地球科学进展 ›› 2025, Vol. 40 ›› Issue (3): 243 -254. doi: 10.11867/j.issn.1001-8166.2025.020

综述与评述 上一篇    下一篇

地下水依赖植被适应机制与稳态转换研究进展
张勇勇1,2(), 康文蓉1,2, 赵文智1,2   
  1. 1.中国科学院西北生态环境资源研究院/甘肃临泽农田生态系统国家野外科学观测研究站/干旱区生态 安全与可持续发展全国重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2024-11-05 修回日期:2025-02-10 出版日期:2025-03-10
  • 基金资助:
    甘肃省科技计划项目(25JRRA493);国家重点研发计划项目(2024YFF1306402);干旱区生态安全与可持续发展重点实验室创新团队(E455041401)

Research Progress on the Adaptation Mechanisms and Stable State Transition of Groundwater-Dependent Vegetation in Drylands

Yongyong ZHANG1,2(), Wenrong KANG1,2, Wenzhi ZHAO1,2   

  1. 1.National Field Science Research Station of Farmland Ecosystem in Linze, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-11-05 Revised:2025-02-10 Online:2025-03-10 Published:2025-05-07
  • About author:ZHANG Yongyong, research area includes eco-hydrology in arid regions. E-mail: zhangyongyong@lzb.ac.cn
  • Supported by:
    the Gansu Science and Technology Program(25JRRA493);National Key Research and Development Program of China(2024YFF1306402);Innovation Team of Key Laboratory of Ecological Security and Sustainable Development in Arid Regions(E455041401)

地下水依赖植被是干旱区生态系统的重要组成部分,在维持区域生态平衡和支撑生物多样性方面发挥着至关重要的作用,其生态功能高度依赖于地下水特性及其分布。地下水依赖植被的稳定与演变不仅受地下水位及其变化幅度影响,而且与地下水水质密切相关。基于地下水依赖植被研究,评述了植被对地下水依赖关系与识别方法、地下水环境对植被的影响、植被对地下水依赖的适应机制以及植被对地下水环境依赖的稳态转换研究,这不仅为干旱区生态保护与恢复提供了理论基础,也为地下水资源合理开发利用提供了科技支撑。未来研究需重点关注:①植物在物种—种群—群落尺度上对地下水环境变化的响应;②气候变化与人类活动对地下水依赖植被的影响;③创新干旱区地下水依赖植被韧性与稳态转换的研究方法;④确定地下水依赖植被稳定的水环境要素优化组合与突变阈值。

Groundwater-dependent vegetation is essential in arid ecosystems, where it maintains ecological balance and supports biodiversity. The health and functionality of this vegetation are closely linked to groundwater characteristics, including groundwater quality, distribution, and fluctuations. This review explores the relationship between vegetation and groundwater, methods for identifying groundwater-dependent vegetation, the impact of groundwater on the plants, adaptation mechanisms of these plants, and the nonlinear dependencies and thresholds of vegetation in groundwater environments. The objectives of the study are to provide a theoretical foundation for protecting and restoring arid ecosystems and to provide support for the sustainable development and utilization of groundwater resources. Future research should focus on plant responses to groundwater changes at the individual, population, and community scales; the effects of climate change and human activities on groundwater-dependent vegetation; innovative methods for studying ecosystem resilience and state-transition mechanisms for groundwater-dependent vegetation; and identifying stable water environment factors and catastrophic thresholds for typical groundwater-dependent vegetation.

中图分类号: 

