37 |
SHI J F, LEI Y L, LI H T, et al. NGS-metabarcoding revealing novel foraminiferal diversity in the western Pacific Magellan Seamount sediments[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1 718-1 729.
|
38 |
MORARD R, DARLING K F, MAHÉ F, et al. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution[J]. Molecular Ecology Resources, 2015, 15(6): 1 472-1 485.
|
39 |
BARRENECHEA A I, LEJZEROWICZ F, CORDIER T, et al. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments[J]. Scientific Reports, 2020, 10(1). DOI: 10.1038/s41598-020-77179-8 .
|
40 |
LEJZEROWICZ F, VOLTSKY I, PAWLOWSKI J. Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 86: 214-220.
|
41 |
PAWLOWSKI J, ESLING P, LEJZEROWICZ F, et al. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities[J]. Molecular Ecology Resources, 2014, 14(6): 1 129-1 140.
|
42 |
GRECO M, LEJZEROWICZ F, REO E, et al. Environmental RNA outperforms eDNA metabarcoding in assessing impact of marine pollution: a chromium-spiked mesocosm test[J]. Chemosphere, 2022, 298. DOI: 10.1016/j.chemosphere.2022.134239 .
|
43 |
HOLZMANN M, HABURA A, GILES H, et al. Freshwater foraminiferans revealed by analysis of environmental DNA samples[J]. The Journal of Eukaryotic Microbiology, 2003, 50(2): 135-139.
|
44 |
VOLTSKI I, PAWLOWSKI J. Flexammina islandica gen. nov. sp. nov. and some new phylotypes of monothalamous foraminifera from the coast of Iceland[J]. Zootaxa, 2015, 3 964(2): 245-259.
|
45 |
GOODAY A J, HOLZMANN M, CAULLE C, et al. Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration[J]. Biological Conservation, 2017, 207: 106-116.
|
46 |
VOLTSKI I, WEINER A K M, TSUCHIYA M, et al. Morphological and genetic description of Syringammina limosa sp. nov., the first xenophyophore (Foraminifera) from the deep sea of Okhotsk[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 154: 32-46.
|
47 |
HOLZMANN M, RIGAUD S, AMINI S, et al. Cyrea szymborska gen. et sp. nov., a new textulariid foraminifer from the Mediterranean sea[J]. Journal of Foraminiferal Research, 2018, 48(2): 156-163.
|
48 |
GOODAY A J, DURDEN J M, HOLZMANN M, et al. Xenophyophores (Rhizaria, Foraminifera), including four new species and two new Genera, from the western Clarion-Clipperton Zone (abyssal equatorial Pacific)[J]. European Journal of Protistology, 2020, 75. DOI: 10.1016/j.ejop.2020.125715 .
|
49 |
AVNAIM-KATAV S, HOLZMANN M, PAWLOWSKI J. Carterina labinea sp. nov.—a new alien foraminifer from the Southeastern Mediterranean shelf[J]. European Journal of Protistology, 2022, 85. DOI: 10.1016/j.ejop.2022.125911 .
|
50 |
GOODAY A J, HOLZMANN M, MAJEWSKI W, et al. New species of Gromia (protista, rhizaria) from south Georgia and the Falkland Islands[J]. Polar Biology, 2022, 45(4): 647-666.
|
51 |
GOODAY A J, HOLZMANN M, SCHWARZGRUBER E, et al. Morphological and molecular diversity of monothalamids (Rhizaria, Foraminifera), including two new species and a new genus, from SW Greenland[J]. European Journal of Protistology, 2022, 86. DOI: 10.1016/j.ejop.2022.125932 .
|
52 |
HOLZMANN M, GOODAY A J, MAJEWSKI W, et al. Molecular and morphological diversity of monothalamous foraminifera from South Georgia and the Falkland Islands: description of four new species[J]. European Journal of Protistology, 2022, 85. DOI: 10.1016/j.ejop.2022.125909 .
