地球科学进展 ›› 2025, Vol. 40 ›› Issue (3): 303 -314. doi: 10.11867/j.issn.1001-8166.2025.024

综述与评述 上一篇    下一篇

DNA测序技术在底栖有孔虫监测中的研究进展
宋静文1(), 李铁军1,2, 郭远明1,2, 乔玲1,2()   
  1. 1.浙江海洋大学 海洋与渔业研究所,浙江 舟山 316021
    2.浙江省海洋水产研究所,浙江省海洋渔业资源可持续利用技术研究重点实验室,浙江 舟山 316021
  • 收稿日期:2024-11-25 修回日期:2025-02-10 出版日期:2025-03-10
  • 通讯作者: 乔玲 E-mail:1836992389@qq.com;qiaoling1990123@126.com
  • 基金资助:
    浙江省海洋水产研究所科技计划项目(HYS-ZX-202410)

Review of DNA Sequencing Technology for Monitoring of Benthic Foraminifera

Jingwen SONG1(), Tiejun LI1,2, Yuanming GUO1,2, Ling QIAO1,2()   

  1. 1.Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan Zhejiang 316021, China
    2.Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan Zhejiang 316021, China
  • Received:2024-11-25 Revised:2025-02-10 Online:2025-03-10 Published:2025-05-07
  • Contact: Ling QIAO E-mail:1836992389@qq.com;qiaoling1990123@126.com
  • About author:SONG Jingwen, research areas include conservation and utilization of fishery resources. E-mail: 1836992389@qq.com
  • Supported by:
    the Science and Technology Project of Zhejiang Marine Fisheries Research Institute(HYS-ZX-202410)

底栖有孔虫分布广泛、个体小、数量大、物种多样性高、生命周期短,在海洋沉积物中具有良好的保存潜力、并对环境变化具有较高的敏感性,是一种优良的海洋环境质量指示生物。传统的底栖有孔虫监测主要以形态学为主,该方法不仅费时费力,且难以发现一些个体小、丰度低的物种。基于DNA测序的调查方法以其高效、高灵敏度、环境友好等优势,为底栖有孔虫物种鉴定和群落多样性评估提供了新思路。综述了DNA测序技术在底栖有孔虫物种鉴定及分类、群落结构及多样性调查以及大型底栖有孔虫共生体研究等领域的研究进展;指出DNA测序技术在底栖有孔虫监测应用中存在缺乏标准化操作流程、参考数据库不完善、无法绝对定量底栖有孔虫丰度以及高估群落多样性等技术局限性。针对以上局限提出优化建议:制定一套规范统一的操作方案与流程、建立开放共享的底栖有孔虫参考数据库、与荧光定量PCR和eRNA测序技术结合等;未来还应加强基因测序技术的研发和创新,以充分挖掘DNA测序技术在底栖有孔虫监测中的应用潜力。

Benthic foraminifera are excellent indicators of marine environmental quality due to their wide distribution, small size and large abundance, high species diversity, short life cycle, good preservation potential in marine sediments, and high sensitivity to environmental changes. Traditional monitoring of benthic foraminifera is mainly based on morphology, but this process is time-consuming, labor-intensive, and makes it difficult to detect some species with small individuals and low abundance. The investigation method based on DNA sequencing, with its advantages of high efficiency, high sensitivity, and environmentally friendly, provides a new way to identify benthic foraminifera species and assess community diversity. This paper reviews the progress of DNA sequencing technology in species identification and classification, community structure and diversity investigation, and identification of symbionts in large benthic foraminifera. As there are some technical limitations of DNA sequencing in benthic foraminifera monitoring, such as lack of standardized operation process, imperfection of reference databases, impossibility of absolute quantification of benthic foraminifera abundance, and overestimation of community diversity, optimization can be achieved by formulating a standardized and unified operation process, establishing an open and shared benthic foraminifera reference database, and combining the method with fluorescence quantitative PCR and environmental RNA sequencing technology. In the future, development and innovation of gene sequencing technology should be strengthened to explore the potential of DNA sequencing technology in benthic foraminifera monitoring in a detailed manner.

