地球科学进展 ›› 2025, Vol. 40 ›› Issue (3): 289 -302. doi: 10.11867/j.issn.1001-8166.2025.018

综述与评述 上一篇    下一篇

南海及周边海上丝绸之路沿线的强灾害性内波
龚延昆1(), 陈璐1,2, 孙宇翰1,2, 许洁馨1,2, 陈植武1,2, 蔡树群1,2()   
  1. 1.中国科学院南海海洋研究所 热带海洋环境与岛礁生态全国重点实验室,广东 广州 510301
    2.中国科学院大学,北京 100049
  • 收稿日期:2025-01-03 修回日期:2025-02-10 出版日期:2025-03-10
  • 通讯作者: 蔡树群 E-mail:gongyk@scsio.ac.cn;caisq@scsio.ac.cn
  • 基金资助:
    国家自然科学基金项目(42130404)

Strong Hazardous Internal Waves in the South China Sea and Along the Maritime Silk Road

Yankun GONG1(), Lu CHNE1,2, Yuhan SUN1,2, Jiexin XU1,2, Zhiwu CHEN1,2, Shuqun CAI1,2()   

  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-01-03 Revised:2025-02-10 Online:2025-03-10 Published:2025-05-07
  • Contact: Shuqun CAI E-mail:gongyk@scsio.ac.cn;caisq@scsio.ac.cn
  • About author:GONG Yankun, research areas include oceanic internal wave dynamics. E-mail: gongyk@scsio.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(42130404)

内孤立波作为大振幅强非线性内波,不仅在海洋混合、物质输运和生态系统演变中起着关键作用,还对水下航行安全和海洋工程等构成潜在威胁。因此,深入研究内孤立波的生成、传播及其影响对于海洋环境、水下航行安全至关重要。作为全球重要的海上贸易交通要道,南海(吕宋海峡)及其周边海上丝绸之路沿线海域,如苏禄海(锡布图海峡)、苏拉威西海、龙目海峡和安达曼海等,存在陡峭的水下海脊以及局地潮流较强,是内孤立波频发的海域。通过对卫星遥感、现场观测、数值模拟及地震海洋学等技术手段在这些海域内孤立波研究中的应用进展进行系统综述,揭示了南海及周边海上丝绸之路沿线内孤立波波动特征、生成机制与传播演变规律的区域差异性,并进一步探讨了未来内孤立波研究中一些亟待解决的科学问题(波—流相互作用、多源地内波相干涉现象)与技术难题(数值预报的优化与智能预报的发展)。

Internal Solitary Waves (ISWs), which are characterized by large amplitudes and strong nonlinearity, are pivotal dynamic phenomena in oceanic processes. These waves contribute significantly to vertical mixing, cross-isopycnal transport of nutrients and sediments, and modulation of marine ecosystems, while posing substantial risks to subsea infrastructures, underwater navigation, and offshore operations. Therefore, a comprehensive understanding of their generation mechanisms, spatiotemporal evolution, and environmental impacts is critical for advancing oceanographic knowledge and ensuring maritime safety. The South China Sea (SCS) and its adjacent regions along the Maritime Silk Road, including the Sulu Sea (Sibutu Passage), Celebes Sea, Lombok Strait, and Andaman Sea, serve as global hotspots for ISW activity because of their complex bathymetry, intense tidal currents, and stratified water columns. This paper synthesizes multidisciplinary advances in ISW research across these regions, leveraging integrated methodologies such as multi-sensor satellite remote sensing (e.g., MODIS, VIIRS, and SAR), in situ observational networks, high-resolution numerical modeling (e.g., MITgcm, FVCOM), and emerging seismic oceanography techniques. Furthermore, the review identifies persistent gaps in knowledge, such as the role of mesoscale and submesoscale processes in wave–current interactions and interference effects between ISWs from multiple sources. Technical challenges, including the assimilation of multi-platform data into predictive models and the development of AI-driven forecast systems (e.g., physics-informed neural networks, convolutional neural networks), are critically assessed. The paper concludes by advocating for coordinated international observational campaigns and next-generation, non-hydrostatic models to unravel the multiscale complexity of ISWs, ultimately enhancing predictive capabilities for scientific and operational applications in these strategic waters.

