-13.
18 REN Jianye, LI Sitian. Spreading and dynamic setting of marginal basins of the western Pacific[J]. Earth Science Frontiers20007(3): 203-213.
任建业, 李思田. 西太平洋边缘海盆地的扩张过程和动力学背景[J]. 地学前缘20007(3): 203-213.
19 ZHANG Zhiye, HE Dengfa, LI Zhi, et al. 3D geometry and kinematics of the boundary fault in the Kaiping depression, Pearl River Mouth Basin[J]. Chinese Journal of Geophysics201861(10): 4 296-4 307.
张志业, 何登发, 李智, 等. 珠江口盆地开平凹陷边界断层三维几何学与运动学[J]. 地球物理学报201861(10): 4 296-4 307.
20 LUO Donghong, LIANG Wei, LI Xisheng, et al. A breakthrough at Paleogene Enping Formation and its important significance in Lufeng 13-1 oilfield, Pearl River Mouth Basin[J]. China Offshore Oil and Gas201123(2): 71-75.
罗东红, 梁卫, 李熙盛, 等. 珠江口盆地陆丰13-1油田古近系恩平组突破及其重要意义[J]. 中国海上油气201123(2): 71-75.
21 WANG Shenglan, LIU Hui. Seismic reflection and depositional system of the Enping formation in the Kaiping depression of the Zhujiangkou Basin[J]. Science & Technology Review201432(): 64-69.
王升兰, 刘晖. 珠江口盆地开平凹陷恩平组地震反射特征与沉积体系展布[J]. 科技导报201432(): 64-69.
22 XU Changgui, GAO Yangdong, LIU Jun, et al. Discovery of large deep-water and deep-formation oilfield in south Kaiping Sag of Pearl River Mouth Basin and new geological understandings[J]. China Offshore Oil and Gas202436(1): 1-13.
徐长贵, 高阳东, 刘军, 等. 珠江口盆地开平南大型深水深层油田发现与认识创新[J]. 中国海上油气202436(1): 1-13.
23 PANG Xiong, HE Min, ZHU Junzhang, et al. A study on development conditions of lacustrine source rocks in Zhu Ⅱ depression, Pearl River Mouth Basin[J]. China Offshore Oil and Gas200921(2): 86-90, 94.
庞雄, 何敏, 朱俊章, 等. 珠二坳陷湖相烃源岩形成条件分析[J]. 中国海上油气200921(2): 86-90, 94.
24 WU Shiguo, QIN Yunshan. The research of deepwater depositional system in the northern South China Sea[J]. Acta Sedimentologica Sinica200927(5): 922-930.
吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报200927(5): 922-930.
25 SUN Qiliang, XIE Xinong, WU Shiguo. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers202128(2): 258-270.
孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘202128(2): 258-270.
26 XIE X N, MÜLLER R D, REN J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology2008247(3/4): 129-144.
27 PANG Xiong, CHEN Changmin, PENG Dajun, et al. Basic geology of Baiyun deep-water area in the northern South China Sea[J]. China Offshore Oil and Gas200820(4): 215-222.
庞雄, 陈长民, 彭大钧, 等. 南海北部白云深水区之基础地质[J]. 中国海上油气200820(4): 215-222.
28 ZHANG Gongcheng, MI Lijun, WU Shiguo, et al. Deepwater area: the new prospecting targets of northern continental margin of South China Sea[J]. Acta Petrolei Sinica200728(2): 15-21.
张功成, 米立军, 吴时国, 等. 深水区: 南海北部大陆边缘盆地油气勘探新领域[J]. 石油学报200728(2): 15-21.
29 ZHU Weilin, ZHONG Kai, LI Youchuan, et al. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deep-water basins [J]. Chinese Science Bulletin201257(20): 1 833-1 841.
朱伟林, 钟锴, 李友川, 等. 南海北部深水区油气成藏与勘探[J]. 科学通报201257(20): 1 833-1 841.