中图分类号: 

图1 底栖有孔虫监测关键步骤示意图(引自BioRender.com
Fig. 1 Schematic diagram of key steps in benthic foraminifera monitoringfrom BioRender.com
表1 底栖有孔虫PCR扩增引物汇总表
Table 1 Summary of the PCR primers commonly used in the benthic foraminifera
引物名称序列(5’-3’)长度/bp类型特异性区域参考文献
s14F3ACGCAAGTGTGAAACTTG18正向引物底栖有孔虫核糖体小亚基24-26
s14F1AAGGGCACCACAAGAACGC19正向引物底栖有孔虫核糖体小亚基112427-28
s17CGGTCACGTTCGTTGC16反向引物底栖有孔虫核糖体小亚基1125-2628-29
s15ROTEXGAAAGGACTAGCATATTTAAC21反向引物底栖有孔虫核糖体小亚基30-31
s15CCACСТATCACATAATCATG20反向引物底栖有孔虫核糖体小亚基2732
sBTGATCCTTCTGCAGGTTCACCTAC24反向引物通用核糖体小亚基1129
sBnewTGCCTTGTTCGACTTCTC18反向引物底栖有孔虫核糖体小亚基24
s10CACTGTGAACAAATCAG17正向引物底栖有孔虫核糖体小亚基1133
s14RFCCTTCAAGTTTCACACТTGC20反向引物底栖有孔虫核糖体小亚基1133
U20RlTGATGCCTTGTTACGACTTCTCTTTC26反向引物底栖有孔虫核糖体小亚基34-35
s21F1CCTTGTTACGACTTCTC16反向引物底栖有孔虫核糖体小亚基1122
s15RGTGGTGCATGGCCGT15反向引物底栖有孔虫核糖体小亚基1122
sA10CTCAAAGATTAAGCCATGCAAGTGG25正向引物底栖有孔虫核糖体小亚基1129
s13GCAACAATGATTGTATAGGC20反向引物底栖有孔虫核糖体小亚基1129
s6FCCGCGGTAATACCAGCTC18正向引物底栖有孔虫核糖体小亚基1129
s20TTGTACACACCGCCCGTC18正向引物通用核糖体小亚基1122
s4RFCGCCTGCTGCGTTCCTTAG19正向引物底栖有孔虫核糖体小亚基1122
2TAICCTCACTCGAGCTGATGTG18反向引物底栖有孔虫核糖体大亚基1122
L10CTGACGTGCAAATCGTT17正向引物通用核糖体大亚基1122
2TACACATCAGCTCGAGTGAG18正向引物底栖有孔虫核糖体大亚基1122
L7GATGAGTCATTACCACC17反向引物底栖有孔虫核糖体大亚基1122
L1FACTCTCTCTTTCACTCC17反向引物底栖有孔虫核糖体大亚基1122
L0GCTATCCTGAGAGAAACTTCG21反向引物底栖有孔虫核糖体大亚基1122
L5TTCGCTGCGCATTACT16反向引物底栖有孔虫核糖体大亚基1122
图2 底栖有孔虫rDNA序列中引物序列及扩增位置示意图9112934
Fig. 2 Schematic representation of the rDNA sequences of benthic foraminifera with the approximate position of amplification and sequencing primers9112934
表2 有孔虫物种注释的数据库
Table 2 Databases for taxonomic assignment of foraminifera species
表3 基于DNA测序和形态学方法鉴定的底栖有孔虫新物种
Table 3 Novel species of benthic foraminifera identified by DNA sequencing and morphological methods
物种名称扩增引物序列号采样区域参考文献
Flexammina islandicas14F3-sBnew和s14F1-sBnewKM097044~KM097065Vogar, the Reykjanes Peninsula, Iceland44
Bizarria bryiformiss14F3-s20R和s14F1-s20RLT854206~LT854219Clarion-Clipperton Zone45
Tendalia reteformiss14F3-s20R和s14F1-s20RLT576120,LT854200~LT854205Clarion-Clipperton Zone45
Shinkaiya contortas14F3-s20R和s14F1-s20RLT576124,LT854188~LT854190Clarion-Clipperton Zone45
Galatheammina interstinctas14F3-s20R和s14F1-s20R

