地球科学进展 ›› 2025, Vol. 40 ›› Issue (3): 255 -270. doi: 10.11867/j.issn.1001-8166.2025.019

综述与评述 上一篇    下一篇

人地系统可持续发展评估模型与情景分析研究进展与展望
张宇冕1(), 张军泽2(), 王帅1, 傅伯杰2   
  1. 1.北京师范大学 地理科学学部 地表过程与水土风沙灾害风险防控国家重点实验室,北京 100875
    2.中国科学院生态环境研究中心 区域与城市生态安全全国重点实验室,北京 100085
  • 收稿日期:2025-01-05 修回日期:2025-02-08 出版日期:2025-03-10
  • 通讯作者: 张军泽 E-mail:202431051026@mail.bnu.edu.cn;zhangjunze427@126.com
  • 基金资助:
    国家重点研发计划项目(2023YFC3804903);国家自然科学基金项目(W2412141)

Progress and Prospects of Research on Assessment Models and Scenario Analysis for Sustainable Development of Human-Earth Systems

Yumian ZHANG1(), Junze ZHANG2(), Shuai WANG1, Bojie FU2   

  1. 1.State Key Laboratory of Earth Surface Processes and Hazards Risk Governance, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2.State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2025-01-05 Revised:2025-02-08 Online:2025-03-10 Published:2025-05-07
  • Contact: Junze ZHANG E-mail:202431051026@mail.bnu.edu.cn;zhangjunze427@126.com
  • About author:ZHANG Yumian, research areas include water and soil erosion disaster risk prevention and sustainable development research. E-mail: 202431051026@mail.bnu.edu.cn
  • Supported by:
    the National Key Research and Development Program of China(2023YFC3804903);The National Natural Science Foundation of China(W2412141)

人地系统科学作为可持续发展研究的理论基础,能够通过多维视角、综合理念和系统思维为决策者制定可持续发展路径提供科学支撑,在国家经济、社会和生态文明建设中的重要性日益凸显。人地系统可持续发展评估模型与情景分析技术作为重要的研究工具得到了广泛应用和关注,然而当前研究缺乏关于模型与情景分析技术进展与不足的系统梳理。为紧跟国际前沿,促进国内学者对人地系统建模与决策分析的了解和发展,有必要对目前国际上的相关研究进行进一步系统梳理。采用文献分析与定量分析相结合的方法,总结了模型难以同时支持多个可持续发展目标和在社会维度模拟困难的现状,分析了在系统性变化捕捉、尺度转换、跨学科知识整合、不确定性处理以及数据挖掘与新技术利用方面的挑战;同时总结了情景分析的设置方法、一般类型与情景内容,以及在情景内部冲突、跨尺度链接、与决策相联系方面的局限性,研究结果可以为推动国内学者在该领域的创新发展提供重要参考。

Human-earth system science, as a foundation of sustainable development research, can help decision-makers design sustainable pathways through multidimensional perspectives, integrated concepts, and systematic thinking. It plays an increasingly important role in the construction of national economies, societies, and ecological civilizations. Human-earth system sustainable development assessment models and scenario analysis techniques have become important tools that are widely used and studied. However, current research lacks a summary of the progress and limitations of these models and scenario analysis techniques. To keep pace with international developments and promote the understanding and advancement of human-earth system modeling and decision analysis of Chinese scholars, it is necessary to review the current international research in this field systematically. By combining literature analysis and quantitative analysis, this study summarizes the difficulty of models in simultaneously supporting multiple sustainable development goals and the challenges in simulating the social dimension. We also analyze the challenges in capturing systematic change, scale conversion, interdisciplinary knowledge integration, uncertainty management, data mining, and the use of new technologies. Additionally, we summarize the methods for setting up scenarios, the general types of scenarios, the content of scenarios, the limitations in addressing internal scenario conflict cross-scale linkages, and connections with decision-making. This study provides an important reference for promoting innovative development among Chinese scholars in this field.

