1 |
FU Bojie. UN sustainable development goals and historical mission of geography[J]. Science & Technology Review, 2020, 38(13): 19-24.
|
|
傅伯杰. 联合国可持续发展目标与地理科学的历史任务[J]. 科技导报, 2020, 38(13): 19-24.
|
2 |
LU Dadao. Some key issues concerning development of geographical science in China[J]. Acta Geographica Sinica, 2003, 58(1): 3-8.
|
|
陆大道. 中国地理学发展若干值得思考的问题[J]. 地理学报, 2003, 58(1): 3-8.
|
3 |
LIU Yansui, LIU Yaqun, Cong OU. Scientific cognition and detection methods of modern human-Earth system[J]. Chinese Science Bulletin, 2024, 69(3): 447-463.
|
|
刘彦随, 刘亚群, 欧聪. 现代人地系统科学认知与探测方法[J]. 科学通报, 2024, 69(3): 447-463.
|
4 |
LIU Yansui. Modern human-Earth relationship and human-Earth system science[J]. Scientia Geographica Sinica, 2020, 40(8): 1 221-1 234.
|
|
刘彦随. 现代人地关系与人地系统科学[J]. 地理科学, 2020, 40(8): 1 221-1 234.
|
5 |
ZHANG J Z, WANG S, ZHAO W W, et al. Finding pathways to synergistic development of sustainable development goals in China[J]. Humanities and Social Sciences Communications, 2022, 9(1). DOI: 10.1057/s41599-022-01036-4 .
|
6 |
SOERGEL B, KRIEGLER E, WEINDL I, et al. A sustainable development pathway for climate action within the UN 2030 Agenda[J]. Nature Climate Change, 2021, 11(8): 656-664.
|
7 |
United Nations. The Sustainable Development Goals report 2024 [R]. New York: United Nations, 2024.
|
8 |
DONG Wenjie, YUAN Wenping, TENG Fei, et al. Coupling Earth system model and integrated assessment model[J]. Advances in Earth Science, 2016, 31(12): 1 215-1 219.
|
|
董文杰, 袁文平, 滕飞, 等. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1 215-1 219.
|
9 |
FU Bojie. Geography: from knowledge, science to decision making support[J]. Acta Geographica Sinica, 2017, 72(11): 1 923-1 932.
|
|
傅伯杰. 地理学: 从知识、科学到决策[J]. 地理学报, 2017, 72(11): 1 923-1 932.
|
10 |
CONNOLLY D, LUND H, MATHIESEN B V, et al. A review of computer tools for analysing the integration of renewable energy into various energy systems[J]. Applied Energy, 2010, 87(4): 1 059-1 082.
|
11 |
DUINKER P N, GREIG L A. Scenario analysis in environmental impact assessment: improving explorations of the future[J]. Environmental Impact Assessment Review, 2007, 27(3): 206-219.
|
12 |
KOSOW H, GAßNER R. Methods of future and scenario analysis: overview, assessment, and selection criteria[M]. DEU, 2008.
|
13 |
ALLEN C, METTERNICHT G, WIEDMANN T. National pathways to the Sustainable Development Goals (SDGs): a comparative review of scenario modelling tools[J]. Environmental Science & Policy, 2016, 66: 199-207.
|
14 |
ELSAWAH S, HAMILTON S H, JAKEMAN A J, et al. Scenario processes for socio-environmental systems analysis of futures: a review of recent efforts and a salient research Agenda for supporting decision making[J]. Science of the Total Environment, 2020, 729. DOI: 10.1016/j.scitotenv.2020.138393 .
|
15 |
GERNAAT D E H J, de BOER H S, DAIOGLOU V, et al. Climate change impacts on renewable energy supply[J]. Nature Climate Change, 2021, 11: 119-125.
|
16 |
BANDARI R, MOALLEMI E A, KHARRAZI A, et al. Transdisciplinary approaches to local sustainability: aligning local governance and navigating spillovers with global action towards the sustainable development goals[J]. Sustainability Science, 2024, 19(4): 1 293-1 312.
|
17 |
BANDARI R, MOALLEMI E A, SZETEY K, et al. Participatory modeling for analyzing interactions between high-priority sustainable development goals to promote local sustainability[J]. Earth’s Future, 2023, 11(12). DOI: 10.1029/2023EF003948 .
|
18 |
MOALLEMI E A, EKER S, GAO L, et al. Early systems change necessary for catalyzing long-term sustainability in a post-2030 Agenda[J]. One Earth, 2022, 5(7): 792-811.
|
19 |
ANDERSON C C, DENICH M, WARCHOLD A, et al. A systems model of SDG target influence on the 2030 Agenda for Sustainable Development[J]. Sustainability Science, 2022, 17(4): 1 459-1 472.