图1 地下水依赖植被研究发展历程
Fig. 1 Researches of groundwater dependent vegetation
表1 地下水依赖植被的多尺度识别方法对比16-20
Table 1 Comparison of multi-scale identification methods of groundwater dependent vegetation16-20
图2 植被格局状态变化的尖点突变概念模型
Fig. 2 Conceptual model of catastrophic change of vegetation pattern state
1 REYNOLDS J F, SMITH D M S, LAMBIN E F, et al. Global desertification: building a science for dryland development[J]. Science2007316(5 826): 847-851.
2 HORTON J L, KOLB T E, HART S C. Physiological response to groundwater depth varies among species and with river flow regulation[J]. Ecological Applications200111(4). DOI:10.1890/1051-0761(2001)011 [1046:prtgdv]2.0.co;2.
3 ORELLANA F, VERMA P, LOHEIDE S P II, et al. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems[J]. Reviews of Geophysics201250(3). DOI:10.1029/2011RG000383 .
4 KATH J, REARDON-SMITH K, le BROCQUE A F, et al. Groundwater decline and tree change in floodplain landscapes: identifying non-linear threshold responses in canopy condition[J]. Global Ecology and Conservation20142: 148-160.
5 FAN Y, LI H, MIGUEZ-MACHO G. Global patterns of groundwater table depth[J]. Science2013339(6 122): 940-943.
6 OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science2006313(5 790): 1 068-1 072.
7 KUANG X X, LIU J G, SCANLON B R, et al. The changing nature of groundwater in the global water cycle[J]. Science2024383(6 686). DOI: 10.1126/science.adf0630 .
8 LIU Hu, ZHAO Wenzhi, LI Zhongkai. Ecohydrology of groundwater dependent ecosystems: a review[J]. Advances in Earth Science201833(7): 741-750.
刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展201833(7): 741-750.
9 MEINZER O E. Plants as indicators of ground water [M]. US Government Printing Office1927.
10 HATTON T, EVANS R, MERZ S K. Dependence of ecosystems on groundwater and its significance to Australia[M]. The Communication Station, Canberra: Land and Water Resources Research and Development Corporation, 1997.
11 HULTINE K R, FROEND R, BLASINI D, et al. Hydraulic traits that buffer deep-rooted plants from changes in hydrology and climate[J]. Hydrological Processes202034(2): 209-222.
12 DALU T, CHILOANE C, DONDOFEMA F, et al. Chapter 7 application of remote sensing techniques to monitor climate variability effects on groundwater-dependent ecosystems[M]. Elsevier Inc. 2024.
13 WANG Wenke, GONG Chengcheng, ZHANG Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science201833(7): 702-718.
王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展201833(7): 702-718.
14 DANG Xueya, LU Na, GU Xiaofan, et al. Groundwater threshold of ecological vegetation in Qaidam Basin[J]. Hydrogeology & Engineering Geology201946(3): 1-8.
党学亚, 卢娜, 顾小凡, 等. 柴达木盆地生态植被的地下水阈值[J]. 水文地质工程地质201946(3): 1-8.
15 ROHDE M M, ALBANO C M, HUGGINS X, et al. Groundwater-dependent ecosystem map exposes global dryland protection needs[J]. Nature2024632(8 023): 101-107.
16 CHEN Yaning, LI Weihong, CHEN Yapeng, et al. Water use process of constructive plants in desert riparian forest[J]. Arid Zone Research201835(1): 130-136.
陈亚宁, 李卫红, 陈亚鹏, 等. 荒漠河岸林建群植物的水分利用过程分析[J]. 干旱区研究201835(1): 130-136.
17 XU Hailiang, SONG Yudong, WANG Qiang, et al. The effect of groundwater level on vegetation in the middle and lower reaches of the Tarim River, Xinjiang, China[J]. Acta Phytoecologica Sinica200428(3): 400-405.
徐海量, 宋郁东, 王强, 等. 塔里木河中下游地区不同地下水位对植被的影响[J]. 植物生态学报200428(3): 400-405.
18 HAO Haichao, HAO Xingming, CHENG Xiaoli, et al. Effects of ecological water conveyance on water use efficiency of desert riparian forest ecosystem in the lower reaches of Tarim River[J]. Arid Land Geography202144(3): 691-699.
郝海超, 郝兴明, 成晓丽, 等. 塔里木河下游输水对荒漠河岸林生态系统水分利用效率的影响[J]. 干旱区地理202144(3): 691-699.
19 SU Y H, FENG Q, ZHU G F, et al. A new method of estimating groundwater evapotranspiration at sub-daily scale using water table fluctuations[J]. Water202214(6). DOI:10.3390/w14060876 .
20 ZENG Y, ZHAO C Y, LI J, et al. Effect of groundwater depth on riparian plant diversity along riverside-desert gradients in the Tarim River[J]. Journal of Plant Ecology201912(3): 564-573.
