1 |
MUNK W, WUNSCH C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(12): 1 977-2 010.
|
2 |
GARRETT C, MUNK W. Internal waves in the ocean[J]. Annual Review of Fluid Mechanics, 1979, 11: 339-369.
|
3 |
BOEGMAN L, STASTNA M. Sediment resuspension and transport by internal solitary waves[J]. Annual Review of Fluid Mechanics, 2019, 51: 129-154.
|
4 |
GONG Y K, CHEN X E, XU J X, et al. An Internal Solitary Wave Forecasting Model in the Northern South China Sea (ISWFM-NSCS)[J]. Geoscientific Model Development, 2023, 16(10): 2 851-2 871.
|
5 |
GONG Y K, XIE J S, XU J X, et al. Oceanic internal solitary waves at the Indonesian submarine wreckage site[J]. Acta Oceanologica Sinica, 2022, 41(3): 109-113.
|
6 |
CAI S Q, XIE J S, HE J L. An overview of internal solitary waves in the South China Sea[J]. Surveys in Geophysics, 2012, 33(5): 927-943.
|
7 |
ALFORD M H, PEACOCK T, MACKINNON J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7 550): 65-69.
|
8 |
GORDON A L, HUBER B A, METZGER E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11). DOI:10.1029/2012GL052021
|
9 |
MURRAY S P, ARIEF D. Throughflow into the Indian Ocean through the Lombok Strait, January 1985-January 1986[J]. Nature, 1988, 333: 444-447.
|
10 |
WU M L, XUE H J, CHAI F. Asymmetric chlorophyll responses enhanced by internal waves near the Dongsha Atoll in the South China Sea[J]. Journal of Oceanology and Limnology, 2023, 41(2): 418-426.
|
11 |
YADIDYA B, RAO A D. Interannual variability of internal tides in the Andaman Sea: an effect of Indian Ocean Dipole[J]. Scientific Reports, 2022, 12(1). DOI:10.1038/s41598-022-15301-8 .
|
12 |
YADIDYA B, RAO A D. Projected climate variability of internal waves in the Andaman Sea[J]. Communications Earth & Environment, 2022, 3. DOI:10.1038/s43247-022-00574-8 .
|
13 |
YANG Y C, HUANG X D, ZHAO W, et al. Kelvin waves from the equatorial Indian Ocean modulate the nonlinear internal waves in the Andaman Sea[J]. Environmental Research Letters, 2023, 18(9). DOI:10.1088/1748-9326/acf05d .
|
14 |
GUO C, CHEN X. A review of internal solitary wave dynamics in the northern South China Sea[J]. Progress in Oceanography, 2014, 121: 7-23.
|
15 |
MENG J M, SUN L N, ZHANG H, et al. Remote sensing survey and research on internal solitary waves in the South China Sea-Western Pacific-East Indian Ocean (SCS-WPAC-EIND)[J]. Acta Oceanologica Sinica, 2022, 41(10): 154-170.
|
16 |
ZHANG X J, HUANG X D, ZHANG Z W, et al. Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: impacts of seasonal stratification, mesoscale eddies, and internal tides[J]. Journal of Physical Oceanography, 2018, 48(6): 1 349-1 365.
|
17 |
HUANG X D, CHEN Z H, ZHAO W, et al. An extreme internal solitary wave event observed in the northern South China Sea[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep30041 .
|
18 |
GONG Y, CHEN X, XU J, et al. ISWFM-NSCS v2.0: advancing the internal solitary wave forecasting model with background currents and horizontally inhomogeneous stratifications[J]. Geoscientific Model Development Discussions, 2024. DOI: 10.5194/gmd-2024-165 .
|
19 |
LAI Z G, JIN G Z, HUANG Y M, et al. The generation of nonlinear internal waves in the South China Sea: a three-dimensional, nonhydrostatic numerical study[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8 949-8 968.
|
20 |
JIN G Z, LAI Z G, SHANG X D. Numerical study on the spatial and temporal characteristics of nonlinear internal wave energy in the northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 178. DOI: 10.1016/j.dsr.2021.103640 .
|
21 |
RAMP S R, PARK J H, YANG Y J, et al. Latitudinal structure of solitons in the South China Sea[J]. Journal of Physical Oceanography, 2019, 49(7): 1 747-1 767.