中图分类号: 

表1 人地系统可持续发展评估模型数据库
Table 1 Database of assessment models for sustainable development of human-Earth systems
序号模型类型序号模型类型序号模型类型
1Eora Global MRIOӀ28Model for Energy Supply Strategy Alternative and their General Environmental Impacts55Energy-Environment-Economy Model for the Globe
2Prospective assessment of energy technologiesӀ29Price-Induced Market Equilibrium System56Earth4All
3Jobs & Economic Development Impact ModelsӀ30TIMES57EC4MACS
4Global Trade Analysis ProjectӀ31Mini-Climate Assessment Model58FUND Model
5EMERGINGӀ32Prospective Outlook on Long-term Energy System59GAINS Model
6Global Inter-industry Forecasting SystemӀӀ33Bottom-up Energy Analysis System60Global Change Assessment Model
7PANTA RHEIӀӀ34Common Agricultural Policy Regionalised Impact Modelling System61Global Integrated Sustainability Model
8Macroeconomic model QUEST IIIӀӀ35Dinamica EGO62Global Biosphere Management Model
9General Equilibrium Model-Climate Change Policy and Global TradeӀӀӀ36European Forest Fire Information System63International Futures Model
10All Modular Industry Growth Assessment ModelӀӀӀ37LISFLOOD hydrological model64IMACLIM-R
11GEMINI-E3ӀӀӀ38Physiologically Based Kinetic65IMAGE
12Maquette for MDG SimulationsӀӀӀ39RUSLE66International Model for Policy Analysis of Agricultural Commodities and Trade
13Integrated Macroeconomics Model for Poverty AnalysisӀӀӀ40Soil and Water Assessment Tool67Integrated Valuation of Ecosystem Services and Trade-offs
14ENV-Linkages ModelӀӀӀ41WOrld FOod STudies generic crop growth68ISDG
15Environmental Impact and Sustainability Applied General EquilibriumӀӀӀ42Powerplan69Long-Range Energy Alternatives Planning Model
16Modular Applied GeNeral Equilibrium ToolӀӀӀ43Environmental impact calculator70LowGrow Model
17Global Energy and Climate ModelӀӀӀ44CENTURY agroecosystem dynamic model71MARKAL-MACRO Model
18GEM-E3ӀӀӀ45Land Use Dynamic Simulator72Model for Evaluating the Regional and Global Effects of GHG Reduction Policies
19ALCES ONLINE46Global Integrated Assessment Model73MESSAGE-MACRO Model
20The Australian Stocks and Flows Framework47Asia-Pacific Integrated Energy Model74Multi-scale Integrated Model of Ecosystem Services
21The SuE Model48Atmospheric Stabilization Framework75Modelling System for Agricultural Impacts of Climate Change
22World349The Climate, Land-use, Energy and Water Systems76Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism
23Polestar System50Conversion of Land Use and its Effects model77Regionalised Model of Investments and Development
24A global unified metamodel of the biosphere51Community Earth System Model78Threshold 21 Model
25C-ROADS52Community Land Model79World Induced Technical Change Hybrid Model
26FAst Scenario Screening Tool53DeSurvey Integrated Assessment Model80Integrated Population-Economy-Technology-Science model
27MARKAL Model54The Dynamic Integrated model of Climate and the Economy
图1 不同类型人地系统可持续发展评估模型占比
Fig. 1 Percentage of different types of assessment models for sustainable development of human-Earth systems
图2 模拟不同数量SDGs的人地系统可持续发展评估模型数量
Fig. 2 Number of assessment models for sustainable development of human-Earth systems simulating different numbers of SDGs
图3 人地系统可持续发展评估模型模拟SDGs的数量与占比
(a) 面向不同SDGs的模型数量;(b) 面向不同SDGs的各类模型占比
Fig. 3 Number and percentage of assessment models for sustainable development of human-Earth systems simulating the SDGs
(a) Number of models simulating for different SDGs; (b) Percentage of different model types simulating for different SDGs
图4 LSDG相关性分析和层次聚类分析
Fig. 4 LSDG correlation analysis and hierarchical cluster analysis
表2 人地系统可持续发展评估模型模拟分析的情景设置方法与描述
Table 2 Methods and descriptions of scenario setting for the simulation analysis of the sustainable development assessment model of the human-Earth system
情景设置方法描述
定性方法定性情景是通过对具体问题的分析,基于定性判断来确定情景内容及其要素的可能变化。其确定过程可以通过专家评估、借鉴历史经验以及相关部门成员的讨论等方式进行
定量方法定量情景依赖于模型工具,通过在不同模拟条件下进行计算和分析,生成合理的结果
典型情景设置典型情景设置是基于通用的或现有的情景假设进行构建(例如:一切照旧情景)。相关假设是基于过去的历史经验,经过合理的判断和推测所形成的。参与情景设计的人员可以根据具体数据和关注的问题,为情景增添更多细节
2×2情景设置2×2 情景设置通过头脑风暴和分析变革的关键驱动因素,参与者选择2个影响最大且高度不确定的驱动因子,这些因子可以通过聚类分析来确定。通过将这2个驱动因子的相反极端推断出来,从而构建出4个具有代表性的未来情景。随后参与者会对这些情景进行详细阐述
政策情景设置政策情景设置需要分析当前的政策集合或可能的政策组合,识别变革的关键驱动因素,并根据这些因素提出合理的假设,从而对未来的发展进行预测。这一过程有助于探索不同政策选择的潜在影响及其对未来情境的塑造
极端情景设置极端情景设置可以最大化与现在的差异,通常用于创建探索性的、可能的情景
参与式情景参与式方法是一种将包括社区成员在内的多方利益相关者融入规划与决策过程的方式,旨在让不同利益群体共同参与情景构建和策略制定。该方法强调倾听社区层面的声音,并促进跨学科的整合。通过不同社区成员之间的讨论,或不同社区间的知识共享,可以增强情景构建的合理性和科学性
故事叙述情景叙事通常仅仅描述可能的未来情景,而不构成完整的故事。尽管这样的描述可能富有创意,但往往难以激发人们的好奇心。相比之下,故事叙事方式通过与公众或政策制定者的互动,使情景变得更有意义,能够揭示潜在的偏见,并为创造另一种可能的未来提供契机。基于故事的情景设定代表了对未来世界的更深层次探索。尽管许多人认为这些故事过于理想化且难以实现,但它们促使参与者反思自身的日常生活、价值观和习惯,并将其与不同的未来预测相结合。例如,气候变化政策往往基于未来技术故事构建,如碳捕集和负排放技术
混合方法混合方法是将2种及以上方法相结合的情景设置方法
表3 可持续发展情景内容与假设
Table 3 Content and assumptions of the sustainable development scenario
情景内容情景假设假设依据
可持续发展