中图分类号: 

图1 南海原油贸易主航道(虚线)穿越灾害性内波分布海域
左上图为南海及周边海上丝绸之路沿线(黑框)海洋内波振幅的空间分布特征图;黑色虚线箭头表示海上丝绸之路贸易主航道
Fig. 1 The main oil trade route in the South China Seadashed linecrosses the areas affected by hazardous internal waves
The top left image shows the spatial characteristics of internal wave amplitudes along the Maritime Silk Road route (black frame) in the South China Sea and its surrounding areas; Black dashed line arrows represent the primary trade route of the Maritime Silk Road
图2 南海内孤立波
(a)南海内孤立波三维数值模拟结果18:上图为内孤立波所致海表高度梯度,下图为沿内孤立波主要传播方向的剖面内内孤立波的垂向特征(颜色填充表示波致流速,等值线表示等温线);(b)南海内孤立波的生成、演化、耗散示意图7
Fig. 2 Internal solitary waves in the South China Sea
(a) Three-dimensional numerical simulations of internal solitary waves18 in the South China Sea: the top panel shows the sea surface height gradient induced by internal solitary waves, while the bottom panel depicts the vertical characteristics of internal solitary waves along the main propagation direction (color shade represents wave-induced velocity, and contours represent isotherms); (b) Generation, evolution and dissipation processes of internal solitary wave7 in the South China Sea
图3 苏禄海内孤立波
(a)苏禄海内孤立波MODIS卫星遥感图像39(白色虚线表示内孤立波波峰线位置);(b)遥感观测资料统计的苏禄海内孤立波出现频率;(c)~(e)苏禄海内孤立波二维数值模型结果40(等值线表示等温线)
Fig. 3 Internal solitary waves in the Sulu Sea
(a) MODIS satellite image of internal solitary waves39in the Sulu Sea (the white dashed line indicates the position of the internal solitary wave crest); (b) Statistical frequency of internal solitary waves in the Sulu Sea based on remote sensing observation data; (c)~(e) Two-dimensional numerical simulations of internal solitary waves40 in the Sulu Sea (contours represent isotherms)
图4 苏拉威西海内孤立波
(a)苏拉威西海内孤立波MODIS卫星遥感图像(红色箭头表示西传内孤立波IW1、IW2和IW3,蓝色箭头表示南传内孤立波IW4、IW5和IW6),珍珠滩与桑吉群岛用五角星标出;(b)基于遥感观测资料统计的苏拉威西海内孤立波波峰线位置49(红色曲线为西传内孤立波波峰线位置,蓝色曲线为南传内孤立波波峰线位置)
Fig. 4 Internal solitary waves in the Celebes Sea
(a) MODIS satellite image of internal solitary wavesin the Celebes Sea [the red arrows indicate the westward-propagating internal solitary waves (i.e., IW1, IW2 and IW3) and the blue arrows indicate the southward-propagating internal solitary waves (i.e., IW4, IW5 and IW6)], the Pearl Bank and Sangihe Islands are marked in magenta stars; (b) Statistical crest positions of internal solitary waves in the Celebes Sea based on remote sensing observation data49 (red curves indicate the crests of westward-propagating internal solitary wave and the blue curves indicate the crests of southward-propagating internal solitary waves)
图5 龙目海峡内孤立波
(a)龙目海峡内孤立波三维数值模拟5(颜色填充表示内孤立波所致海表高度梯度,箭头分别标出了北传与南传的内孤立波);(b)龙目海峡内孤立波MODIS卫星遥感图像5(颜色填充表示内孤立波所致海表高度梯度,箭头分别标出了北传与南传的内孤立波);(c)龙目海峡内孤立波现场观测54(等值线表示垂向位移)
Fig. 5 Internal solitary waves in the Lombok Strait