|
20 |
ZHANG J Z, WANG S, PRADHAN P, et al. Untangling the interactions among the Sustainable Development Goals in China[J]. Science Bulletin, 2022, 67(9): 977-984.
|
21 |
CAO M, CHEN M, ZHANG J Z, et al. Spatio-temporal changes in the causal interactions among Sustainable Development Goals in China[J]. Humanities and Social Sciences Communications, 2023, 10(1). DOI: 10.1057/s41599-023-01952-z .
|
22 |
ZHU H S, YUE J C, WANG H. Will China’s urbanization support its carbon peak goal?—A forecast analysis based on the improved GCAM[J]. Ecological Indicators, 2024, 163. DOI: 10.1016/j.ecolind.2024.112072 .
|
23 |
QU W S, SHI W Z, ZHANG J Z, et al. T21 China 2050: a tool for national sustainable development planning[J]. Geography and Sustainability, 2020, 1(1): 33-46.
|
24 |
LUO L, ZHANG J Z, WANG H J, et al. Innovations in Science, Technology, Engineering, And Policy (iSTEP) for addressing environmental issues towards sustainable development[J]. The Innovation Geoscience, 2024, 2(3). DOI: 10.59717/j.xinn-geo.2024.100087 .
|
25 |
CLARK W C, HARLEY A G. Sustainability science: toward a synthesis[J]. Annual Review of Environment and Resources, 2020, 45: 331-386.
|
26 |
FU Bojie, ZHANG Junze. Progress and challenges of Sustainable Development Goals(SDGs) in the world and in China[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(5): 804-808.
|
|
傅伯杰, 张军泽. 全球及中国可持续发展目标进展与挑战[J]. 中国科学院院刊, 2024, 39(5): 804-808.
|
27 |
ALLEN C, METTERNICHT G, WIEDMANN T. An iterative framework for national scenario modelling for the Sustainable Development Goals (SDGs)[J]. Sustainable Development, 2017, 25(5): 372-385.
|
28 |
United Nations Environment Programme (UNEP). Global environment outlook: environment for development [R]. Nairobi: UNEP, 2007.
|
29 |
United Nations Environment Programme (UNEP). Emissions gap report 2019 [R]. Nairobi: UNEP, 2019.
|
30 |
LIU J G, MOONEY H, HULL V, et al. Systems integration for global sustainability[J]. Science, 2015, 347(6 225). DOI: 10.1126/science.1258832 .
|
31 |
HAK T, JANOUSKOVA S, MOLDAN B. Development goals: a need for relevant indicators[J]. Ecological indicators,2016,60: 565-573.
|
32 |
SAHLE M, LAHOTI S A, LEE S Y, et al. Revisiting the sustainability science research agenda[J]. Sustainability Science, 2025, 20(1): 1-19.
|
33 |
FORRESTER J W. Urban dynamics [M]. Cambridge: MIT Press, 1969.
|
34 |
SHOVEN J B, WHALLEY J. Applied general-equilibrium models of taxation and international trade: an introduction and survey[J]. Journal of Economic Literature, 1984, 22(3): 1 007-1 051.
|
35 |
van SOEST H L, van VUUREN D P, HILAIRE J, et al. Analysing interactions among sustainable development goals with integrated assessment models[J]. Global Transitions, 2019, 1: 210-225.
|
36 |
BAZILIAN M, ROGNER H, HOWELLS M, et al. Considering the energy, water and food nexus: towards an integrated modelling approach[J]. Energy Policy, 2011, 39(12): 7 896-7 906.
|
37 |
MO L D, ZOHNER C M, REICH P B, et al. Integrated global assessment of the natural forest carbon potential[J]. Nature, 2023, 624(7 990): 92-101.
|
38 |
SOERGEL B, KRIEGLER E, BODIRSKY B L, et al. Combining ambitious climate policies with efforts to eradicate poverty[J]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-22315-9 .
|
39 |
REID W V, CHEN D, GOLDFARB L, et al. Earth system science for global sustainability: grand challenges[J]. Science, 2010, 330(6 006): 916-917.
|
40 |
PURVIS B, MAO Y, ROBINSON D. A multi-scale integrated assessment model to support urban sustainability[J]. Sustainability Science, 2022, 17(1): 151-169.
|
41 |
SALVIA A L, LEAL F W, BRANDLI L L, et al. Assessing research trends related to sustainable development goals: local and global issues[J]. Journal of Cleaner Production, 2019, 208: 841-849.
|
42 |
LI K, GAO L, GUO Z X, et al. Safeguarding China’s long-term sustainability against systemic disruptors[J]. Nature Communications, 2024, 15(1). DOI: 10.1038/s41467-024-49725-9 .