(1)支持全球化的可持续发展:促进达成有效的全球合作;良好的教育环境以及合理的人口增长;基于环境友好型技术的投资和进步、改变的消费行为提高了资源效率,减少了总体能源和资源使用;经济增长倾向环境保护和减少不平等等环境和社会维度的人类福祉

(2)生态群落主义发展:尽管人口、经济,消费行为等假设与全球化背景类似,但这是一种由自给自足社区构成的拼凑式社会模式,寻求区域社会、环境问题的解决方案。该背景下,全球化受到阻碍,贸易壁垒明显。提倡减少对全球经济的依赖,回归本地经济和社区,通过本地生产、本地消费来减少资源浪费和环境污染

合作与分裂:以亚太经济组织和欧盟等为代表,政治经济体间的合作变得紧密,这使得全球合作有实现的可能性。然而,不同政治经济体间仍可充斥着难以调和的矛盾与冲突,使得全球化进程缓慢。例如,当前部分地区的地缘政治冲突或地区竞争已明显体现了这一问题

变革:可持续发展情景的元素已经体现在工业化国家和发展中国家绿色发展战略中。高收入国家往往更注重公平,不再强调经济增长本身作为目标,往往选择通过提供人力、金融资源以及新技术来支持实现其发展目标。例如,教育和卫生投资加速了人口结构的变化,导致人口相对减少;对环境技术的投资和税收结构的变化提高了资源效率,减少了总体能源和资源使用量,并在长期内改善了环境条件;增加绿色投资、财政激励和观念的改变使可再生能源更具吸引力

表4 一切照旧情景内容与假设
Table 4 Content and assumptions of the business as usual scenario
情景内容情景假设假设依据
一切照旧

(1)市场主导情景:推崇竞争市场自我调节的信念,优先推动自由市场和经济扩张,并主要依赖技术创新来平衡经济增长与生态限制之间的矛盾。往往意味着更加开放的经济全球化,经济持续高速发展;人口增长缓慢,但技术高速发展;政府及部门机构通过一系列措施避免市场失灵;消费行为的改变和对环境、公平等人类福祉问题和过去一样

(2)政策改革情景:人口、经济增长,消费行为等假设与市场主导背景类似。然而,该背景下,注重政府的引导和社会福利目标的实现。虽然政府能够制定全面的计划,依然遵循传统的世界文化和制度框架,根本性的变革依然缺失。社会、经济和技术趋势与历史模式没有明显变化

变革的不足:如当前世界一样,发展和收入增长不平衡,一些国家取得了相对较好的进展,而另一些国家则未能达到预期;全球互联市场运作不完善;全球和国家机构努力实现可持续发展,但进展缓慢;技术发展迅速,但缺少根本性突破;环境系统正在退化,尽管有一些改善;资源和能源使用强度在下降,对化石燃料的依赖正在缓慢减少,但人们并不反对使用常规化石资源