(a) Three-dimensional numerical simulations of internal solitary waves5 in the Lombok Strait (the color shade represents the sea surface height gradient induced by internal solitary waves, arrows indicate the northward and southward propagating internal solitary waves, respectively); (b) MODIS satellite image of internal solitary waves5 in the Lombok Strait (the color shade represents the sea surface height gradient induced by internal solitary waves, arrows indicate the northward and southward propagating internal solitary waves, respectively);(c)In-situ observation of internal solitary waves54 in the Lombok Strait (contours represent vertical displacements)
图6 安达曼海内孤立波
(a)基于卫星遥感的安达曼海内孤立波空间特征66(黑线表示内孤立波波峰线位置);(b)印度洋开尔文波示意图13(箭头表示开尔文波);(c)和(d)安达曼海内孤立波现场观测13(等值线表示等温线)
Fig. 6 Internal solitary waves in the Andaman Sea
(a) Spatial characteristics of internal solitary waves in the Andaman Sea on the basis of satellite images66 (the black lines indicate the positions of the internal solitary wave crests); (b) Schematic of Kelvin wave in the Indian Ocean13 (the arrows indicate Kelvin waves); (c) and (d) In-situ observation of internal solitary waves13 in the Andaman Sea (the contours represent isotherms)
1 MUNK W, WUNSCH C. Abyssal recipes II: energetics of tidal and wind mixing[J]. Deep Sea Research Part I: Oceanographic Research Papers199845(12): 1 977-2 010.
2 GARRETT C, MUNK W. Internal waves in the ocean[J]. Annual Review of Fluid Mechanics197911: 339-369.
3 BOEGMAN L, STASTNA M. Sediment resuspension and transport by internal solitary waves[J]. Annual Review of Fluid Mechanics201951: 129-154.
4 GONG Y K, CHEN X E, XU J X, et al. An Internal Solitary Wave Forecasting Model in the Northern South China Sea (ISWFM-NSCS)[J]. Geoscientific Model Development202316(10): 2 851-2 871.
5 GONG Y K, XIE J S, XU J X, et al. Oceanic internal solitary waves at the Indonesian submarine wreckage site[J]. Acta Oceanologica Sinica202241(3): 109-113.
6 CAI S Q, XIE J S, HE J L. An overview of internal solitary waves in the South China Sea[J]. Surveys in Geophysics201233(5): 927-943.
7 ALFORD M H, PEACOCK T, MACKINNON J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature2015521(7 550): 65-69.
8 GORDON A L, HUBER B A, METZGER E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters201239(11). DOI:10.1029/2012GL052021
9 MURRAY S P, ARIEF D. Throughflow into the Indian Ocean through the Lombok Strait, January 1985-January 1986[J]. Nature1988333: 444-447.
10 WU M L, XUE H J, CHAI F. Asymmetric chlorophyll responses enhanced by internal waves near the Dongsha Atoll in the South China Sea[J]. Journal of Oceanology and Limnology202341(2): 418-426.
11 YADIDYA B, RAO A D. Interannual variability of internal tides in the Andaman Sea: an effect of Indian Ocean Dipole[J]. Scientific Reports202212(1). DOI:10.1038/s41598-022-15301-8 .
12 YADIDYA B, RAO A D. Projected climate variability of internal waves in the Andaman Sea[J]. Communications Earth & Environment2022, 3. DOI:10.1038/s43247-022-00574-8 .
13 YANG Y C, HUANG X D, ZHAO W, et al. Kelvin waves from the equatorial Indian Ocean modulate the nonlinear internal waves in the Andaman Sea[J]. Environmental Research Letters202318(9). DOI:10.1088/1748-9326/acf05d .
14 GUO C, CHEN X. A review of internal solitary wave dynamics in the northern South China Sea[J]. Progress in Oceanography2014121: 7-23.