|
53 |
KAUSHIK T, DIXIT V, MURUGAN T. Morphology and molecular phylogeny of two new species of Psammophaga (Rhizaria, Foraminifera) from the west coast of India[J]. European Journal of Protistology, 2024, 92. DOI: 10.1016/j.ejop.2023.126035 .
|
54 |
HOLZMANN M. Species concept in foraminifera: ammonia as a case study[J]. Micropaleontology, 2000, 46: 21-37.
|
55 |
WALTON W R, SLOAN B J. The genus Ammonia Bruennich, 1772; its geographic distribution and morphologic variability[J]. The Journal of Foraminiferal Research, 1990, 20(2): 128-156.
|
56 |
TAKATA H, DETTMAN D L, SETO K, et al. Novel habitat preference of ammonia “beccarii” forma 1 in a macrobenthos community on hard substrates in the ohashi river, southwest Japan[J]. The Journal of Foraminiferal Research, 2009, 39(2): 87-96.
|
57 |
HAYWARD B W, HOLZMANN M, TSUCHIYA M. Combined molecular and morphological taxonomy of the beccarii/T3 group of the foraminiferal genus ammonia[J]. Journal of Foraminiferal Research, 2019, 49(4): 367-389.
|
58 |
LEI Y L, LI T G, NIGAM R, et al. Environmental significance of morphological variations in the foraminifer Ammonia aomoriensis (Asano, 1951) and its molecular identification: a study from the Yellow Sea and East China Sea, PR China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 49-57.
|
59 |
KAUSHIK T, MURUGAN T, DAGAR S S. Morphological variation in the porcelaneous benthic foraminifer Quinqueloculina seminula (Linnaeus, 1758): genotypes or morphotypes? A detailed morphotaxonomic, molecular and ecological investigation[J]. Marine Micropaleontology, 2019, 150. DOI: 10.1016/j.marmicro.2019.101748 .
|
60 |
HOHENEGGER J. Growth-invariant meristic characters tools to reveal phylogenetic relationships in Nummulitidae (foraminifera)[J]. Turkish Journal of Earth Sciences, 2011, 20(6): 655-681.
|
61 |
HOLZMANN M, HOHENEGGER J, APOTHÉLOZ-PERRET-GENTIL L, et al. Operculina and Neoassilina: a revision of recent nummulitid Genera based on molecular and morphological data reveals a new genus[J]. Journal of Earth Science, 2022, 33(6): 1 411-1 424.
|
62 |
GOODAY A J, HOLZMANN M, GOINEAU A, et al. Xenophyophores (rhizaria, foraminifera) from the eastern clarion-clipperton zone (equatorial Pacific): the genus Psammina [J]. Protist, 2018, 169(6): 926-957.
|
63 |
NGUYEN N L, PAWŁOWSKA J, ANGELES I B, et al. Metabarcoding reveals high diversity of benthic foraminifera driven by atlantification of coastal Svalbard[J]. Environmental Science, Biology, 2021. DOI:10.21203/rs.3.rs-1009107/v1 .
|
64 |
FRONTALINI F, GRECO M, di BELLA L, et al. Assessing the effect of mercury pollution on cultured benthic foraminifera community using morphological and eDNA metabarcoding approaches[J]. Marine Pollution Bulletin, 2018, 129(2): 512-524.
|
65 |
WU Yuqi, CHEN Ye, GUO Yuanming, et al. Summary of ecological response of benthic foraminifera to marine environment[J]. Advances in Earth Science, 2024, 39(9): 889-901.
|
|
吴玉琦, 陈页, 郭远明, 等. 底栖有孔虫对海洋环境的生态响应概述[J]. 地球科学进展, 2024, 39(9): 889-901.
|
66 |
PAWLOWSKI J, ESLING P, LEJZEROWICZ F, et al. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding[J]. Aquaculture Environment Interactions, 2016, 8: 371-386.