30 NIE Guoquan, HE Dengfa, LI Xiaopan, et al. Tectono-stratigraphic sequence and basin evolution of Kaiping Sag in the Pearl River Mouth Basin[J]. Chinese Journal of Geology (Scientia Geologica Sinica)202055(1): 145-162.
聂国权, 何登发, 李小盼, 等. 珠江口盆地开平凹陷构造—地层层序与盆地演化[J]. 地质科学202055(1): 145-162.
31 WANG Jia, LUAN Xiwu, HE Bingshou, et al. Study on the structural characteristics and dynamic mechanism of faults in the Kaiping Sag of Zhujiang River Mouth Basin[J]. Haiyang Xuebao202143(8): 41-53.
王嘉, 栾锡武, 何兵寿, 等. 珠江口盆地开平凹陷断裂构造特征与动力学机制探讨[J]. 海洋学报202143(8): 41-53.
32 LEI Chao, REN Jianye, TONG Dianjun. Geodynamics of the ocean-continent transition zone, northern margin of the South China Sea: implications for the opening of the South China Sea[J]. Chinese Journal of Geophysics201356(4): 1 287-1 299.
雷超, 任建业, 佟殿君. 南海北部洋陆转换带盆地发育动力学机制[J]. 地球物理学报201356(4): 1 287-1 299.
33 SUN Zhen, LIU Siqing, PANG Xiong, et al. Recent research progress on the rifting-breakup process in passive continental margins[J]. Journal of Tropical Oceanography201635(1): 1-16.
孙珍, 刘思青, 庞雄, 等. 被动大陆边缘伸展—破裂过程研究进展[J]. 热带海洋学报201635(1): 1-16.
34 QIN Guoquan. Late Cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin, South China Sea[J]. China Offshore Oil and Gas200214(1): 1-10,18.
秦国权. 珠江口盆地新生代晚期层序地层划分和海平面变化[J]. 中国海上油气 地质200214(1): 1-10,18.
35 DAI Yiding, PANG Xiong, LI Pinglu. Study on hydrocarbon accumulation in Kaiping Sag of Pearl River Mouth Basin[J]. China Offshore Oil and Gas199810(1): 12-18.
戴一丁, 庞雄, 李平鲁. 珠江口盆地开平凹陷油气聚集条件分析[J]. 中国海上油气 地质199810(1): 12-18.
36 BROWN A R. Interpretation of three-dimensional seismic data[M]. Seventh ed. USA: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2011.
37 WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Chinese Journal of Geophysics201154(12): 3 184-3 195.
吴时国, 秦志亮, 王大伟, 等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报201154(12): 3 184-3 195.
38 LI W, ALVES T M, WU S G, et al. Recurrent slope failure and submarine channel incision as key factors controlling reservoir potential in the South China Sea (Qiongdongnan Basin, South Hainan Island)[J]. Marine and Petroleum Geology201564: 17-30.
39 YU Xinghe, ZHANG Zhijie. Characteristics of Neogene depositional systems on the northern continental slope of the South China Sea and their relationships with gas hydrate[J]. Chinese Geology200532(3): 470-476.
于兴河, 张志杰. 南海北部陆坡区新近系沉积体系特征与天然气水合物分布的关系[J]. 中国地质200532(3): 470-476.
40 JIN Lina, YU Xinghe, DONG Yisi, et al. The evolution of Quaternary depositional system in gas hydrate exploration area in Qiongdongnan Basin and its relationship with BSR[J]. Natural Gas Geoscience201829(5): 644-654.
金丽娜, 于兴河, 董亦思, 等. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学201829(5): 644-654.
41 BULL S, CARTWRIGHT J, HUUSE M. A review of kinematic indicators from mass-transport complexes using 3D seismic data[J]. Marine and Petroleum Geology200926(7): 1 132-1 151.
42 QIN Yanqun, WAN Lunkun, JI Zhifeng, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology201839(1): 140-152.
秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质201839(1): 140-152.
43 BAI Bo, QIN Zhiliang, YANG Kun, et al. Seismic and geologic comprehensive identification of sea floor gravity decollement structure in Baiyun deep-water zone, Pearl River Mouth Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration201638(2): 219-224.