15 MENG J M, SUN L N, ZHANG H, et al. Remote sensing survey and research on internal solitary waves in the South China Sea-Western Pacific-East Indian Ocean (SCS-WPAC-EIND)[J]. Acta Oceanologica Sinica202241(10): 154-170.
16 ZHANG X J, HUANG X D, ZHANG Z W, et al. Polarity variations of internal solitary waves over the continental shelf of the northern South China Sea: impacts of seasonal stratification, mesoscale eddies, and internal tides[J]. Journal of Physical Oceanography201848(6): 1 349-1 365.
17 HUANG X D, CHEN Z H, ZHAO W, et al. An extreme internal solitary wave event observed in the northern South China Sea[J]. Scientific Reports2016, 6. DOI:10.1038/srep30041 .
18 GONG Y, CHEN X, XU J, et al. ISWFM-NSCS v2.0: advancing the internal solitary wave forecasting model with background currents and horizontally inhomogeneous stratifications[J]. Geoscientific Model Development Discussions2024. DOI: 10.5194/gmd-2024-165 .
19 LAI Z G, JIN G Z, HUANG Y M, et al. The generation of nonlinear internal waves in the South China Sea: a three-dimensional, nonhydrostatic numerical study[J]. Journal of Geophysical Research: Oceans2019124(12): 8 949-8 968.
20 JIN G Z, LAI Z G, SHANG X D. Numerical study on the spatial and temporal characteristics of nonlinear internal wave energy in the northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers2021, 178. DOI: 10.1016/j.dsr.2021.103640 .
21 RAMP S R, PARK J H, YANG Y J, et al. Latitudinal structure of solitons in the South China Sea[J]. Journal of Physical Oceanography201949(7): 1 747-1 767.
22 RAMP S R, YANG Y J, CHIU C S, et al. Observations of shoaling internal wave transformation over a gentle slope in the South China Sea[J]. Nonlinear Processes in Geophysics202229(3): 279-299.
23 CHEN L, ZHENG Q A, XIONG X J, et al. A new type of internal solitary waves with a re-appearance period of 23h observed in the South China Sea[J]. Acta Oceanologica Sinica201837(9): 116-118.
24 BAI X L, LI X F, LAMB K G, et al. Internal solitary wave reflection near Dongsha Atoll, the South China Sea[J]. Journal of Geophysical Research: Oceans2017122(10): 7 978-7 991.
25 XIE J S, HE Y H, CAI S Q. Bumpy topographic effects on the transbasin evolution of large-amplitude internal solitary wave in the northern South China Sea[J]. Journal of Geophysical Research: Oceans2019124(7): 4 677-4 695.
26 XIE J S, HE Y H, LÜ H B, et al. Distortion and broadening of internal solitary wavefront in the northeastern South China Sea deep basin[J]. Geophysical Research Letters201643(14): 7 617-7 624.
27 HUANG X D, ZHANG Z W, ZHANG X J, et al. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations[J]. Journal of Physical Oceanography201747(7): 1 539-1 554.
28 XU J X, HE Y H, CHEN Z W, et al. Observations of different effects of an anti-cyclonic eddy on internal solitary waves in the South China Sea[J]. Progress in Oceanography2020, 188.DOI: 10.1016/j.pocean.2020.102422 .
29 HUANG H, SONG P Y, QIU S, et al. A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation[J]. Geoscientific Model Development202316(1): 109-133.
30 HUANG H, QIU S, ZENG Z, et al. Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon strait[J]. Journal of Physical Oceanography202454(10): 2 133-2 152.
31 TANG Q S, HOBBS R, WANG D X, et al. Marine seismic observation of internal solitary wave packets in the northeast South China Sea[J]. Journal of Geophysical Research: Oceans2015120(12): 8 487-8 503.