LT576131和LT576137

LT854191~LT854194

Clarion-Clipperton Zone45
Semipsammina mattaeformiss14F3-s20R和s14F1-s20RLT576127,LT854195~LT854199Clarion-Clipperton Zone45
Syringammina limosas14F3-s17和s14F1-s17MG132666~MG132682the Sea of Okhotsk和the adjacent Pacific46
Cyrea szymborska

s14F3-sB和s14F1-sB

LSUf1-LSU11r和LSUf1-LSUr1

LN886773~LN886780St. Clair, France47
Abyssalia foliformiss14F3-s20R和s14F1-s20RMK748285~MK748287Clarion-Clipperton Zone, APEI-148
Abyssalia sphaericas14F3-s20R和s14F1-s20RMK748288~MK748289Clarion-Clipperton Zone, APEI-448
Moanammina semicirculariss14F3-s20R和s14F1-s20RMK748298~MK748302Clarion-Clipperton Zone, APEI-448
Psammina tenuiss14F3-s20R和s14F1-s20RMK748294~MK748297Clarion-Clipperton Zone, APEI-148
Carterina labineas14F3-s17R和s14F1-s17RON113913~ON113915Israel:Mediterranean Sea, Southeastern Levantine Shelf49
Gromia psammophilas12.2-s20R和s13.3-s20RMZ468160~MZ468165Falkland Islands50
Gromia sp.s12.2-s20R和s13.3-s20RMZ468155~MZ468157South Georgia50
Gromia landrethis12.2-s20R和s13.3-s20RMZ468176~MZ468187South Georgia50
Gromia amygdaliformiss12.2-s20R和s13.3-s20RMZ468171~MZ468175South Georgia50
Gromia saoirseis12.2-s20R和s13.3-s20RMZ468166~MZ468170South Georgia50
Gromia pashukaes12.2-s20R和s13.3-s20RMZ468197~MZ468203,MZ701627~MZ701633South Georgia50
Gromia cedhagenis12.2-s20R和s13.3-s20RMZ468191~MZ468196Darwin Cove50
Bathyallogromia kalaallitas14F3-s20R和s14F1-s20RON053401~ON053403Greenland, Nuuk Fjord, St.351
Nujappikia idaliaes14F3-s20R和s14F1-s20RON053404~ON053409Greenland, Nuuk Fjord, St.351
Limaxia albas14F3-s20R和s14F1-s20ROM422947~OM422953UK, South Georgia52
Hilla argenteas14F3-s20R和s14F1-s20ROM422871~OM422875UK, South Georgia52
Pseudoconqueria lenticulariss14F3-s20R和s14F1-s20ROM422857~OM422863UK, South Georgia52
Bathyallogromia olivaceas14F3-s20R和s14F1-s20ROM422961~OM422964UK, South Georgia52
Psammophaga holzmannaes14F3-sB和s14F1-J2OR243671~OR243681Rajapuri Creek, coastal Maharashtra, India53
Psammophaga sinhais14F3-sB和s14F1-J2OR243682~OR243687Rajapuri Creek, coastal Maharashtra, India53
表4 底栖有孔虫体内共生藻及其序列号
Table 4 Symbiotic algae in benthic foraminifera and their serial numbers
37 SHI J F, LEI Y L, LI H T, et al. NGS-metabarcoding revealing novel foraminiferal diversity in the western Pacific Magellan Seamount sediments[J]. Journal of Oceanology and Limnology202139(5): 1 718-1 729.
38 MORARD R, DARLING K F, MAHÉ F, et al. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution[J]. Molecular Ecology Resources201515(6): 1 472-1 485.
39 BARRENECHEA A I, LEJZEROWICZ F, CORDIER T, et al. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments[J]. Scientific Reports202010(1). DOI: 10.1038/s41598-020-77179-8 .
40 LEJZEROWICZ F, VOLTSKY I, PAWLOWSKI J. Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach[J]. Deep Sea Research Part II: Topical Studies in Oceanography201386: 214-220.
41 PAWLOWSKI J, ESLING P, LEJZEROWICZ F, et al. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities[J]. Molecular Ecology Resources201414(6): 1 129-1 140.
42 GRECO M, LEJZEROWICZ F, REO E, et al. Environmental RNA outperforms eDNA metabarcoding in assessing impact of marine pollution: a chromium-spiked mesocosm test[J]. Chemosphere2022, 298. DOI: 10.1016/j.chemosphere.2022.134239 .
43 HOLZMANN M, HABURA A, GILES H, et al. Freshwater foraminiferans revealed by analysis of environmental DNA samples[J]. The Journal of Eukaryotic Microbiology200350(2): 135-139.
44 VOLTSKI I, PAWLOWSKI J. Flexammina islandica gen. nov. sp. nov. and some new phylotypes of monothalamous foraminifera from the coast of Iceland[J]. Zootaxa20153 964(2): 245-259.