白博, 秦志亮, 杨鲲, 等. 珠江口盆地白云深水区海底重力滑脱构造地震地质综合识别[J]. 物探化探计算技术201638(2): 219-224.
44 VARNES D J. Slope movement types and processes [J]. Transportation Research Board Special Report1978176: 11-33.
45 BØE R, HOVLAND M, INSTANES A, et al. Submarine slide scars and mass movements in Karmsundet and Skudenesfjorden, southwestern Norway: morphology and evolution[J]. Marine Geology2000167(1/2): 147-165.
46 MARTINEZ J F, CARTWRIGHT J, HALL B. 3D seismic interpretation of slump complexes: examples from the continental margin of Israel[J]. Basin Research200517(1): 83-108.
47 MASELLI V, IACOPINI D, EBINGER C J, et al. Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting[J]. Nature Communications202011(1). DOI: 10.1038/s41467-020-17267-5 .
48 PRIOR D B, BORNHOLD B D, JOHNS M W. Depositional characteristics of a submarine debris flow[J]. The Journal of Geology198492(6): 707-727.
49 VANNESTE M, MIENERT J, BÜNZ S. The Hinlopen Slide: a giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean[J]. Earth and Planetary Science Letters2006245(1/2): 373-388.
50 GAMBERI F, ROVERE M, MARANI M. Mass-transport complex evolution in a tectonically active margin (Gioia Basin, southeastern Tyrrhenian Sea)[J]. Marine Geology2011279(1/2/3/4): 98-110.
51 ORTIZ-KARPF A, HODGSON D M, JACKSON C A L, et al. Mass-transport complexes as markers of deep-water fold-and-thrust belt evolution: insights from the southern Magdalena fan, offshore Colombia[J]. Basin Research201630: 65-88.
52 POSAMENTIER H W, MARTINSEN O J. The character and genesis of submarine mass-transport deposits: insights from outcrop and 3D seismic data [M]// SHIPP R C, WEIMER P, POSAMENTIER H W. USA: Mass-transport deposits in deepwater settings. SEPM Society for Sedimentary Geology, 2011.
53 WEI Shanli. “Source-transportation-sink” analysis method and application in continental lacustrine basin sedimentary system based on 2D seismic data: an example from Wenchang Formation of long axis direction, Kaiping Sag, Pearl River Mouth Basin[J]. Fault-Block Oil & Gas Field201623(4): 414-418.
魏山力. 基于地震资料的陆相湖盆“源—渠—汇”沉积体系分析: 以珠江口盆地开平凹陷文昌组长轴沉积体系为例[J]. 断块油气田201623(4): 414-418.
54 CHENG Haohao, LI Sanzhong, PENG Guangrong, et al. Eocene “provenance-channel-sink” analysis of Pearl River Mouth Basin: a case study of eastern Yangjiang Sag and Kaiping Sag[J]. Marine Geology & Quaternary Geology202242(5): 124-136.
程昊皞, 李三忠, 彭光荣, 等. 珠江口盆地始新统“源—渠—汇”分析: 以阳江东凹和开平凹陷为例[J]. 海洋地质与第四纪地质202242(5): 124-136.
55 ROLAND E, HAEUSSLER P, PARSONS T, et al. Submarine landslide kinematics derived from high-resolution imaging in port valdez, Alaska[J]. Journal of Geophysical Research: Solid Earth2020125(7). DOI: 10.1029/2019JB018007 .
56 GEE M J R, GAWTHORPE R L, FRIEDMANN S J. Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology[J]. Journal of Sedimentary Research200676(1): 9-19.
57 KVALSTAD T J, ANDRESEN L, FORSBERG C F, et al. The Storegga slide: evaluation of triggering sources and slide mechanics[M]// Ormen lange—an integrated study for safe field development in the storegga submarine area. Amsterdam: Elsevier, 2005: 245-256.