市场经济:竞争性市场、创新和参与性社会能够带来快速的技术进步;人力资本发展维持竞争和消除弱势群体参与的制度障碍;促进有效的分配资源;但容易忽视公共利益,如环境保护、社会公平,并且经济周期波动可能导致失业和不稳定

政府干预:政府通过各种政策和法规对经济活动进行调节和控制,如财政政策和货币政策,用于调控经济周期;通过干预来解决市场无法有效解决的问题;有利于减少环境污染、公共产品供给不足、减少贫困和不平等;政府干预可能导致资源配置不如市场有效,过度的政府控制可能会限制企业的创新能力和市场竞争力

表5 野蛮发展情景内容与假设
Table 5 Content and assumptions of barbarization scenario
情景内容情景假设假设依据
野蛮发展

(1)堡垒情景:在危机中,权力精英选择封闭、隔离和威权化的极端应对模式,通过强权建立威权体制,导致社会高度分裂和不平等。全球化国际市场传统价值和社会规范的丧失,贸易壁垒明显。该情景下,人口增长率较高,经济正增长缓慢。伴随专制的政府形式,经济受到高度监管。消费行为是密集型消费,不平等现象持续恶化。资源密集度和对化石燃料的依赖性不断增加。同时技术发展面临严重的壁垒,总体进步极为缓。

(2)崩溃情景:“堡垒世界”模式已经无法控制和维持秩序。随着危机不断加剧,冲突蔓延,最终导致全面失控。随着社会和环境问题的加剧,冲突在全球范围内蔓延,经济开始退化,技术甚至倒退。社会的不平等和资源的短缺可能引发更多的暴力和冲突,导致安全形势进一步恶化,人口从增转向减少。环境退化和社会动荡继续恶化,超出了任何威权体制能够应对的范围

堡垒:精英阶层生活在堡垒中,而贫困的大多数人生活在堡垒外。苏联解体后,美国政府通过维持全球数百个军事基地和各大洋的海军和空军,以及控制太空和网络冲突技术,实现堡垒模式发展。美国位于要塞内,负责协调经济交流、安全安排和全球政策。与此同时,被排斥在外的大多数人却没有多少选择

强权与不平等:在强权的威慑下,人力资本(教育、卫生等)投资严重不平等。较不富裕的群体政治权力较弱,经济机会较少,获得信贷的机会有限,严重限制了他们的受教育机会和收入增长。与此同时,最富裕的群体通过制度变革加强了他们的相对地位,他们牺牲了低收入者的利益并增强了自身的谈判能力,这使不平等现象更加持久,导致经济机会和政治权力差距不断扩大。不平等和阶层分化加剧,导致社会凝聚力下降和冲突可能性增加。例如,实施于1948—1994年的南非种族隔离政策便是这一现象的典型体现。在种族隔离政策下,教育和健康等基本公共服务的分配严重不平等,深刻影响了不同种族群体的社会流动性和经济机会