45 GOODAY A J, HOLZMANN M, CAULLE C, et al. Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration[J]. Biological Conservation2017207: 106-116.
46 VOLTSKI I, WEINER A K M, TSUCHIYA M, et al. Morphological and genetic description of Syringammina limosa sp. nov., the first xenophyophore (Foraminifera) from the deep sea of Okhotsk[J]. Deep Sea Research Part II: Topical Studies in Oceanography2018154: 32-46.
47 HOLZMANN M, RIGAUD S, AMINI S, et al. Cyrea szymborska gen. et sp. nov., a new textulariid foraminifer from the Mediterranean sea[J]. Journal of Foraminiferal Research201848(2): 156-163.
48 GOODAY A J, DURDEN J M, HOLZMANN M, et al. Xenophyophores (Rhizaria, Foraminifera), including four new species and two new Genera, from the western Clarion-Clipperton Zone (abyssal equatorial Pacific)[J]. European Journal of Protistology2020, 75. DOI: 10.1016/j.ejop.2020.125715 .
49 AVNAIM-KATAV S, HOLZMANN M, PAWLOWSKI J. Carterina labinea sp. nov.—a new alien foraminifer from the Southeastern Mediterranean shelf[J]. European Journal of Protistology2022, 85. DOI: 10.1016/j.ejop.2022.125911 .
50 GOODAY A J, HOLZMANN M, MAJEWSKI W, et al. New species of Gromia (protista, rhizaria) from south Georgia and the Falkland Islands[J]. Polar Biology202245(4): 647-666.
51 GOODAY A J, HOLZMANN M, SCHWARZGRUBER E, et al. Morphological and molecular diversity of monothalamids (Rhizaria, Foraminifera), including two new species and a new genus, from SW Greenland[J]. European Journal of Protistology2022, 86. DOI: 10.1016/j.ejop.2022.125932 .
52 HOLZMANN M, GOODAY A J, MAJEWSKI W, et al. Molecular and morphological diversity of monothalamous foraminifera from South Georgia and the Falkland Islands: description of four new species[J]. European Journal of Protistology2022, 85. DOI: 10.1016/j.ejop.2022.125909 .
53 KAUSHIK T, DIXIT V, MURUGAN T. Morphology and molecular phylogeny of two new species of Psammophaga (Rhizaria, Foraminifera) from the west coast of India[J]. European Journal of Protistology2024, 92. DOI: 10.1016/j.ejop.2023.126035 .
54 HOLZMANN M. Species concept in foraminifera: ammonia as a case study[J]. Micropaleontology200046: 21-37.
55 WALTON W R, SLOAN B J. The genus Ammonia Bruennich, 1772; its geographic distribution and morphologic variability[J]. The Journal of Foraminiferal Research199020(2): 128-156.
56 TAKATA H, DETTMAN D L, SETO K, et al. Novel habitat preference of ammonia “beccarii” forma 1 in a macrobenthos community on hard substrates in the ohashi river, southwest Japan[J]. The Journal of Foraminiferal Research200939(2): 87-96.
57 HAYWARD B W, HOLZMANN M, TSUCHIYA M. Combined molecular and morphological taxonomy of the beccarii/T3 group of the foraminiferal genus ammonia[J]. Journal of Foraminiferal Research201949(4): 367-389.
58 LEI Y L, LI T G, NIGAM R, et al. Environmental significance of morphological variations in the foraminifer Ammonia aomoriensis (Asano, 1951) and its molecular identification: a study from the Yellow Sea and East China Sea, PR China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology2017483: 49-57.
59 KAUSHIK T, MURUGAN T, DAGAR S S. Morphological variation in the porcelaneous benthic foraminifer Quinqueloculina seminula (Linnaeus, 1758): genotypes or morphotypes? A detailed morphotaxonomic, molecular and ecological investigation[J]. Marine Micropaleontology2019, 150. DOI: 10.1016/j.marmicro.2019.101748 .
60 HOHENEGGER J. Growth-invariant meristic characters tools to reveal phylogenetic relationships in Nummulitidae (foraminifera)[J]. Turkish Journal of Earth Sciences201120(6): 655-681.