|
22 |
RAMP S R, YANG Y J, CHIU C S, et al. Observations of shoaling internal wave transformation over a gentle slope in the South China Sea[J]. Nonlinear Processes in Geophysics, 2022, 29(3): 279-299.
|
23 |
CHEN L, ZHENG Q A, XIONG X J, et al. A new type of internal solitary waves with a re-appearance period of 23h observed in the South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(9): 116-118.
|
24 |
BAI X L, LI X F, LAMB K G, et al. Internal solitary wave reflection near Dongsha Atoll, the South China Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7 978-7 991.
|
25 |
XIE J S, HE Y H, CAI S Q. Bumpy topographic effects on the transbasin evolution of large-amplitude internal solitary wave in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 4 677-4 695.
|
26 |
XIE J S, HE Y H, LÜ H B, et al. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin[J]. Geophysical Research Letters, 2016, 43(14): 7 617-7 624.
|
27 |
HUANG X D, ZHANG Z W, ZHANG X J, et al. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations[J]. Journal of Physical Oceanography, 2017, 47(7): 1 539-1 554.
|
28 |
XU J X, HE Y H, CHEN Z W, et al. Observations of different effects of an anti-cyclonic eddy on internal solitary waves in the South China Sea[J]. Progress in Oceanography, 2020, 188.DOI: 10.1016/j.pocean.2020.102422 .
|
29 |
HUANG H, SONG P Y, QIU S, et al. A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation[J]. Geoscientific Model Development, 2023, 16(1): 109-133.
|
30 |
HUANG H, QIU S, ZENG Z, et al. Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon strait[J]. Journal of Physical Oceanography, 2024, 54(10): 2 133-2 152.
|
31 |
TANG Q S, HOBBS R, WANG D X, et al. Marine seismic observation of internal solitary wave packets in the northeast South China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8 487-8 503.
|
32 |
TANG Q S, XU M, ZHENG C, et al. A locally generated high-mode nonlinear internal wave detected on the shelf of the northern South China Sea from marine seismic observations[J]. Journal of Geophysical Research: Oceans, 2018, 123(2): 1 142-1 155.
|
33 |
SONG H B, GONG Y, YANG S X, et al. Observations of internal structure changes in shoaling internal solitary waves based on seismic oceanography method[J]. Frontiers in Marine Science, 2021, 8. DOI: 10.3389/fmars.2021.733959 .
|
34 |
MENG L H, SONG H B, GUAN Y X, et al. Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea[J]. Nonlinear Processes in Geophysics, 2024, 31(4): 477-495.
|
35 |
SONG H B, CHEN J X, PINHEIRO L M, et al. Progress and prospects of seismic oceanography[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177. DOI: 10.1016/j.dsr.2021.103631 .
|
36 |
ZENG K, ALPERS W. Generation of internal solitary waves in the Sulu Sea and their refraction by bottom topography studied by ERS SAR imagery and a numerical model[J]. International Journal of Remote Sensing, 2004, 25(7/8): 1 277-1 281.
|
37 |
JACKSON C, ARVELYNA Y, ASANUMA I. High-frequency nonlinear internal waves around the Philippines[J]. Oceanography, 2011, 24(1): 90-99.
|
38 |
YANG Y Z, SUN M, SUN L N, et al. A characteristics set computation model for internal wavenumber spectra and its validation with MODIS retrieved parameters in the Sulu Sea and Celebes Sea[J]. Remote Sensing, 2022, 14(9). DOI: 10.3390/rs14091967 .
|
39 |
ZHANG X D, LI X F, ZHANG T. Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1 435-1 444.
|
40 |
HUANG L Y, YANG J S, MA Z T, et al. Generation of diurnal Internal Solitary Waves (ISW-D) in the Sulu Sea: from geostationary orbit satellites and numerical simulations[J]. Progress in Oceanography, 2024, 225. DOI: 10.1016/j.pocean.2024.103279 .
|
41 |
LIU B Q. Oceanic internal waves in the Sulu-Celebes Sea under sunglint and moonglint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6 119-6 129.
|
42 |
HUANG L Y, YANG J S, MA Z T, et al. High-frequency observations of oceanic internal waves from geostationary orbit satellites[J]. Ocean-Land-Atmosphere Research, 2023, 2. DOI: 10.34133/olar.0024 .