32 TANG Q S, XU M, ZHENG C, et al. A locally generated high-mode nonlinear internal wave detected on the shelf of the northern South China Sea from marine seismic observations[J]. Journal of Geophysical Research: Oceans2018123(2): 1 142-1 155.
33 SONG H B, GONG Y, YANG S X, et al. Observations of internal structure changes in shoaling internal solitary waves based on seismic oceanography method[J]. Frontiers in Marine Science2021, 8. DOI: 10.3389/fmars.2021.733959 .
34 MENG L H, SONG H B, GUAN Y X, et al. Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea[J]. Nonlinear Processes in Geophysics202431(4): 477-495.
35 SONG H B, CHEN J X, PINHEIRO L M, et al. Progress and prospects of seismic oceanography[J]. Deep Sea Research Part I: Oceanographic Research Papers2021, 177. DOI: 10.1016/j.dsr.2021.103631 .
36 ZENG K, ALPERS W. Generation of internal solitary waves in the Sulu Sea and their refraction by bottom topography studied by ERS SAR imagery and a numerical model[J]. International Journal of Remote Sensing200425(7/8): 1 277-1 281.
37 JACKSON C, ARVELYNA Y, ASANUMA I. High-frequency nonlinear internal waves around the Philippines[J]. Oceanography201124(1): 90-99.
38 YANG Y Z, SUN M, SUN L N, et al. A characteristics set computation model for internal wavenumber spectra and its validation with MODIS retrieved parameters in the Sulu Sea and Celebes Sea[J]. Remote Sensing202214(9). DOI: 10.3390/rs14091967 .
39 ZHANG X D, LI X F, ZHANG T. Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images[J]. Journal of Oceanology and Limnology202038(5): 1 435-1 444.
40 HUANG L Y, YANG J S, MA Z T, et al. Generation of diurnal Internal Solitary Waves (ISW-D) in the Sulu Sea: from geostationary orbit satellites and numerical simulations[J]. Progress in Oceanography2024, 225. DOI: 10.1016/j.pocean.2024.103279 .
41 LIU B Q. Oceanic internal waves in the Sulu-Celebes Sea under sunglint and moonglint[J]. IEEE Transactions on Geoscience and Remote Sensing201957(8): 6 119-6 129.
42 HUANG L Y, YANG J S, MA Z T, et al. High-frequency observations of oceanic internal waves from geostationary orbit satellites[J]. Ocean-Land-Atmosphere Research2023, 2. DOI: 10.34133/olar.0024 .
43 APEL J R, HOLBROOK J R, LIU A K, et al. The Sulu Sea internal soliton experiment[J]. Journal of Physical Oceanography198515(12): 1 625-1 651.
44 ZHAO X Y, XU Z H, FENG M, et al. Satellite investigation of semidiurnal internal tides in the Sulu-Sulawesi seas[J]. Remote Sensing202113(13). DOI: 10.3390/rs13132530 .
45 LIU A K, HOLBROOK J R, APEL J R. Nonlinear internal wave evolution in the Sulu Sea[J]. Journal of Physical Oceanography198515(12): 1 613-1 624.
46 TESSLER Z D, GORDON A L, JACKSON C R. Early stage soliton observations in the Sulu Sea[J]. Journal of Physical Oceanography201242(8): 1 327-1 336.
47 XIE J S, DU H, GONG Y K, et al. The role of seasonal circulation in the variability of dynamic parameters of internal solitary waves in the Sulu Sea[J]. Progress in Oceanography2023, 217. DOI: 10.1016/j.pocean.2023.103100 .
48 ZHANG X D, LI X F. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes seas[J]. IEEE Transactions on Geoscience and Remote Sensing202159(4): 2 822-2 832.
49 ZHANG X D, ZHANG T, LI X F. Satellite observation of tansmeridional propagating internal waves in the Celebes Sea[C]//IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium. Waikoloa, HI, USA: IEEE, 2020: 6 961-6 964.
50 LINDSEY D T, NAM S, MILLER S D. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit[J]. Remote Sensing of Environment2018208: 202-209.