21 DAWSON T E, EHLERINGER J R. Streamside trees that do not use stream water[J]. Nature1991350: 335-337.
22 SI J H, FENG Q, CAO S K, et al. Water use sources of desert riparian Populus euphratica forests[J]. Environmental Monitoring and Assessment2014186(9): 5 469-5 477.
23 ZHOU H, ZHAO W Z, ZHANG G F. Varying water utilization of Haloxylon ammodendron plantations in a desert-oasis ecotone[J]. Hydrological Processes201731(4): 825-835.
24 MILLER G R, CHEN X Y, RUBIN Y, et al. Groundwater uptake by woody vegetation in a semiarid oak savanna[J]. Water Resources Research201046(10). DOI:10.1029/2009WR008902 .
25 ZHAO Wenzhi, CHENG Guodong. Review on some problems of eco-hydrological process research in arid areas[J]. Chinese Science Bulletin200146(22): 1 851-1 857.
赵文智, 程国栋. 干旱区生态水文过程研究若干问题评述[J]. 科学通报200146(22): 1 851-1 857.
26 JI X B, ZHAO W Z, KANG E S, et al. Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of northwestern China[J]. Hydrological Processes201630(25): 4 841-4 854.
27 SCOTT R L, CABLE W L, HUXMAN T E, et al. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed[J]. Journal of Arid Environments200872(7): 1 232-1 246.
28 WHITE W N. A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: results of investigations in Escalante Valley, Utah[R]. Contributions to the hydrology of the United States, 1932.
29 WANG T Y, WANG P, YU J J, et al. Revisiting the white method for estimating groundwater evapotranspiration: a consideration of sunset and sunrise timings[J]. Environmental Earth Sciences201978(14). DOI:10.1007/s12665-019-8422-x .
30 EL-HOKAYEM L, de VITA P, CONRAD C. Local identification of groundwater dependent vegetation using high-resolution Sentinel-2 data—a mediterranean case study[J]. Ecological Indicators2023, 146. DOI:10.2139/ssrn.4132042 .
31 MARTÍNEZ-SANTOS P, DÍAZ-ALCAIDE S, HERA-PORTILLO A D L, et al. Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification[J]. Journal of Hydrology2021, 603. DOI:10.1016/j.jhydrol.2021.126873 .
32 BARRON O, FROEND R, HODGSON G, et al. Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, western Australia[J]. Hydrological Processes201428(22): 5 513-5 529.
33 GOU S, MILLER G R, SAVILLE C, et al. Simulating groundwater uptake and hydraulic redistribution by phreatophytes in a high-resolution, coupled subsurface-land surface model[J]. Advances in Water Resources2018121: 245-262.
34 CHEN Yaning, ZHANG Hongfeng, LI Weihong, et al. The relationship between species diversity and groundwater table in the low reaches of the Tarin River Xinjiang China [J]. Advances in Earth Science200520(2): 158-165.
陈亚宁, 张宏锋, 李卫红, 等. 新疆塔里木河下游物种多样性变化与地下水位的关系[J]. 地球科学进展200520(2): 158-165.
35 PETTIT N E, FROEND R H. How important is groundwater availability and stream perenniality to riparian and floodplain tree growth?[J]. Hydrological Processes201832(10): 1 502-1 514.
36 DONG S G, LIU B W, MA M Y, et al. Effects of groundwater level decline to soil and vegetation in arid grassland: a case study of Hulunbuir open pit coal mine[J]. Environmental Geochemistry and Health202345(5): 1 793-1 806.
37 FAN Y, MIGUEZ-MACHO G, JOBBÁGY E G, et al. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences of the United States of America2017114(40): 10 572-10 577.
38 PATEL M K, PANDEY S, BURRITT D J, et al. Plant responses to low-oxygen stress: interplay between ROS and NO signaling pathways[J]. Environmental and Experimental Botany2019161: 134-142.
39 WANG P, ZHANG Y C, YU J J, et al. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China[J]. Journal of Plant Ecology20114(1/2): 77-90.
40 WANG T Y, WANG P, WU Z N, et al. Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes[J]. Agricultural and Forest Meteorology2022, 320. DOI:10.1016/j.agrformet.2022.108959 .
41 ZHAO Siteng, ZHAO Xueyong, LI Yulin, et al. A review on the driving effect of groundwater depth on the evolution of sandy plant soil systems in arid and semiarid region[J]. Acta Ecologica Sinica202242(23): 9 898-9 908.
赵思腾, 赵学勇, 李玉霖, 等. 干旱半干旱区地下水埋深对沙地植物土壤系统演变的驱动作用综述[J]. 生态学报202242(23): 9 898-9 908.