1 FU Bojie. UN sustainable development goals and historical mission of geography[J]. Science & Technology Review202038(13): 19-24.
傅伯杰. 联合国可持续发展目标与地理科学的历史任务[J]. 科技导报202038(13): 19-24.
2 LU Dadao. Some key issues concerning development of geographical science in China[J]. Acta Geographica Sinica200358(1): 3-8.
陆大道. 中国地理学发展若干值得思考的问题[J]. 地理学报200358(1): 3-8.
3 LIU Yansui, LIU Yaqun, Cong OU. Scientific cognition and detection methods of modern human-Earth system[J]. Chinese Science Bulletin202469(3): 447-463.
刘彦随, 刘亚群, 欧聪. 现代人地系统科学认知与探测方法[J]. 科学通报202469(3): 447-463.
4 LIU Yansui. Modern human-Earth relationship and human-Earth system science[J]. Scientia Geographica Sinica202040(8): 1 221-1 234.
刘彦随. 现代人地关系与人地系统科学[J]. 地理科学202040(8): 1 221-1 234.
5 ZHANG J Z, WANG S, ZHAO W W, et al. Finding pathways to synergistic development of sustainable development goals in China[J]. Humanities and Social Sciences Communications20229(1). DOI: 10.1057/s41599-022-01036-4 .
6 SOERGEL B, KRIEGLER E, WEINDL I, et al. A sustainable development pathway for climate action within the UN 2030 Agenda[J]. Nature Climate Change202111(8): 656-664.
7 United Nations. The Sustainable Development Goals report 2024 [R]. New York: United Nations, 2024.
8 DONG Wenjie, YUAN Wenping, TENG Fei, et al. Coupling Earth system model and integrated assessment model[J]. Advances in Earth Science201631(12): 1 215-1 219.
董文杰, 袁文平, 滕飞, 等. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展201631(12): 1 215-1 219.
9 FU Bojie. Geography: from knowledge, science to decision making support[J]. Acta Geographica Sinica201772(11): 1 923-1 932.
傅伯杰. 地理学: 从知识、科学到决策[J]. 地理学报201772(11): 1 923-1 932.
10 CONNOLLY D, LUND H, MATHIESEN B V, et al. A review of computer tools for analysing the integration of renewable energy into various energy systems[J]. Applied Energy201087(4): 1 059-1 082.
11 DUINKER P N, GREIG L A. Scenario analysis in environmental impact assessment: improving explorations of the future[J]. Environmental Impact Assessment Review200727(3): 206-219.
12 KOSOW H, GAßNER R. Methods of future and scenario analysis: overview, assessment, and selection criteria[M]. DEU2008.
13 ALLEN C, METTERNICHT G, WIEDMANN T. National pathways to the Sustainable Development Goals (SDGs): a comparative review of scenario modelling tools[J]. Environmental Science & Policy201666: 199-207.
14 ELSAWAH S, HAMILTON S H, JAKEMAN A J, et al. Scenario processes for socio-environmental systems analysis of futures: a review of recent efforts and a salient research Agenda for supporting decision making[J]. Science of the Total Environment2020, 729. DOI: 10.1016/j.scitotenv.2020.138393 .
15 GERNAAT D E H J, de BOER H S, DAIOGLOU V, et al. Climate change impacts on renewable energy supply[J]. Nature Climate Change202111: 119-125.
16 BANDARI R, MOALLEMI E A, KHARRAZI A, et al. Transdisciplinary approaches to local sustainability: aligning local governance and navigating spillovers with global action towards the sustainable development goals[J]. Sustainability Science202419(4): 1 293-1 312.
17 BANDARI R, MOALLEMI E A, SZETEY K, et al. Participatory modeling for analyzing interactions between high-priority sustainable development goals to promote local sustainability[J]. Earth’s Future202311(12). DOI: 10.1029/2023EF003948 .
18 MOALLEMI E A, EKER S, GAO L, et al. Early systems change necessary for catalyzing long-term sustainability in a post-2030 Agenda[J]. One Earth20225(7): 792-811.
19 ANDERSON C C, DENICH M, WARCHOLD A, et al. A systems model of SDG target influence on the 2030 Agenda for Sustainable Development[J]. Sustainability Science202217(4): 1 459-1 472.
20 ZHANG J Z, WANG S, PRADHAN P, et al. Untangling the interactions among the Sustainable Development Goals in China[J]. Science Bulletin202267(9): 977-984.
21 CAO M, CHEN M, ZHANG J Z, et al. Spatio-temporal changes in the causal interactions among Sustainable Development Goals in China[J]. Humanities and Social Sciences Communications202310(1). DOI: 10.1057/s41599-023-01952-z .