51 HU B L, MENG J M, SUN L N, et al. A study on brightness reversal of internal waves in the Celebes Sea using himawari-8 images[J]. Remote Sensing202113(19). DOI:10.3390/rs13193831 .
52 DEVANTIER L, ALCALA A, WILKINSON C. The Sulu-Sulawesi Sea: environmental and socioeconomic status, future prognosis and ameliorative policy options[J]. Ambio200433(1/2): 88-97.
53 XIE Jieshuo, GONG Yankun, NIU Jianwei, et al. Spatial-temporal variations of the dynamic parameters of internal solitary waves in the Sulu-Celebes Sea[J]. Journal of Tropical Oceanography202241(6): 132-142.
谢皆烁, 龚延昆, 牛建伟, 等. 苏禄—苏拉威西海内孤立波动力参数时空变化特征[J]. 热带海洋学报202241(6): 132-142.
54 PURWANDANA A, CUYPERS Y, BOURUET-AUBERTOT P. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia[J]. Continental Shelf Research2021, 216. DOI: 10.1016/j.csr.2021.104358 .
55 CRESSWELL G, TILDESLEY P. RADARSAT scenes of Australia and adjacent waters[C]// Proceedings of the RADARSAT final Symposium, Montreal. 1998.
56 MITNIK L, ALPERS W, LIM H. Thermal plumes and internal solitary waves generated in the Lombok Strait studied by ERS SAR[Z]. ERS-Envisat symposium: looking down to Earth in the New Millennium. 2000: 16-20.
57 SUSANTO R, MITNIK L, ZHENG Q. Ocean internal waves observed[J]. Oceanography200518(4): 80-87.
58 MATTHEWS J P, AIKI H, MASUDA S, et al. Monsoon regulation of Lombok strait internal waves[J]. Journal of Geophysical Research: Oceans2011116(C5).DOI: 10.1029/2010JC006403 .
59 ZHUANG C Y, LI X F, SHEN D L, et al. Internal solitary wave in the Lombok strait: satellite-observed spatiotemporal characteristics and their propagations modulated by the Indonesian throughflow[J]. Ocean Modelling2024, 190. DOI:10.1016/j.ocemod.2024.102398 .
60 SYAMSUDIN F, TANIGUCHI N, ZHANG C Z, et al. Observing internal solitary waves in the Lombok strait by coastal acoustic tomography[J]. Geophysical Research Letters201946(17/18): 10 475-10 483.
61 AIKI H, MATTHEWS J P, LAMB K G. Modeling and energetics of tidally generated wave trains in the Lombok Strait: impact of the Indonesian throughflow[J]. Journal of Geophysical Research: Oceans2011116(C3). DOI:10.1029/2010JC006403 .
62 HATAYAMA T, AWAJI T, AKITOMO K. Tidal currents in the Indonesian seas and their effect on transport and mixing[J]. Journal of Geophysical Research: Oceans1996101(C5): 12 353-12 373.
63 HENDRAWAN I G, ASAI K. Numerical Study of tidal upwelling over the sill in the Lombok Strait (Indonesia)[C]// ISOPE international ocean and polar engineering conference. ISOPE, 2011ISOPE-I-11- 131.
64 GONG Y K, XIE J S, XU J X, et al. Spatial asymmetry of nonlinear internal waves in the Lombok Strait[J]. Progress in Oceanography2022, 202. DOI:10.1016/j.pocean.2022.102759 .
65 WANG W, GONG Y, WANG Z, et al. Numerical simulations of generation and propagation of internal tides in the Andaman Sea[J]. Frontiers in Marine Science2022, 9. DOI:10.1016/j.pocean.2022.102759 .
66 YANG Y C, HUANG X D, ZHAO W, et al. Internal solitary waves in the Andaman Sea revealed by long-term mooring observations[J]. Journal of Physical Oceanography202151(12): 3 609-3 627.