42 MARTINETTI S, FATICHI S, FLORIANCIC M, et al. Field evidence of riparian vegetation response to groundwater levels in a gravel-bed river[J]. Ecohydrology202114(2). DOI:10.1002/eco.2264 .
43 CHEN G G, YUE D X, ZHOU Y Y, et al. Driving factors of community-level plant functional traits and species distributions in the desert-wetland ecosystem of the Shule River Basin, China[J]. Land Degradation & Development202132(1): 323-337.
44 LUO Y, CHEN Y, PENG Q W, et al. Nitrogen and phosphorus resorption of desert plants with various degree of propensity to salt in response to drought and saline stress[J]. Ecological Indicators2021, 125. DOI:10.1016/j.ecolind.2021.107488 .
45 MA Rui, LIU Chenyu, HAN Lu, et al. Trade-off relationship between leaf number and leaf size on current-year twigs of Populus euphratica Oliv. in response to groundwater gradients in extreme arid area of northwestern China[J]. Plant Science Journal202240(2): 240-249.
马蕊, 刘辰宇, 韩路, 等. 胡杨叶片大小与叶数量的权衡关系对地下水埋深的响应[J]. 植物科学学报202240(2): 240-249.
46 SONG G, HUANG J T, NING B H, et al. Effects of groundwater level on vegetation in the arid area of western China[J]. China Geology20214(3): 527-535.
47 LIU Shensi, XU Guiqing, MI Xiaojun, et al. Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron at the southern edge of Gurbantonggut desert[J]. Acta Ecologica Sinica202242(21): 8 881-8 891.
刘深思, 徐贵青, 米晓军, 等. 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响[J]. 生态学报202242(21): 8 881-8 891.
48 ZHU J T, YU J J, WANG P, et al. Variability in groundwater depth and composition and their impacts on vegetation succession in the lower Heihe River Basin, north-western China[J]. Marine and Freshwater Research201465(3). DOI:10.1071/mf13082 .
49 TUTEJA N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology2007428: 419-438.
50 YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist2018217(2): 523-539.
51 LIU X, ZHOU Z Q, DING Y B. Vegetation coverage change and erosion types impacts on the water chemistry in western China[J]. Science of the Total Environment2021, 772. DOI:10.1016/j.scitotenv.2021.145543 .
52 HUGGINS X, GLEESON T, SERRANO D, et al. Overlooked risks and opportunities in groundwatersheds of the world’s protected areas[J]. Nature Sustainability20236: 855-864.
53 GREEN A J, GUARDIOLA-ALBERT C, BRAVO-UTRERA M Á, et al. Groundwater abstraction has caused extensive ecological damage to the doñana world heritage site, Spain[J]. Wetlands202444(2). DOI:10.20350/digitalCSIC/15316 .
54 LI Weihong, HAO Xingming, QIN Xinwen, et al. Ecological process of desert riparian forest communities and its hydrological mechanism of inland river basin in arid area[J]. Journal of Desert Research200828(6): 1 113-1 117.
李卫红, 郝兴明, 覃新闻, 等. 干旱区内陆河流域荒漠河岸林群落生态过程与水文机制研究[J]. 中国沙漠200828(6): 1 113-1 117.
55 LIND K R, SIEMIANOWSKI O, YUAN B, et al. Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients[J]. Proceedings of the National Academy of Sciences of the United States of America2021118(1). DOI:10.1073/pnas.2012892118 .
56 ORMAN-LIGEZA B, MORRIS E C, PARIZOT B, et al. The xerobranching response represses lateral root formation when roots are not in contact with water[J]. Current Biology201828(19): 3 165-3 173.
57 GOMES G B, SCORTECCI K C. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms[J]. Plant Biology202123(6): 894-904.
58 CHANG J K, LI X P, FU W H, et al. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana[J]. Cell Research201929(12): 984-993.
59 DAI Yue, ZHENG Xinjun, TANG Lisong, et al. Dynamics of water usage in Haloxylon ammodendron in the southern edge of the Gurbantünggüt Desert[J]. Chinese Journal of Plant Ecology201438(11): 1 214-1 225.
戴岳, 郑新军, 唐立松, 等. 古尔班通古特沙漠南缘梭梭水分利用动态[J]. 植物生态学报201438(11): 1 214-1 225.
60 XI B Y, DI N, LIU J Q, et al. Hydrologic regulation of plant rooting depth: pay attention to the widespread scenario with intense seasonal groundwater table fluctuation[J]. Proceedings of the National Academy of Sciences of the United States of America2018115(17): E3863-E3864.
61 NAUMBURG E, MATA-GONZALEZ R, HUNTER R G, et al. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation[J]. Environmental Management200535(6): 726-740.