61 HOLZMANN M, HOHENEGGER J, APOTHÉLOZ-PERRET-GENTIL L, et al. Operculina and Neoassilina: a revision of recent nummulitid Genera based on molecular and morphological data reveals a new genus[J]. Journal of Earth Science202233(6): 1 411-1 424.
62 GOODAY A J, HOLZMANN M, GOINEAU A, et al. Xenophyophores (rhizaria, foraminifera) from the eastern clarion-clipperton zone (equatorial Pacific): the genus Psammina [J]. Protist2018169(6): 926-957.
63 NGUYEN N L, PAWŁOWSKA J, ANGELES I B, et al. Metabarcoding reveals high diversity of benthic foraminifera driven by atlantification of coastal Svalbard[J]. Environmental Science, Biology, 2021. DOI:10.21203/rs.3.rs-1009107/v1 .
64 FRONTALINI F, GRECO M, di BELLA L, et al. Assessing the effect of mercury pollution on cultured benthic foraminifera community using morphological and eDNA metabarcoding approaches[J]. Marine Pollution Bulletin2018129(2): 512-524.
65 WU Yuqi, CHEN Ye, GUO Yuanming, et al. Summary of ecological response of benthic foraminifera to marine environment[J]. Advances in Earth Science202439(9): 889-901.
吴玉琦, 陈页, 郭远明, 等. 底栖有孔虫对海洋环境的生态响应概述[J]. 地球科学进展202439(9): 889-901.
66 PAWLOWSKI J, ESLING P, LEJZEROWICZ F, et al. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding[J]. Aquaculture Environment Interactions20168: 371-386.
67 HE X P, SUTHERLAND T F, PAWLOWSKI J, et al. Responses of foraminifera communities to aquaculture-derived organic enrichment as revealed by environmental DNA metabarcoding[J]. Molecular Ecology201928(5): 1 138-1 153.
68 CAVALIERE M, BARRENECHEA A I, MONTRESOR M, et al. Assessing the ecological quality status of the highly polluted Bagnoli area (Tyrrhenian Sea, Italy) using foraminiferal eDNA metabarcoding[J]. Science of the Total Environment2021, 790. DOI: 10.1016/j.scitotenv.2021.147871 .
69 SARASWATI P K. Larger Benthic foraminifera through space and time[M]. Springer Cham: Springer Nature Switzerland AG, 2024: 184.
70 LEE J J. Fueled by symbiosis, foraminifera have evolved to be giant complex protists[M]// All flesh is grass. Dordrecht: Springer Netherlands, 2010: 427-452.
71 PRAZERES M, RENEMA W. Evolutionary significance of the microbial assemblages of large benthic Foraminifera[J]. Biological Reviews of the Cambridge Philosophical Society201994(3): 828-848.
1 TAPPAN H, LOEBLICH A R. Foraminiferal evolution, diversification, and extinction[J]. Journal of Paleontology198862(5): 695-714.
2 VICKERMAN K. The diversity and ecological significance of protozoa[J]. Biodiversity & Conservation19921(4): 334-341.
3 MALEK M N ABD, FRONTALINI F. Benthic foraminifera as bioindicators of marine pollution: a bibliometric approach to unravel trends, patterns and perspectives[J]. Marine Pollution Bulletin2024, 199. DOI: 10.1016/j.marpolbul.2023.115941 .
4 FRONTALINI F, COCCIONI R. Benthic foraminifera as bioindicators of pollution: a review of Italian research over the last three decades[J]. Revue de Micropaléontologie201154(2): 115-127.
5 LI Tiegang, XIONG Zhifang, JIA Qi. Water exchange between western Pacific warm pool and Indian warm pool and its climatic effects since the late Miocene[J]. Advances in Marine Science202038(3): 377-389.
李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋—太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展202038(3): 377-389.
6 LI Xiaoyan, SHI Xuefa, CHENG Zhenbo, et al. Distribution of benthic foraminifera in surface sediments of the Laizhou Bay, Bohai Sea and its environmental significance[J]. Acta Micropalaeontologica Sinica201027(1): 38-44.