22 ZHU H S, YUE J C, WANG H. Will China’s urbanization support its carbon peak goal?—A forecast analysis based on the improved GCAM[J]. Ecological Indicators2024, 163. DOI: 10.1016/j.ecolind.2024.112072 .
23 QU W S, SHI W Z, ZHANG J Z, et al. T21 China 2050: a tool for national sustainable development planning[J]. Geography and Sustainability20201(1): 33-46.
24 LUO L, ZHANG J Z, WANG H J, et al. Innovations in Science, Technology, Engineering, And Policy (iSTEP) for addressing environmental issues towards sustainable development[J]. The Innovation Geoscience20242(3). DOI: 10.59717/j.xinn-geo.2024.100087 .
25 CLARK W C, HARLEY A G. Sustainability science: toward a synthesis[J]. Annual Review of Environment and Resources202045: 331-386.
26 FU Bojie, ZHANG Junze. Progress and challenges of Sustainable Development Goals(SDGs) in the world and in China[J]. Bulletin of Chinese Academy of Sciences202439(5): 804-808.
傅伯杰, 张军泽. 全球及中国可持续发展目标进展与挑战[J]. 中国科学院院刊202439(5): 804-808.
27 ALLEN C, METTERNICHT G, WIEDMANN T. An iterative framework for national scenario modelling for the Sustainable Development Goals (SDGs)[J]. Sustainable Development201725(5): 372-385.
28 United Nations Environment Programme (UNEP). Global environment outlook: environment for development [R]. Nairobi: UNEP, 2007.
29 United Nations Environment Programme (UNEP). Emissions gap report 2019 [R]. Nairobi: UNEP, 2019.
30 LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science2015347(6 225). DOI: 10.1126/science.1258832 .
31 HAK T, JANOUSKOVA S, MOLDAN B. Development goals: a need for relevant indicators[J]. Ecological indicators201660: 565-573.
32 SAHLE M, LAHOTI S A, LEE S Y, et al. Revisiting the sustainability science research agenda[J]. Sustainability Science202520(1): 1-19.
33 FORRESTER J W. Urban dynamics [M]. Cambridge: MIT Press, 1969.
34 SHOVEN J B, WHALLEY J. Applied general-equilibrium models of taxation and international trade: an introduction and survey[J]. Journal of Economic Literature198422(3): 1 007-1 051.
35 van SOEST H L, van VUUREN D P, HILAIRE J, et al. Analysing interactions among sustainable development goals with integrated assessment models[J]. Global Transitions20191: 210-225.
36 BAZILIAN M, ROGNER H, HOWELLS M, et al. Considering the energy, water and food nexus: towards an integrated modelling approach[J]. Energy Policy201139(12): 7 896-7 906.
37 MO L D, ZOHNER C M, REICH P B, et al. Integrated global assessment of the natural forest carbon potential[J]. Nature2023624(7 990): 92-101.
38 SOERGEL B, KRIEGLER E, BODIRSKY B L, et al. Combining ambitious climate policies with efforts to eradicate poverty[J]. Nature Communications202112(1). DOI: 10.1038/s41467-021-22315-9 .
39 REID W V, CHEN D, GOLDFARB L, et al. Earth system science for global sustainability: grand challenges[J]. Science2010330(6 006): 916-917.
40 PURVIS B, MAO Y, ROBINSON D. A multi-scale integrated assessment model to support urban sustainability[J]. Sustainability Science202217(1): 151-169.
41 SALVIA A L, LEAL F W, BRANDLI L L, et al. Assessing research trends related to sustainable development goals: local and global issues[J]. Journal of Cleaner Production2019208: 841-849.
42 LI K, GAO L, GUO Z X, et al. Safeguarding China’s long-term sustainability against systemic disruptors[J]. Nature Communications202415(1). DOI: 10.1038/s41467-024-49725-9 .
43 HUGHES B B. International Futures (IFs) and integrated, long-term forecasting of global transformations[J]. Futures201681: 98-118.
44 Earth4All. SDGs for all: strategic scenarios Earth4All system dynamics modelling of SDG progress[R]. Earth4All, 2024.
45 van VUUREN D P, KOK M, LUCAS P L, et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model[J]. Technological Forecasting and Social Change201598: 303-323.
46 LUCAS P L, HILDERINK H B M, JANSSEN P H M, et al. Future impacts of environmental factors on achieving the SDG target on child mortality: a synergistic assessment[J]. Global Environmental Change2019, 57. DOI: 10.1016/j.gloenvcha.2019.05.009 .