58 JOANNE C, COLLOT J Y, LAMARCHE G, et al. Continental slope reconstruction after a giant mass failure, the example of the Matakaoa Margin, New Zealand[J]. Marine Geology2010268(1/2/3/4): 67-84.
59 KATZ O, REUVEN E, AHARONOV E. Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental-slope[J]. Marine Geology2015369: 100-115.
60 FREY-MARTÍNEZ J, CARTWRIGHT J, JAMES D. Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation[J]. Marine and Petroleum Geology200623(5): 585-604.
61 MOERNAUT J, de BATIST M. Frontal emplacement and mobility of sublacustrine landslides: results from morphometric and seismostratigraphic analysis[J]. Marine Geology2011285(1/2/3/4): 29-45
62 MASSON D G, HARBITZ C B, WYNN R B, et al. Submarine landslides: processes, triggers and hazard prediction[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences2006364(1 845): 2 009-2 039.
63 L’HEUREUX J S, VANNESTE M, RISE L, et al. Stability, mobility and failure mechanism for landslides at the upper continental slope off Vesterålen, Norway[J]. Marine Geology2013346: 192-207.
64 LOCAT J, LEROUEIL S, LOCAT A, et al. Weak layers: their definition and classification from a geotechnical perspective[M]// KRASTEL S, BEHRMANN J H, VöLKER D, et al. Submarine mass movements and their consequences. Cham: Springer International Publishing, 2013: 3-12.
65 JOHNSON M R W. Volume balance of erosional loss and sediment deposition related to Himalayan uplifts[J]. Journal of the Geological Society1994151(2): 217-220.
66 HUANG Wei, WANG Pinxian. The statistics of sediment mass in the South China Sea: method and result[J]. Advances in Earth Science200621(5): 465-473.
黄维, 汪品先. 南海沉积物总量的统计: 方法与结果[J]. 地球科学进展200621(5): 465-473.
67 LI Yan, WU Nan, HU Shouxiang, et al. Seismic characteristics and triggering mechanism analysis of two types of mass-transport complexes in the southeast of Baiyun Sag, South China Sea[J]. Journal of Tropical Oceanography202140(5): 85-100.
李艳, 吴南, 胡守祥, 等. 南海白云凹陷东南部两种不同类型块体搬运沉积体系的地震响应及成因分析[J]. 热带海洋学报202140(5): 85-100.
68 POSAMENTIER H W, ALLEN G P, JAMES D P, et al. Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance [J]. AAPG Bulletin199276(11): 1687-709.
69 SUN Q L, WANG Q, SHI F Y, et al. Runup of landslide-generated tsunamis controlled by paleogeography and sea-level change[J]. Communications Earth & Environment2022, 3. DOI: 10.1038/s43247-022-00572-w .
70 SULTAN N, JOUET G, RIBOULOT V, et al. Sea-level fluctuations control the distribution of highly liquefaction-prone layers on volcanic-carbonate slopes[J]. Geology202351(4): 402-407.
71 BROTHERS D S, LUTTRELL K M, CHAYTOR J D. Sea-level-induced seismicity and submarine landslide occurrence[J]. Geology201341(9): 979-982.
72 SMITH D E, HARRISON S, JORDAN J T. Sea level rise and submarine mass failures on open continental margins[J]. Quaternary Science Reviews201382: 93-103.
73 LEWIS K B. Slumping on a continental slope inclined at 1°-4°[J]. Sedimentology197116(1/2): 97-110.
74 BUGGE T, BELDERSON R H, KENYON N H, et al. The Storegga slide [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences1997325(1 586): 357-88.
75 GATTER R, CLARE M A, KUHLMANN J, et al. Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation[J]. Earth-Science Reviews2021, 223. DOI: 10.1016/j.earscirev.2021.103845 .
76 LIN Y N, SIEH K, STOCK J. Submarine landslides along the malacca strait-mergui basin shelf margin: insights from sequence-stratigraphic analysis[J]. Journal of Geophysical Research: Solid Earth2010115(B12). DOI: 10.1029/2009JB007050 .