李小艳, 石学法, 程振波, 等. 渤海莱州湾表层沉积物中底栖有孔虫分布特征及其环境意义[J]. 微体古生物学报201027(1): 38-44.
7 DEBENAY J P, GUILLOU J J, REDOIS F, et al. Distribution trends of foraminiferal assemblages in paralic environments[M]// Environmental micropaleontology. Boston, MA: Springer US, 2000: 39-67.
8 ZHANG Shuai. The “little giant” in the sea—foraminifera[J]. Knowledge is Power2024(6): 14-17.
张帅. 大海里的“小巨人”: 有孔虫[J]. 知识就是力量2024(6): 14-17.
9 LECROQ B. Molecular assessment of benthic foraminiferal diversity[M]// Approaches to study living foraminifera. Tokyo: Springer Japan, 2013: 91-102.
10 LI Baohua, KEMAL T E, CHRISTOPH H. Advances in molecular biology of foraminifera[J]. Progress in Natural Science2005(5): 534-538.
72 LANGER M R, LIPPS J H. Phylogenetic incongruence between dinoflagellate endosymbionts (Symbiodinium) and their host foraminifera (Sorites): small-subunit ribosomal RNA gene sequence evidence[J]. Marine Micropaleontology199526(1/2/3/4): 179-186.
73 POCHON X, LaJEUNESSE T C, PAWLOWSKI J. Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta)[J]. Marine Biology2004146(1): 17-27.
74 GARCIA-CUETOS L, POCHON X, PAWLOWSKI J. Molecular evidence for host-symbiont specificity in soritid foraminifera[J]. Protist2005156(4): 399-412.
75 PAWLOWSKI J, HOLZMANN M, FAHRNI J F, et al. Molecular identification of algal endosymbionts in large miliolid foraminifera: 1. Chlorophytes[J]. The Journal of Eukaryotic Microbiology200148(3): 362-367.
76 PAWLOWSKI J, HOLZMANN M, FAHRNI J F, et al. Molecular identification of algal endosymbionts in large miliolid Foraminifera: 2. Dinofiagellates[J]. The Journal of Eukaryotic Microbiology200148(3): 368-373.
77 HOLZMANN M, BERNEY C, HOHENEGGER J. Molecular identification of diatom endosymbionts in nummulitid Foraminifera[J]. Symbiosis200642(2): 93-103.
78 BRINKMANN I, SCHWEIZER M, SINGER D, et al. Through the eDNA looking glass: responses of fjord benthic foraminiferal communities to contrasting environmental conditions[J]. The Journal of Eukaryotic Microbiology202370(4). DOI: 10.1111/jeu.12975 .
79 SHEN Yangyang, LOU Yanli, LI Haotian, et al. Comparative study on the amplification efficiency of different PCR primers on foraminifera DNA in the sediments of various marine habitats[J]. Acta Micropalaeontologica Sinica202037(4): 368-380.
沈阳阳, 类彦立, 李浩天, 等. 不同PCR引物对多种海洋生境沉积物中的有孔虫DNA扩增效能的比较研究[J]. 微体古生物学报202037(4): 368-380.
80 BORRELLI C, HOU Y B, PAWLOWSKI J W, et al. Assessing SSU rDNA barcodes in foraminifera: a case study using Bolivina quadrata [J]. The Journal of Eukaryotic Microbiology201865(2): 220-235.
81 APOTHÉLOZ-PERRET-GENTIL L, CORDONIER A, STRAUB F, et al. Taxonomy-free molecular diatom index for high-throughput eDNA biomonitoring[J]. Molecular Ecology Resources201717(6): 1 231-1 242.
82 ELBRECHT V, LEESE F. Can DNA-based ecosystem assessments quantify species abundance?Testing primer bias and biomass: sequence relationships with an innovative metabarcoding protocol[J]. PLoS ONE201510(7). DOI: 10.1371/journal.pone.0130324 .
10 李保华, Kemal Topac Ertan, Hemleben Christoph. 有孔虫分子生物学研究进展[J]. 自然科学进展2005(5): 534-538.
11 PAWLOWSKI J. Introduction to the molecular systematics of foraminifera[J]. Micropaleontology200046: 1-12.
12 PAWLOWSKI J, LEJZEROWICZ F, ESLING P. Next-generation environmental diversity surveys of foraminifera: preparing the future[J]. The Biological Bulletin2014227(2): 93-106.
13 PAWLOWSKI J, KELLY-QUINN M, ALTERMATT F, et al. The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems[J]. Science of the Total Environment2018637: 1 295-1 310.