47 NGUYEN T B, WAGNER F, SCHOEPP W. EC4MACS—an integrated assessment toolbox of well-established modeling tools to explore the synergies and interactions between climate change, air quality and other policy objectives[M]. Berlin, Heidelberg: Springer, 2012.
48 GUO J H, HEPBURN C J, TOL R S J, et al. Discounting and the social cost of carbon: a closer look at uncertainty[J]. Environmental Science & Policy20069(3): 205-216.
49 QU W S, BARNEY G O, SYMALLA D, et al. Threshold 21: national sustainable development model[J]. Integrated Global Models of Sustainable Development19952: 78-87.
50 ORBONS K, van VUUREN D P, AMBROSIO G, et al. A review of existing model-based scenarios achieving SDGs: progress and challenges[J]. Global Sustainability2024, 7. DOI: 10.1017/sus.2023.20 .
51 CHEN M, QIAN Z, BOERS N, et al. Collaboration between artificial intelligence and Earth science communities for mutual benefit[J]. Nature Geoscience202417: 949-952.
52 LOZANO F J, SUÁREZ-SEOANE S, KELLY M, et al. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: a case study in a mountainous Mediterranean region[J]. Remote Sensing of Environment2008112(3): 708-719.
53 FILATOVA T, POLHILL J G, van EWIJK S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches[J]. Environmental Modelling & Software201675: 333-347.
54 de HAAN F J, ROTMANS J. A proposed theoretical framework for actors in transformative change[J]. Technological Forecasting and Social Change2018128: 275-286.
55 DRESSLER G, GROENEVELD J, HETZER J, et al. Upscaling in socio-environmental systems modelling: current challenges, promising strategies and insights from ecology[J]. Socio-Environmental Systems Modelling2022, 4. DOI: 10.18174/sesmo.18112 .
56 CONTRERAS D, GUIOT J, SUAREZ R, et al. Reaching the human scale: a spatial and temporal downscaling approach to the archaeological implications of paleoclimate data[J]. Journal of Archaeological Science201893: 54-67.
57 PEDERCINI M, ARQUITT S, COLLSTE D, et al. Harvesting synergy from sustainable development goal interactions[J]. Proceedings of the National Academy of Sciences of the United States of America2019116(46): 23 021-23 028.
58 ELSAWAH S, FILATOVA T, JAKEMAN A J, et al. Eight grand challenges in socio-environmental systems modeling[J]. Socio-Environmental Systems Modelling2020, 2. DOI: 10.18174/sesmo.1811 .
59 SAREWITZ D. How science makes environmental controversies worse[J]. Environmental Science & Policy20047(5): 385-403.
60 KETTNER A J, SYVITSKI J P M. Uncertainty and sensitivity in surface dynamics modeling[J]. Computers & Geosciences201690: 1-5.
61 DELETIC A, DOTTO C B S, MCCARTHY D T, et al. Assessing uncertainties in urban drainage models[J]. Physics and Chemistry of the Earth, Parts A/B/C201242: 3-10.
62 SUN Z H, SANDOVAL L, CRYSTAL-ORNELAS R, et al. A review of Earth artificial intelligence[J]. Computers & Geosciences2022, 159. DOI: 10.1016/j.cageo.2022.105034 .
63 European Environment Agency. Scenarios as tools for international environmental assessments[R]. Copenhagen: European Environment Agency, 2001.
64 van VUUREN D P, KOK M T J, GIROD B, et al. Scenarios in global environmental assessments: key characteristics and lessons for future use[J]. Global Environmental Change201222(4): 884-895.
65 HICHERT T, BIGGS R, de VOS A, et al. Scenario development [M]// BIGGS R, de VOS A, PREISER R, et al. The routledge handbook of research methods for social-ecological systems. London: Routledge, 2021.
66 WESCHE S D, ARMITAGE D R. Using qualitative scenarios to understand regional environmental change in the Canadian North[J]. Regional Environmental Change201414(3): 1 095-1 108.
67 LI X, ZHANG F, HUI E C, et al. Collaborative workshop and community participation: a new approach to urban regeneration in China[J]. Cities2020, 102. DOI: 10.1016/j.cities.2020.102743 .
68 KEYS P W, WANG-ERLANDSSON L, MOORE M L, et al. The dry sky: future scenarios for humanity’s modification of the atmospheric water cycle[J]. Global Sustainability2024, 7. DOI: 10.1017/sus.2024.9 .
69 BENTZ J, O’BRIEN K, SCOVILLE-SIMONDS M. Beyond “blah blah blah”: exploring the “how” of transformation[J]. Sustainability Science202217(2): 497-506.