|
43 |
APEL J R, HOLBROOK J R, LIU A K, et al. The Sulu Sea internal soliton experiment[J]. Journal of Physical Oceanography, 1985, 15(12): 1 625-1 651.
|
44 |
ZHAO X Y, XU Z H, FENG M, et al. Satellite investigation of semidiurnal internal tides in the Sulu-Sulawesi seas[J]. Remote Sensing, 2021, 13(13). DOI: 10.3390/rs13132530 .
|
45 |
LIU A K, HOLBROOK J R, APEL J R. Nonlinear internal wave evolution in the Sulu Sea[J]. Journal of Physical Oceanography, 1985, 15(12): 1 613-1 624.
|
46 |
TESSLER Z D, GORDON A L, JACKSON C R. Early stage soliton observations in the Sulu Sea[J]. Journal of Physical Oceanography, 2012, 42(8): 1 327-1 336.
|
47 |
XIE J S, DU H, GONG Y K, et al. The role of seasonal circulation in the variability of dynamic parameters of internal solitary waves in the Sulu Sea[J]. Progress in Oceanography, 2023, 217. DOI: 10.1016/j.pocean.2023.103100 .
|
48 |
ZHANG X D, LI X F. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes seas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2 822-2 832.
|
49 |
ZHANG X D, ZHANG T, LI X F. Satellite observation of tansmeridional propagating internal waves in the Celebes Sea[C]//IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium. Waikoloa, HI, USA: IEEE, 2020: 6 961-6 964.
|
50 |
LINDSEY D T, NAM S, MILLER S D. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit[J]. Remote Sensing of Environment, 2018, 208: 202-209.
|
51 |
HU B L, MENG J M, SUN L N, et al. A study on brightness reversal of internal waves in the Celebes Sea using himawari-8 images[J]. Remote Sensing, 2021, 13(19). DOI:10.3390/rs13193831 .
|
52 |
DEVANTIER L, ALCALA A, WILKINSON C. The Sulu-Sulawesi Sea: environmental and socioeconomic status, future prognosis and ameliorative policy options[J]. Ambio, 2004, 33(1/2): 88-97.
|
53 |
XIE Jieshuo, GONG Yankun, NIU Jianwei, et al. Spatial-temporal variations of the dynamic parameters of internal solitary waves in the Sulu-Celebes Sea[J]. Journal of Tropical Oceanography, 2022, 41(6): 132-142.
|
|
谢皆烁, 龚延昆, 牛建伟, 等. 苏禄—苏拉威西海内孤立波动力参数时空变化特征[J]. 热带海洋学报, 2022, 41(6): 132-142.
|
54 |
PURWANDANA A, CUYPERS Y, BOURUET-AUBERTOT P. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia[J]. Continental Shelf Research, 2021, 216. DOI: 10.1016/j.csr.2021.104358 .
|
55 |
CRESSWELL G, TILDESLEY P. RADARSAT scenes of Australia and adjacent waters[C]// Proceedings of the RADARSAT final Symposium, Montreal. 1998.
|
56 |
MITNIK L, ALPERS W, LIM H. Thermal plumes and internal solitary waves generated in the Lombok Strait studied by ERS SAR[Z]. ERS-Envisat symposium: looking down to Earth in the New Millennium. 2000: 16-20.
|
57 |
SUSANTO R, MITNIK L, ZHENG Q. Ocean internal waves observed[J]. Oceanography, 2005, 18(4): 80-87.
|
58 |
MATTHEWS J P, AIKI H, MASUDA S, et al. Monsoon regulation of Lombok strait internal waves[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5).DOI: 10.1029/2010JC006403 .
|
59 |
ZHUANG C Y, LI X F, SHEN D L, et al. Internal solitary wave in the Lombok strait: satellite-observed spatiotemporal characteristics and their propagations modulated by the Indonesian throughflow[J]. Ocean Modelling, 2024, 190. DOI:10.1016/j.ocemod.2024.102398 .
|
60 |
SYAMSUDIN F, TANIGUCHI N, ZHANG C Z, et al. Observing internal solitary waves in the Lombok strait by coastal acoustic tomography[J]. Geophysical Research Letters, 2019, 46(17/18): 10 475-10 483.