14 GOLDSTEIN S T. Foraminifera: a biological overview[M]//Modern foraminifera. Dordrecht: Springer Netherlands, 1999: 37-55.
15 MEDINGER R, NOLTE V, PANDEY R V, et al. Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms[J]. Molecular Ecology201019(): 32-40.
16 ZHANG Kai, LI Baohua, WANG Xiaoyan, et al. Study on the rose Bengal staining for the living benthic foraminifers of the sediments[J]. Acta Micropalaeontologica Sinica202037(3): 294-302.
张楷, 李保华, 王晓燕, 等. 沉积物中活体底栖有孔虫的虎红染色方法比较研究[J]. 微体古生物学报202037(3): 294-302.
17 ZHANG Han, XU Bochao, GUO Xiaoyi, et al. Methods and applications for identifying living benthic foraminifera[J]. Advances in Earth Science202136(12): 1 247-1 257.
张涵, 许博超, 郭肖伊, 等. 活体底栖有孔虫鉴别方法及其应用[J]. 地球科学进展202136(12): 1 247-1 257.
18 MA Weixing, SHA Ou, LIU Yinghong, et al. Study on the supermolecule color reaction of protein and rose Bengal in the presence of emulsifier OP and its analytical applications[J]. Chinese Journal of Analysis Laboratory200726(3): 58-62.
马卫兴, 沙鸥, 刘英红, 等. 乳化剂OP存在下蛋白质与虎红的超分子显色反应研究及分析应用[J]. 分析试验室200726(3): 58-62.
83 LOU J, YANG L, WANG H Z, et al. Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification[J]. PeerJ2018, 6. DOI: 10.7717/peerj.4514 .
84 QIAO L, YU J, LI Y, et al. Amplicon-based illumina sequencing and quantitative PCR reveals nanoplankton diversity and biomass in surface water of Qinhuangdao coastal area, China[J]. Journal of Ocean University of China201918(4): 962-976.
85 ZHU F, MASSANA R, NOT F, et al. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene[J]. FEMS Microbiology Ecology200552(1): 79-92.
86 MURRAY J W. Ecology and applications of benthic foraminifera[M]. Cambridge: Cambridge University Press, 2006.
87 SEGEV E, SMITH Y, BEN-YEHUDA S. RNA dynamics in aging bacterial spores[J]. Cell2012148(1/2): 139-149.
88 LIU T T, YANG H. Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu[J]. FEMS Microbiology Ecology202096(5). DOI: 10.1016/S1001-0742(12)60122-3 .
89 GINER C R, FORN I, ROMAC S, et al. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes[J]. Applied and Environmental Microbiology201682(15): 4 757-4 766.
19 SCHÖNFELD J, ALVE E, GESLIN E, et al. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative: towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies[J]. Marine Micropaleontology201294: 1-13.
20 MURRAY J W. Mortality, protoplasm decay rate, and reliability of staining techniques to recognize ‘living’ foraminifera: a review[J]. The Journal of Foraminiferal Research200030(1): 66-70.
21 LANGER M R, LIPPS J H, PILLER W E. Molecular paleobiology of protists: amplification and direct sequencing of foraminiferal DNA[J]. Micropaleontology199339(1). DOI:10.2307/1485975 .
22 BHATT K A, TRIVEDI M H. Molecular studies on foraminifers: past, present, and future[J]. Journal of Foraminiferal Research201848(3): 193-209.
23 PAWLOWSKI J, HOLZMANN M. Diversity and geographic distribution of benthic foraminifera: a molecular perspective[J]. Biodiversity and Conservation200817(2): 317-328.
24 WEBER A A, PAWLOWSKI J. Wide occurrence of SSU rDNA intragenomic polymorphism in foraminifera and its implications for molecular species identification[J]. Protist2014165(5): 645-661.
25 QIAO L, FAN S Y, REN C Z, et al. Total and active benthic foraminiferal community and their response to heavy metals revealed by high throughput DNA and RNA sequencing in the Zhejiang coastal waters, East China Sea[J]. Marine Pollution Bulletin2022, 184. DOI:10.1016/j.marpolbul.2022.114225 .