77 NIE Guoquan. Tectonic numerical modeling and genetic mechanism for the continent-ocean transition zone of the passive continental margin: a case study of the Kaiping Sag [D]. Beijing:China University of Geosciences (Beijing), 2017.
聂国权.被动大陆边缘洋陆过渡带构造数值模拟及成因机制:开平凹陷例析 [D]. 北京:中国地质大学(北京), 2017.
78 LÓPEZ C, SPENCE G, HYNDMAN R, et al. Frontal ridge slope failure at the northern Cascadia margin: margin-normal fault and gas hydrate control[J]. Geology201038(11): 967-970.
79 ROVERE M, GAMBERI F, MERCORELLA A, et al. Geomorphometry of a submarine mass-transport complex and relationships with active faults in a rapidly uplifting margin (Gioia Basin, NE Sicily margin)[J]. Marine Geology2014356: 31-43.
80 YANG Maling, WEI Bailin. The potential seismic tsunami risk in South China Sea and it’s surrounding region[J]. Journal of Catastrophology200520(3): 41-47.
杨马陵, 魏柏林. 南海海域地震海啸潜在危险的探析[J]. 灾害学200520(3): 41-47.
81 DAI Yiding, PANG Xiong. Petroleum geological characteristics of Zhu II depression, Pearl River Mouth Basin[J]. China Offshore Oil and Gas199911(3): 169-173.
代一丁, 庞雄. 珠江口盆地珠二坳陷石油地质特征[J]. 中国海上油气 地质199911(3): 169-173.
82 GUO Xiaowen, HE Sheng. Characteristics of source rocks of Enping formation in Panyu lower uplift-Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology and Recovery Efficiency200613(1): 31-33, 46, 107.
郭小文, 何生. 珠江口盆地番禺低隆起—白云凹陷恩平组烃源岩特征[J]. 油气地质与采收率200613(1): 31-33, 46, 107.
83 LEE H J. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin[J]. Marine Geology2009264(1/2): 53-64.
84 GAO Weijian, LI Wei. Progress and prospect of seafloor instability research[J]. Strategic Study of CAE202325(3): 109-121.
高伟健, 李伟. 海底不稳定性研究进展及展望[J]. 中国工程科学202325(3): 109-121.
[1] 潘晓仪, 李琳琳, 王大伟, 施华斌. 南海典型海底滑坡的触发机制及其潜在海啸灾害评估[J]. 地球科学进展, 2023, 38(2): 192-211.
[2] 胡庆, 栾锡武, 冉伟民, 魏新元, 王嘉, 叶传红, 韦明盟, 龚梁轩, 刘泽璇. 北伊里安盆地北缘海底滑坡特征及成因研究[J]. 地球科学进展, 2022, 37(3): 303-315.
[3] 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 穿透性地球化学勘查技术综述与展望[J]. 地球科学进展, 2017, 32(8): 828-838.
[4] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[5] 李晓,梁收运,郑国东. 滑带土的研究进展[J]. 地球科学进展, 2010, 25(5): 484-491.
[6] 王运生,罗永红,吴俊峰,孙耀明. 中国西部深切河谷谷底卸荷松弛带成因机理研究[J]. 地球科学进展, 2008, 23(5): 463-468.
[7] 黄荣辉. 我国重大气候灾害的形成机理和预测理论研究[J]. 地球科学进展, 2006, 21(6): 564-575.
[8] 王桂华;苏纪兰;齐义泉. 南海中尺度涡研究进展[J]. 地球科学进展, 2005, 20(8): 882-886.
[9] 杨献忠. 伊利石单元粒子及其研究意义[J]. 地球科学进展, 2002, 17(5): 659-663.
[10] 李晶莹,陶明信. 国际煤层气组成和成因研究[J]. 地球科学进展, 1998, 13(5): 467-473.
[11] 张景廉,张平中,吕锡敏,关银录,廖天纯,张正刚,王爱勤. 油气无机成因学说的新进展[J]. 地球科学进展, 1998, 13(1): 44-50.
阅读次数
全文


摘要