|
61 |
AIKI H, MATTHEWS J P, LAMB K G. Modeling and energetics of tidally generated wave trains in the Lombok Strait: impact of the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 2011, 116(C3). DOI:10.1029/2010JC006403 .
|
62 |
HATAYAMA T, AWAJI T, AKITOMO K. Tidal currents in the Indonesian seas and their effect on transport and mixing[J]. Journal of Geophysical Research: Oceans, 1996, 101(C5): 12 353-12 373.
|
63 |
HENDRAWAN I G, ASAI K. Numerical Study of tidal upwelling over the sill in the Lombok Strait (Indonesia)[C]// ISOPE international ocean and polar engineering conference. ISOPE, 2011: ISOPE-I-11- 131.
|
64 |
GONG Y K, XIE J S, XU J X, et al. Spatial asymmetry of nonlinear internal waves in the Lombok Strait[J]. Progress in Oceanography, 2022, 202. DOI:10.1016/j.pocean.2022.102759 .
|
65 |
WANG W, GONG Y, WANG Z, et al. Numerical simulations of generation and propagation of internal tides in the Andaman Sea[J]. Frontiers in Marine Science, 2022, 9. DOI:10.1016/j.pocean.2022.102759 .
|
66 |
YANG Y C, HUANG X D, ZHAO W, et al. Internal solitary waves in the Andaman Sea revealed by long-term mooring observations[J]. Journal of Physical Oceanography, 2021, 51(12): 3 609-3 627.
|
67 |
MOHANTY S, RAO A D, LATHA G. Energetics of semidiurnal internal tides in the Andaman Sea[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6 224-6 240.
|
68 |
PENG S Q, LIAO J W, WANG X W, et al. Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(4). DOI:10.1029/2020JC016521 .
|
69 |
SUN L N, ZHANG J, MENG J M. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS[J]. Acta Oceanologica Sinica, 2019, 38(7): 121-128.
|
70 |
MAGALHAES J M, da SILVA J C B. Internal solitary waves in the Andaman Sea: new insights from SAR imagery[J]. Remote Sensing, 2018, 10(6). DOI: 10.3390/rs10060861 .
|
71 |
YU Y J, XU T, WANG J H, et al. On the generation and evolution of internal solitary waves in the Andaman Sea[J]. Journal of Ocean University of China, 2023, 22(2): 335-348.
|
72 |
TENSUBAM C M, RAJU N J, DASH M K, et al. Estimation of internal solitary wave propagation speed in the Andaman Sea using multi-satellite images[J]. Remote Sensing of Environment, 2021, 252. DOI: 10.1016/j.rse.2020.112123 .
|
73 |
SUN L N, LIU Y L, MENG J M, et al. Internal solitary waves in the central Andaman Sea observed by combining mooring data and satellite remote sensing[J]. Continental Shelf Research, 2024, 277. DOI: 10.1016/j.csr.2024.105249 .
|
74 |
CAI S Q, WU Y Q, XU J X, et al. On the generation and propagation of internal solitary waves in the southern Andaman Sea: a numerical study[J]. Science China Earth Sciences, 2021, 64(10): 1 674-1 686.
|
75 |
LU K X, WANG J, ZHANG M. Study on prediction of internal solitary waves propagation in the southern Andaman Sea[J]. Journal of Oceanography, 2021, 77(4): 607-613.
|
76 |
ZHANG X D, LI X F, ZHENG Q A. A machine-learning model for forecasting internal wave propagation in the Andaman Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3 095-3 106.
|
77 |
CAI S Q, HE Y H, WANG S G, et al. Seasonal upper circulation in the Sulu Sea from satellite altimetry data and a numerical model[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3). DOI: 10.1029/2008JC005109 .
|
78 |
SONG Q, GORDON A L. Significance of the vertical profile of the Indonesian throughflow transport to the Indian Ocean[J]. Geophysical Research Letters, 2004, 31(16). DOI:10.1029/2004GL020360 .
|
79 |
LI X F, WANG H Y, YANG Y, et al. Deep learning-based solution for the KdV-family governing equations of ocean internal waves[J]. Ocean Modelling, 2025, 194. DOI: 10.1016/j.ocemod.2024.102493 .
|