|
67 |
HE X P, SUTHERLAND T F, PAWLOWSKI J, et al. Responses of foraminifera communities to aquaculture-derived organic enrichment as revealed by environmental DNA metabarcoding[J]. Molecular Ecology, 2019, 28(5): 1 138-1 153.
|
68 |
CAVALIERE M, BARRENECHEA A I, MONTRESOR M, et al. Assessing the ecological quality status of the highly polluted Bagnoli area (Tyrrhenian Sea, Italy) using foraminiferal eDNA metabarcoding[J]. Science of the Total Environment, 2021, 790. DOI: 10.1016/j.scitotenv.2021.147871 .
|
69 |
SARASWATI P K. Larger Benthic foraminifera through space and time[M]. Springer Cham: Springer Nature Switzerland AG, 2024: 184.
|
70 |
LEE J J. Fueled by symbiosis, foraminifera have evolved to be giant complex protists[M]// All flesh is grass. Dordrecht: Springer Netherlands, 2010: 427-452.
|
71 |
PRAZERES M, RENEMA W. Evolutionary significance of the microbial assemblages of large benthic Foraminifera[J]. Biological Reviews of the Cambridge Philosophical Society, 2019, 94(3): 828-848.
|
1 |
TAPPAN H, LOEBLICH A R. Foraminiferal evolution, diversification, and extinction[J]. Journal of Paleontology, 1988, 62(5): 695-714.
|
2 |
VICKERMAN K. The diversity and ecological significance of protozoa[J]. Biodiversity & Conservation, 1992, 1(4): 334-341.
|
3 |
MALEK M N ABD, FRONTALINI F. Benthic foraminifera as bioindicators of marine pollution: a bibliometric approach to unravel trends, patterns and perspectives[J]. Marine Pollution Bulletin, 2024, 199. DOI: 10.1016/j.marpolbul.2023.115941 .
|
4 |
FRONTALINI F, COCCIONI R. Benthic foraminifera as bioindicators of pollution: a review of Italian research over the last three decades[J]. Revue de Micropaléontologie, 2011, 54(2): 115-127.
|
5 |
LI Tiegang, XIONG Zhifang, JIA Qi. Water exchange between western Pacific warm pool and Indian warm pool and its climatic effects since the late Miocene[J]. Advances in Marine Science, 2020, 38(3): 377-389.
|
|
李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋—太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3): 377-389.
|
6 |
LI Xiaoyan, SHI Xuefa, CHENG Zhenbo, et al. Distribution of benthic foraminifera in surface sediments of the Laizhou Bay, Bohai Sea and its environmental significance[J]. Acta Micropalaeontologica Sinica, 2010, 27(1): 38-44.
|
|
李小艳, 石学法, 程振波, 等. 渤海莱州湾表层沉积物中底栖有孔虫分布特征及其环境意义[J]. 微体古生物学报, 2010, 27(1): 38-44.
|
7 |
DEBENAY J P, GUILLOU J J, REDOIS F, et al. Distribution trends of foraminiferal assemblages in paralic environments[M]// Environmental micropaleontology. Boston, MA: Springer US, 2000: 39-67.
|
8 |
ZHANG Shuai. The “little giant” in the sea—foraminifera[J]. Knowledge is Power, 2024(6): 14-17.
|
|
张帅. 大海里的“小巨人”: 有孔虫[J]. 知识就是力量, 2024(6): 14-17.
|
9 |
LECROQ B. Molecular assessment of benthic foraminiferal diversity[M]// Approaches to study living foraminifera. Tokyo: Springer Japan, 2013: 91-102.
|
10 |
LI Baohua, KEMAL T E, CHRISTOPH H. Advances in molecular biology of foraminifera[J]. Progress in Natural Science, 2005(5): 534-538.