70 O’NEILL B C, KRIEGLER E, EBI K L, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change201742: 169-180.
71 GALLOPIN G C, HAMMOND A, RASKIN P, et al. Branch points: global scenarios and human choice[R]. Stockholm: Stockholm Environment Institute, 1997.
72 RIAHI K, van VUUREN D P, KRIEGLER E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change201742: 153-168.
73 FRICKO O, HAVLIK P, ROGELJ J, et al. The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century[J]. Global Environmental Change201742: 251-267.
74 CARLSEN H, TALEBIAN S, PEDDE S, et al. Diversity in global environmental scenario sets[J]. Global Environmental Change2024, 86. DOI: 10.1016/j.gloenvcha.2024.102839 .
75 ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5 ℃[J]. Nature Climate Change20188: 325-332.
76 HARRISS R. Review of journey to earthland: the great transition to planetary civilization[J]. Environment: Science and Policy for Sustainable Development201759(3). DOI: 10.1080/00139157.2017.1301169 .
77 MCKIBBEN B. Deep economy: the wealth of communities and the durable future[M]. New York: Times Books, 2007.
78 SMITH A. An inquiry into the nature and causes of the wealth of nations [M]. London: W. Strahan and T. Cadell, 1776.
79 WU Jinglian. China’s economic reform process[M]. 2nd ed. Beijing: Encyclopedia of China Publishing House, 2023.
吴敬琏. 中国经济改革进程[M]. 2版. 北京: 中国大百科全书出版社, 2023.
80 ELECTRIS C, RASKIN P, ROSEN R, et al. The century ahead: four global scenarios[M]. Boston: Tellus Institute, 2009.
81 RASKIN P D, ELECTRIS C, ROSEN R A. The century ahead: searching for sustainability[J]. Sustainability20102(8): 2 626-2 651.
82 RASKIN P D. World lines: a framework for exploring global pathways[J]. Ecological Economics200865(3): 461-470.
83 MAIER H R, GUILLAUME J H A, van DELDEN H, et al. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: how do they fit together?[J]. Environmental Modelling & Software201681: 154-164.
84 VOLKERY A, RIBEIRO T, HENRICHS T, et al. Your vision or my model? Lessons from participatory land use scenario development on a European scale[J]. Systemic Practice and Action Research200821(6): 459-477.
85 LIPPE M, BITHELL M, GOTTS N, et al. Using agent-based modelling to simulate social-ecological systems across scales[J]. GeoInformatica201923(2): 269-298.
86 CHERMACK T J. Improving decision-making with scenario planning[J]. Futures200436(3): 295-309.
87 POVITKINA M, CARLSSON J S, MATTI S, et al. Why are carbon Taxes unfair?Disentangling public perceptions of fairness[J]. Global Environmental Change2021, 70. DOI: 10.1016/j.gloenvcha.2021.102356 .
88 HE X B, ZHAI F, MA J. An analysis of the IMF’s international carbon price floor[J]. Journal of Globalization and Development202415(2): 95-112.
89 DILLION D, TANDON N, GU Y L, et al. Can AI language models replace human participants?[J]. Trends in Cognitive Sciences202327(7): 597-600.
[1] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[2] 王一超. 基于多源数据融合的可持续发展目标监测与评估研究进展[J]. 地球科学进展, 2024, 39(2): 181-192.
[3] 郑明贵, 于明, 范秋蓉, 林玉华. 中国20252035年碳酸锂需求预测[J]. 地球科学进展, 2023, 38(4): 377-387.
[4] 马维兢, 王耀辰, 寇敬雯, 杨海江, 薛冰, 勾晓华. 沿黄九省(区)水—耕地—粮食协同关系情景分析[J]. 地球科学进展, 2023, 38(12): 1243-1258.
[5] 黄春林, 冯娅娅, 高峰, 赵雪雁, 钟方雷, 程清平, 魏彦强, 宋晓谕, 王宝, 王鹏龙. 可持续发展议程创新示范区SDGs综合评估[J]. 地球科学进展, 2023, 38(10): 987-998.
[6] 左其亭. 水资源可持续利用研究历程及其对我国现代治水的贡献[J]. 地球科学进展, 2023, 38(1): 1-8.
[7] 王鹏龙, 王宝, 徐冰鑫, 黄悦悦, 高峰, 赵雪雁, 黄春林, 宋晓谕, 周亮. 欠发达山区可持续发展目标研究进展与展望[J]. 地球科学进展, 2022, 37(9): 937-948.
[8] 苗俊霞, 宋晓谕, 冯人和, 权学烽, 高峰, 黄春林, 赵雪雁, 钟方雷, 程清平, 魏彦强. 欠发达山区可持续发展目标相互作用研究[J]. 地球科学进展, 2022, 37(9): 949-962.
[9] 赵雪雁, 王鹤霖, 高峰, 王鹏龙, 王宝. 特色产业助力欠发达山区SDGs实现[J]. 地球科学进展, 2022, 37(10): 1066-1078.
[10] 袁子峰, 周亮, 黄春林, 高峰, 王宝, 王鹏龙, 李晓恩. 欠发达山地城市人居环境适宜性综合评价[J]. 地球科学进展, 2022, 37(10): 1079-1087.
[11] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[12] 王翔宇, 王元慧, 高培超, 宋长青, 程昌秀, 沈石. “可持续社会指数”的研究综述与展望[J]. 地球科学进展, 2021, 36(3): 317-324.
[13] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[14] 陈明星,周园,郭莎莎,黄莘绒. 新型城镇化研究的意义、目标与任务[J]. 地球科学进展, 2019, 34(9): 974-983.
[15] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
阅读次数
全文


摘要