|
43 |
HUGHES B B. International Futures (IFs) and integrated, long-term forecasting of global transformations[J]. Futures, 2016, 81: 98-118.
|
44 |
Earth4All. SDGs for all: strategic scenarios Earth4All system dynamics modelling of SDG progress[R]. Earth4All, 2024.
|
45 |
van VUUREN D P, KOK M, LUCAS P L, et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model[J]. Technological Forecasting and Social Change, 2015, 98: 303-323.
|
46 |
LUCAS P L, HILDERINK H B M, JANSSEN P H M, et al. Future impacts of environmental factors on achieving the SDG target on child mortality: a synergistic assessment[J]. Global Environmental Change, 2019, 57. DOI: 10.1016/j.gloenvcha.2019.05.009 .
|
47 |
NGUYEN T B, WAGNER F, SCHOEPP W. EC4MACS—an integrated assessment toolbox of well-established modeling tools to explore the synergies and interactions between climate change, air quality and other policy objectives[M]. Berlin, Heidelberg: Springer, 2012.
|
48 |
GUO J H, HEPBURN C J, TOL R S J, et al. Discounting and the social cost of carbon: a closer look at uncertainty[J]. Environmental Science & Policy, 2006, 9(3): 205-216.
|
49 |
QU W S, BARNEY G O, SYMALLA D, et al. Threshold 21: national sustainable development model[J]. Integrated Global Models of Sustainable Development, 1995, 2: 78-87.
|
50 |
ORBONS K, van VUUREN D P, AMBROSIO G, et al. A review of existing model-based scenarios achieving SDGs: progress and challenges[J]. Global Sustainability, 2024, 7. DOI: 10.1017/sus.2023.20 .
|
51 |
CHEN M, QIAN Z, BOERS N, et al. Collaboration between artificial intelligence and Earth science communities for mutual benefit[J]. Nature Geoscience, 2024, 17: 949-952.
|
52 |
LOZANO F J, SUÁREZ-SEOANE S, KELLY M, et al. A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: a case study in a mountainous Mediterranean region[J]. Remote Sensing of Environment, 2008, 112(3): 708-719.
|
53 |
FILATOVA T, POLHILL J G, van EWIJK S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches[J]. Environmental Modelling & Software, 2016, 75: 333-347.
|
54 |
de HAAN F J, ROTMANS J. A proposed theoretical framework for actors in transformative change[J]. Technological Forecasting and Social Change, 2018, 128: 275-286.
|
55 |
DRESSLER G, GROENEVELD J, HETZER J, et al. Upscaling in socio-environmental systems modelling: current challenges, promising strategies and insights from ecology[J]. Socio-Environmental Systems Modelling, 2022, 4. DOI: 10.18174/sesmo.18112 .
|
56 |
CONTRERAS D, GUIOT J, SUAREZ R, et al. Reaching the human scale: a spatial and temporal downscaling approach to the archaeological implications of paleoclimate data[J]. Journal of Archaeological Science, 2018, 93: 54-67.
|
57 |
PEDERCINI M, ARQUITT S, COLLSTE D, et al. Harvesting synergy from sustainable development goal interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(46): 23 021-23 028.
|
58 |
ELSAWAH S, FILATOVA T, JAKEMAN A J, et al. Eight grand challenges in socio-environmental systems modeling[J]. Socio-Environmental Systems Modelling, 2020, 2. DOI: 10.18174/sesmo.1811 .
|
59 |
SAREWITZ D. How science makes environmental controversies worse[J]. Environmental Science & Policy, 2004, 7(5): 385-403.
|
60 |
KETTNER A J, SYVITSKI J P M. Uncertainty and sensitivity in surface dynamics modeling[J]. Computers & Geosciences, 2016, 90: 1-5.
|
61 |
DELETIC A, DOTTO C B S, MCCARTHY D T, et al. Assessing uncertainties in urban drainage models[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2012, 42: 3-10.
|
62 |
SUN Z H, SANDOVAL L, CRYSTAL-ORNELAS R, et al. A review of Earth artificial intelligence[J]. Computers & Geosciences, 2022, 159. DOI: 10.1016/j.cageo.2022.105034 .
|
63 |
European Environment Agency. Scenarios as tools for international environmental assessments[R]. Copenhagen: European Environment Agency, 2001.
|
64 |
van VUUREN D P, KOK M T J, GIROD B, et al. Scenarios in global environmental assessments: key characteristics and lessons for future use[J]. Global Environmental Change, 2012, 22(4): 884-895.
|
65 |
HICHERT T, BIGGS R, de VOS A, et al. Scenario development [M]// BIGGS R, de VOS A, PREISER R, et al. The routledge handbook of research methods for social-ecological systems. London: Routledge, 2021.