|
72 |
LANGER M R, LIPPS J H. Phylogenetic incongruence between dinoflagellate endosymbionts (Symbiodinium) and their host foraminifera (Sorites): small-subunit ribosomal RNA gene sequence evidence[J]. Marine Micropaleontology, 1995, 26(1/2/3/4): 179-186.
|
73 |
POCHON X, LaJEUNESSE T C, PAWLOWSKI J. Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta)[J]. Marine Biology, 2004, 146(1): 17-27.
|
74 |
GARCIA-CUETOS L, POCHON X, PAWLOWSKI J. Molecular evidence for host-symbiont specificity in soritid foraminifera[J]. Protist, 2005, 156(4): 399-412.
|
75 |
PAWLOWSKI J, HOLZMANN M, FAHRNI J F, et al. Molecular identification of algal endosymbionts in large miliolid foraminifera: 1. Chlorophytes[J]. The Journal of Eukaryotic Microbiology, 2001, 48(3): 362-367.
|
76 |
PAWLOWSKI J, HOLZMANN M, FAHRNI J F, et al. Molecular identification of algal endosymbionts in large miliolid Foraminifera: 2. Dinofiagellates[J]. The Journal of Eukaryotic Microbiology, 2001, 48(3): 368-373.
|
77 |
HOLZMANN M, BERNEY C, HOHENEGGER J. Molecular identification of diatom endosymbionts in nummulitid Foraminifera[J]. Symbiosis, 2006, 42(2): 93-103.
|
78 |
BRINKMANN I, SCHWEIZER M, SINGER D, et al. Through the eDNA looking glass: responses of fjord benthic foraminiferal communities to contrasting environmental conditions[J]. The Journal of Eukaryotic Microbiology, 2023, 70(4). DOI: 10.1111/jeu.12975 .
|
79 |
SHEN Yangyang, LOU Yanli, LI Haotian, et al. Comparative study on the amplification efficiency of different PCR primers on foraminifera DNA in the sediments of various marine habitats[J]. Acta Micropalaeontologica Sinica, 2020, 37(4): 368-380.
|
|
沈阳阳, 类彦立, 李浩天, 等. 不同PCR引物对多种海洋生境沉积物中的有孔虫DNA扩增效能的比较研究[J]. 微体古生物学报, 2020, 37(4): 368-380.
|
80 |
BORRELLI C, HOU Y B, PAWLOWSKI J W, et al. Assessing SSU rDNA barcodes in foraminifera: a case study using Bolivina quadrata [J]. The Journal of Eukaryotic Microbiology, 2018, 65(2): 220-235.
|
81 |
APOTHÉLOZ-PERRET-GENTIL L, CORDONIER A, STRAUB F, et al. Taxonomy-free molecular diatom index for high-throughput eDNA biomonitoring[J]. Molecular Ecology Resources, 2017, 17(6): 1 231-1 242.
|
82 |
ELBRECHT V, LEESE F. Can DNA-based ecosystem assessments quantify species abundance?Testing primer bias and biomass: sequence relationships with an innovative metabarcoding protocol[J]. PLoS ONE, 2015, 10(7). DOI: 10.1371/journal.pone.0130324 .
|
10 |
李保华, Kemal Topac Ertan, Hemleben Christoph. 有孔虫分子生物学研究进展[J]. 自然科学进展, 2005(5): 534-538.
|
11 |
PAWLOWSKI J. Introduction to the molecular systematics of foraminifera[J]. Micropaleontology, 2000, 46: 1-12.
|
12 |
PAWLOWSKI J, LEJZEROWICZ F, ESLING P. Next-generation environmental diversity surveys of foraminifera: preparing the future[J]. The Biological Bulletin, 2014, 227(2): 93-106.
|
13 |
PAWLOWSKI J, KELLY-QUINN M, ALTERMATT F, et al. The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems[J]. Science of the Total Environment, 2018, 637: 1 295-1 310.