67 MOHANTY S, RAO A D, LATHA G. Energetics of semidiurnal internal tides in the Andaman Sea[J]. Journal of Geophysical Research: Oceans2018123(9): 6 224-6 240.
68 PENG S Q, LIAO J W, WANG X W, et al. Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea[J]. Journal of Geophysical Research: Oceans2021126(4). DOI:10.1029/2020JC016521 .
69 SUN L N, ZHANG J, MENG J M. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS[J]. Acta Oceanologica Sinica201938(7): 121-128.
70 MAGALHAES J M, da SILVA J C B. Internal solitary waves in the Andaman Sea: new insights from SAR imagery[J]. Remote Sensing201810(6). DOI: 10.3390/rs10060861 .
71 YU Y J, XU T, WANG J H, et al. On the generation and evolution of internal solitary waves in the Andaman Sea[J]. Journal of Ocean University of China202322(2): 335-348.
72 TENSUBAM C M, RAJU N J, DASH M K, et al. Estimation of internal solitary wave propagation speed in the Andaman Sea using multi-satellite images[J]. Remote Sensing of Environment2021, 252. DOI: 10.1016/j.rse.2020.112123 .
73 SUN L N, LIU Y L, MENG J M, et al. Internal solitary waves in the central Andaman Sea observed by combining mooring data and satellite remote sensing[J]. Continental Shelf Research2024, 277. DOI: 10.1016/j.csr.2024.105249 .
74 CAI S Q, WU Y Q, XU J X, et al. On the generation and propagation of internal solitary waves in the southern Andaman Sea: a numerical study[J]. Science China Earth Sciences202164(10): 1 674-1 686.
75 LU K X, WANG J, ZHANG M. Study on prediction of internal solitary waves propagation in the southern Andaman Sea[J]. Journal of Oceanography202177(4): 607-613.
76 ZHANG X D, LI X F, ZHENG Q A. A machine-learning model for forecasting internal wave propagation in the Andaman Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202114: 3 095-3 106.
77 CAI S Q, HE Y H, WANG S G, et al. Seasonal upper circulation in the Sulu Sea from satellite altimetry data and a numerical model[J]. Journal of Geophysical Research: Oceans2009114(C3). DOI: 10.1029/2008JC005109 .
78 SONG Q, GORDON A L. Significance of the vertical profile of the Indonesian throughflow transport to the Indian Ocean[J]. Geophysical Research Letters200431(16). DOI:10.1029/2004GL020360 .
79 LI X F, WANG H Y, YANG Y, et al. Deep learning-based solution for the KdV-family governing equations of ocean internal waves[J]. Ocean Modelling2025, 194. DOI: 10.1016/j.ocemod.2024.102493 .
[1] 农子琪, 黄鹏宇, 徐寒列, 胡秀清, 闵敏. 夜间星载微光成像仪在大气、海洋和环境领域的应用研究进展[J]. 地球科学进展, 2023, 38(5): 533-550.
[2] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[3] 李向东,何幼斌,张铭记,刘训,姚建新. 宁夏中奥陶统香山群徐家圈组内波、内潮汐沉积类型[J]. 地球科学进展, 2011, 26(9): 1006-1014.
[4] 蔡树群,何建玲,谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703-710.
[5] 郭朴,方文东,于红兵. 近海陆架区内潮观测研究进展[J]. 地球科学进展, 2006, 21(6): 617-624.
[6] 蔡树群,甘子钧. 南海北部孤立子内波的研究进展[J]. 地球科学进展, 2001, 16(2): 215-219.
[7] 何幼斌,罗顺社,高振中. 深水牵引流沉积研究进展与展望[J]. 地球科学进展, 1997, 12(3): 247-252.
[8] 方欣华. 海洋小尺度过程[J]. 地球科学进展, 1993, 8(5): 99-100.
[9] 方欣华. 海洋内波动力学[J]. 地球科学进展, 1993, 8(5): 97-98.
阅读次数
全文


摘要