|
66 |
WESCHE S D, ARMITAGE D R. Using qualitative scenarios to understand regional environmental change in the Canadian North[J]. Regional Environmental Change, 2014, 14(3): 1 095-1 108.
|
67 |
LI X, ZHANG F, HUI E C, et al. Collaborative workshop and community participation: a new approach to urban regeneration in China[J]. Cities, 2020, 102. DOI: 10.1016/j.cities.2020.102743 .
|
68 |
KEYS P W, WANG-ERLANDSSON L, MOORE M L, et al. The dry sky: future scenarios for humanity’s modification of the atmospheric water cycle[J]. Global Sustainability, 2024, 7. DOI: 10.1017/sus.2024.9 .
|
69 |
BENTZ J, O’BRIEN K, SCOVILLE-SIMONDS M. Beyond “blah blah blah”: exploring the “how” of transformation[J]. Sustainability Science, 2022, 17(2): 497-506.
|
70 |
O’NEILL B C, KRIEGLER E, EBI K L, et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change, 2017, 42: 169-180.
|
71 |
GALLOPIN G C, HAMMOND A, RASKIN P, et al. Branch points: global scenarios and human choice[R]. Stockholm: Stockholm Environment Institute, 1997.
|
72 |
RIAHI K, van VUUREN D P, KRIEGLER E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview[J]. Global Environmental Change, 2017, 42: 153-168.
|
73 |
FRICKO O, HAVLIK P, ROGELJ J, et al. The marker quantification of the shared socioeconomic pathway 2: a middle-of-the-road scenario for the 21st century[J]. Global Environmental Change, 2017, 42: 251-267.
|
74 |
CARLSEN H, TALEBIAN S, PEDDE S, et al. Diversity in global environmental scenario sets[J]. Global Environmental Change, 2024, 86. DOI: 10.1016/j.gloenvcha.2024.102839 .
|
75 |
ROGELJ J, POPP A, CALVIN K V, et al. Scenarios towards limiting global mean temperature increase below 1.5 ℃[J]. Nature Climate Change, 2018, 8: 325-332.
|
76 |
HARRISS R. Review of journey to earthland: the great transition to planetary civilization[J]. Environment: Science and Policy for Sustainable Development, 2017, 59(3). DOI: 10.1080/00139157.2017.1301169 .
|
77 |
MCKIBBEN B. Deep economy: the wealth of communities and the durable future[M]. New York: Times Books, 2007.
|
78 |
SMITH A. An inquiry into the nature and causes of the wealth of nations [M]. London: W. Strahan and T. Cadell, 1776.
|
79 |
WU Jinglian. China’s economic reform process[M]. 2nd ed. Beijing: Encyclopedia of China Publishing House, 2023.
|
|
吴敬琏. 中国经济改革进程[M]. 2版. 北京: 中国大百科全书出版社, 2023.
|
80 |
ELECTRIS C, RASKIN P, ROSEN R, et al. The century ahead: four global scenarios[M]. Boston: Tellus Institute, 2009.
|
81 |
RASKIN P D, ELECTRIS C, ROSEN R A. The century ahead: searching for sustainability[J]. Sustainability, 2010, 2(8): 2 626-2 651.
|
82 |
RASKIN P D. World lines: a framework for exploring global pathways[J]. Ecological Economics, 2008, 65(3): 461-470.
|
83 |
MAIER H R, GUILLAUME J H A, van DELDEN H, et al. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: how do they fit together?[J]. Environmental Modelling & Software, 2016, 81: 154-164.
|
84 |
VOLKERY A, RIBEIRO T, HENRICHS T, et al. Your vision or my model? Lessons from participatory land use scenario development on a European scale[J]. Systemic Practice and Action Research, 2008, 21(6): 459-477.
|
85 |
LIPPE M, BITHELL M, GOTTS N, et al. Using agent-based modelling to simulate social-ecological systems across scales[J]. GeoInformatica, 2019, 23(2): 269-298.
|
86 |
CHERMACK T J. Improving decision-making with scenario planning[J]. Futures, 2004, 36(3): 295-309.
|
87 |
POVITKINA M, CARLSSON J S, MATTI S, et al. Why are carbon Taxes unfair?Disentangling public perceptions of fairness[J]. Global Environmental Change, 2021, 70. DOI: 10.1016/j.gloenvcha.2021.102356 .
|
88 |
HE X B, ZHAI F, MA J. An analysis of the IMF’s international carbon price floor[J]. Journal of Globalization and Development, 2024, 15(2): 95-112.
|
89 |
DILLION D, TANDON N, GU Y L, et al. Can AI language models replace human participants?[J]. Trends in Cognitive Sciences, 2023, 27(7): 597-600.
|