|
14 |
GOLDSTEIN S T. Foraminifera: a biological overview[M]//Modern foraminifera. Dordrecht: Springer Netherlands, 1999: 37-55.
|
15 |
MEDINGER R, NOLTE V, PANDEY R V, et al. Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms[J]. Molecular Ecology, 2010, 19(): 32-40.
|
16 |
ZHANG Kai, LI Baohua, WANG Xiaoyan, et al. Study on the rose Bengal staining for the living benthic foraminifers of the sediments[J]. Acta Micropalaeontologica Sinica, 2020, 37(3): 294-302.
|
|
张楷, 李保华, 王晓燕, 等. 沉积物中活体底栖有孔虫的虎红染色方法比较研究[J]. 微体古生物学报, 2020, 37(3): 294-302.
|
17 |
ZHANG Han, XU Bochao, GUO Xiaoyi, et al. Methods and applications for identifying living benthic foraminifera[J]. Advances in Earth Science, 2021, 36(12): 1 247-1 257.
|
|
张涵, 许博超, 郭肖伊, 等. 活体底栖有孔虫鉴别方法及其应用[J]. 地球科学进展, 2021, 36(12): 1 247-1 257.
|
18 |
MA Weixing, SHA Ou, LIU Yinghong, et al. Study on the supermolecule color reaction of protein and rose Bengal in the presence of emulsifier OP and its analytical applications[J]. Chinese Journal of Analysis Laboratory, 2007, 26(3): 58-62.
|
|
马卫兴, 沙鸥, 刘英红, 等. 乳化剂OP存在下蛋白质与虎红的超分子显色反应研究及分析应用[J]. 分析试验室, 2007, 26(3): 58-62.
|
83 |
LOU J, YANG L, WANG H Z, et al. Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification[J]. PeerJ, 2018, 6. DOI: 10.7717/peerj.4514 .
|
84 |
QIAO L, YU J, LI Y, et al. Amplicon-based illumina sequencing and quantitative PCR reveals nanoplankton diversity and biomass in surface water of Qinhuangdao coastal area, China[J]. Journal of Ocean University of China, 2019, 18(4): 962-976.
|
85 |
ZHU F, MASSANA R, NOT F, et al. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene[J]. FEMS Microbiology Ecology, 2005, 52(1): 79-92.
|
86 |
MURRAY J W. Ecology and applications of benthic foraminifera[M]. Cambridge: Cambridge University Press, 2006.
|
87 |
SEGEV E, SMITH Y, BEN-YEHUDA S. RNA dynamics in aging bacterial spores[J]. Cell, 2012, 148(1/2): 139-149.
|
88 |
LIU T T, YANG H. Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu[J]. FEMS Microbiology Ecology, 2020, 96(5). DOI: 10.1016/S1001-0742(12)60122-3 .
|
89 |
GINER C R, FORN I, ROMAC S, et al. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes[J]. Applied and Environmental Microbiology, 2016, 82(15): 4 757-4 766.
|
19 |
SCHÖNFELD J, ALVE E, GESLIN E, et al. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative: towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies[J]. Marine Micropaleontology, 2012, 94: 1-13.
|
20 |
MURRAY J W. Mortality, protoplasm decay rate, and reliability of staining techniques to recognize ‘living’ foraminifera: a review[J]. The Journal of Foraminiferal Research, 2000, 30(1): 66-70.
|
21 |
LANGER M R, LIPPS J H, PILLER W E. Molecular paleobiology of protists: amplification and direct sequencing of foraminiferal DNA[J]. Micropaleontology, 1993, 39(1). DOI:10.2307/1485975 .
|
22 |
BHATT K A, TRIVEDI M H. Molecular studies on foraminifers: past, present, and future[J]. Journal of Foraminiferal Research, 2018, 48(3): 193-209.
|
23 |
PAWLOWSKI J, HOLZMANN M. Diversity and geographic distribution of benthic foraminifera: a molecular perspective[J]. Biodiversity and Conservation, 2008, 17(2): 317-328.