26 QIAO L, CHEN Y, REN C Z, et al. Benthic foraminiferal community structure and its response to environmental factors revealed using high-throughput sequencing in the Zhoushan Fishing Ground, East China Sea[J]. Marine Pollution Bulletin2024, 202. DOI:10.1016/j.marpolbul.2024.116385 .
27 POCHON X, WOOD S A, KEELEY N B, et al. Accurate assessment of the impact of salmon farming on benthic sediment enrichment using foraminiferal metabarcoding[J]. Marine Pollution Bulletin2015100(1): 370-382.
28 SHI J F, LEI Y L, LI Q X, et al. Molecular diversity and spatial distribution of benthic foraminifera of the seamounts and adjacent abyssal Plains in the tropical western Pacific Ocean[J]. Marine Micropaleontology2020, 156. DOI:10.1016/j.marmicro.2020.101850 .
29 SCHWEIZER M, PAWLOWSKI J, KOUWENHOVEN T J, et al. Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences[J]. Marine Micropaleontology200866(3/4): 233-246.
30 LI Q X, LEI Y L, LIU J W, et al. Characteristics of foraminiferal communities in the western Clarion-Clipperton Zone revealed by eDNA metabarcoding[J]. Journal of Sea Research2022, 189. DOI:10.1016/j.seares.2022.102286 .
31 LI H T, LEI Y L, LI T G, et al. Next-generation sequencing and metabarcoding to understand the ecology of benthic foraminiferal community in the Bering Sea[J]. Journal of Sea Research2023, 191. DOI:10.1016/j.seares.2022.102321 .
32 LEJZEROWICZ F, GOODAY A J, BARRENECHEA A I, et al. Eukaryotic biodiversity and spatial patterns in the clarion-clipperton zone and other abyssal regions: insights from sediment DNA and RNA metabarcoding[J]. Frontiers in Marine Science2021, 8. DOI: 10.3389/fmars.2021.671033 .
33 MOSS J A, MCCURRY C, SCHWING P, et al. Molecular characterization of benthic foraminifera communities from the Northeastern Gulf of Mexico shelf and slope following the Deepwater Horizon event[J]. Deep Sea Research Part I: Oceanographic Research Papers2016115: 1-9.
34 ERTAN K T, HEMLEBEN V, HEMLEBEN C. Molecular evolution of some selected benthic foraminifera as inferred from sequences of the small subunit ribosomal DNA[J]. Marine Micropaleontology200453(3/4): 367-388.
35 Wenlong FA, LI Haotian, LI Qingxia, et al. Preliminary study on the methods of the extraction and pcr amplification of ancient foraminiferal DNA in core sediment from the Yellow Sea[J]. Acta Micropalaeontologica Sinica202239(1): 70-84.
法文龙, 李浩天, 李青霞, 等. 黄海沉积物柱状样中有孔虫古DNA的提取和PCR扩增的方法学初探[J]. 微体古生物学报202239(1): 70-84.
36 LEJZEROWICZ F, ESLING P, PILLET L, et al. High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems[J]. Scientific Reports2015, 5. DOI: 10.1038/srep13932. PMC4564730 .
[1] 王维波, 何雪宝, 靖春生, 林辉. 利用双平行激光器法获取深海底栖生物大小及其误差分析[J]. 地球科学进展, 2022, 37(8): 863-870.
[2] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[3] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[4] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[5] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[6] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[7] 孟伟庆, 胡蓓蓓, 刘百桥, 周俊. 基于生态系统的海洋管理:概念、原则、框架与实践途径[J]. 地球科学进展, 2016, 31(5): 461-470.
[8] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[9] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[10] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[11] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[12] 芮晓庆, 刘传联, 李志明. 颗石藻室内培养及应用研究进展[J]. 地球科学进展, 2014, 29(11): 1303-1313.
[13] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[14] 孙松, 孙晓霞. 海洋生物功能群变动与生态系统演变*[J]. 地球科学进展, 2014, 29(7): 854-858.
[15] 孙晓霞, 孙松. 海洋浮游生物图像观测技术及其应用[J]. 地球科学进展, 2014, 2014(6): 748-755.
阅读次数
全文


摘要