|
24 |
WEBER A A, PAWLOWSKI J. Wide occurrence of SSU rDNA intragenomic polymorphism in foraminifera and its implications for molecular species identification[J]. Protist, 2014, 165(5): 645-661.
|
25 |
QIAO L, FAN S Y, REN C Z, et al. Total and active benthic foraminiferal community and their response to heavy metals revealed by high throughput DNA and RNA sequencing in the Zhejiang coastal waters, East China Sea[J]. Marine Pollution Bulletin, 2022, 184. DOI:10.1016/j.marpolbul.2022.114225 .
|
26 |
QIAO L, CHEN Y, REN C Z, et al. Benthic foraminiferal community structure and its response to environmental factors revealed using high-throughput sequencing in the Zhoushan Fishing Ground, East China Sea[J]. Marine Pollution Bulletin, 2024, 202. DOI:10.1016/j.marpolbul.2024.116385 .
|
27 |
POCHON X, WOOD S A, KEELEY N B, et al. Accurate assessment of the impact of salmon farming on benthic sediment enrichment using foraminiferal metabarcoding[J]. Marine Pollution Bulletin, 2015, 100(1): 370-382.
|
28 |
SHI J F, LEI Y L, LI Q X, et al. Molecular diversity and spatial distribution of benthic foraminifera of the seamounts and adjacent abyssal Plains in the tropical western Pacific Ocean[J]. Marine Micropaleontology, 2020, 156. DOI:10.1016/j.marmicro.2020.101850 .
|
29 |
SCHWEIZER M, PAWLOWSKI J, KOUWENHOVEN T J, et al. Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences[J]. Marine Micropaleontology, 2008, 66(3/4): 233-246.
|
30 |
LI Q X, LEI Y L, LIU J W, et al. Characteristics of foraminiferal communities in the western Clarion-Clipperton Zone revealed by eDNA metabarcoding[J]. Journal of Sea Research, 2022, 189. DOI:10.1016/j.seares.2022.102286 .
|
31 |
LI H T, LEI Y L, LI T G, et al. Next-generation sequencing and metabarcoding to understand the ecology of benthic foraminiferal community in the Bering Sea[J]. Journal of Sea Research, 2023, 191. DOI:10.1016/j.seares.2022.102321 .
|
32 |
LEJZEROWICZ F, GOODAY A J, BARRENECHEA A I, et al. Eukaryotic biodiversity and spatial patterns in the clarion-clipperton zone and other abyssal regions: insights from sediment DNA and RNA metabarcoding[J]. Frontiers in Marine Science, 2021, 8. DOI: 10.3389/fmars.2021.671033 .
|
33 |
MOSS J A, MCCURRY C, SCHWING P, et al. Molecular characterization of benthic foraminifera communities from the Northeastern Gulf of Mexico shelf and slope following the Deepwater Horizon event[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 115: 1-9.
|
34 |
ERTAN K T, HEMLEBEN V, HEMLEBEN C. Molecular evolution of some selected benthic foraminifera as inferred from sequences of the small subunit ribosomal DNA[J]. Marine Micropaleontology, 2004, 53(3/4): 367-388.
|
35 |
Wenlong FA, LI Haotian, LI Qingxia, et al. Preliminary study on the methods of the extraction and pcr amplification of ancient foraminiferal DNA in core sediment from the Yellow Sea[J]. Acta Micropalaeontologica Sinica, 2022, 39(1): 70-84.
|
|
法文龙, 李浩天, 李青霞, 等. 黄海沉积物柱状样中有孔虫古DNA的提取和PCR扩增的方法学初探[J]. 微体古生物学报, 2022, 39(1): 70-84.
|
36 |
LEJZEROWICZ F, ESLING P, PILLET L, et al. High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems[J]. Scientific Reports, 2015, 5. DOI: 10.1038/srep13932. PMC4564730 .
|