62 GOU S, MILLER G. A groundwater-soil-plant-atmosphere continuum approach for modelling water stress, uptake, and hydraulic redistribution in phreatophytic vegetation[J]. Ecohydrology20147(3): 1 029-1 041.
63 ZHAO S T, ZHAO X Y, LI Y L. Relationship between the trait response of aboveground and belowground parts of dominant plant species to groundwater depth change in Horqin Sandy Land, Eastern China[J]. Ecological Indicators2023, 156. DOI:10.1016/j.ecolind.2023.111001 .
64 PRIETO I, ARMAS C, PUGNAIRE F I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level[J]. New Phytologist2012193(4): 830-841.
65 ZHAO Wenzhi, LIU Hu. Recent advances in desert vegetation response to groundwater table changes[J]. Acta Ecologica Sinica200626(8): 2 702-2 708.
赵文智, 刘鹄. 荒漠区植被对地下水埋深响应研究进展[J]. 生态学报200626(8): 2 702-2 708.
66 WANG T Y, WANG P, WANG Z L, et al. Drought adaptability of phreatophytes: insight from vertical root distribution in drylands of China[J]. Journal of Plant Ecology202114(6): 1 128-1 142.
67 WANG Tianye, WANG Ping, WU Zening, et al. Progress in the study of ecological resilience of vegetation under drought stress[J]. Advances in Earth Science202338(8): 790-801.
王田野, 王平, 吴泽宁, 等. 干旱胁迫下植被生态韧性研究进展[J]. 地球科学进展202338(8): 790-801.
68 BURGESS S S O, ADAMS M A, TURNER N C, et al. The redistribution of soil water by tree root systems[J]. Oecologia1998115(3): 306-311.
69 RICHARDS J H, CALDWELL M M. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia198773(4): 486-489.
70 O’KEEFE K, NIPPERT J B. An assessment of diurnal water uptake in a mesic prairie: evidence for hydraulic lift?[J]. Oecologia2017183(4): 963-975.
71 PRIETO I, KIKVIDZE Z, PUGNAIRE F I. Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L.) Boiss[J]. Plant and Soil2010329(1): 447-456.
72 BARRON-GAFFORD G A, SANCHEZ-CAÑETE E P, MINOR R L, et al. Impacts of hydraulic redistribution on grass-tree competition vs facilitation in a semi-arid savanna[J]. New Phytologist2017215(4): 1 451-1 461.
73 YUAN Guofu, ZHANG Pei, XUE Shasha, et al. Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes[J]. Chinese Journal of Plant Ecology201236(10): 1 033-1 042.
袁国富, 张佩, 薛沙沙, 等. 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据[J]. 植物生态学报201236(10): 1 033-1 042.
74 GALLO E L, SCOTT R L, BIEDERMAN J A. Two decades of riparian woodland water vapor and carbon dioxide flux responses to environmental variability[J]. Agricultural and Forest Meteorology2024, 355. DOI:10.1016/j.agrformet.2024.110147 .
75 YANG G S, HUANG L, SHI Y F. Magnitude and determinants of plant root hydraulic redistribution: a global synthesis analysis[J]. Frontiers in Plant Science2022, 13. DOI:10.3389/fpls.2022.918585 .
76 TRINIDAD TORRES-GARCÍA M, SALINAS-BONILLO M J, GÁZQUEZ-SÁNCHEZ F, et al. Squandering water in drylands: the water-use strategy of the phreatophyte Ziziphus lotus in a groundwater-dependent ecosystem[J]. American Journal of Botany2021108(2): 236-248.
77 YU T F, FENG Q, SI J H, et al. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China’s extremely arid region[J]. Plant and Soil2013372(1): 297-308.
78 GERJETS R, RICHTER F, JANSEN M, et al. Hydraulic redistribution by hybrid poplars (Populus nigra x Populus maximowiczii) in a greenhouse soil column experiment[J]. Plant and Soil2021463(1): 145-154.
79 LIU Yang, MA Xu, DI Nan, et al. Root sap flow and hydraulic redistribution of Populus tomentosa [J]. Chinese Journal of Plant Ecology202247(1): 123-133.
刘洋, 马煦, 邸楠, 等. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报202347(1): 123-133.
80 WU H H, FU C S, WU H W, et al. Plant hydraulic stress strategy improves model predictions of the response of gross primary productivity to drought across China[J]. Journal of Geophysical Research: Atmospheres2020125(24). DOI: 10.1029/2020jd033476 .
81 HE Xingdong, GAO Yubao. Discussion on ecological role of hydraulic lift in arid region[J]. Acta Ecologica Sinica200323(5): 996-1 002.
何兴东, 高玉葆. 干旱区水力提升的生态作用[J]. 生态学报200323(5): 996-1 002.
82 REYNOLDS J F, VIRGINIA R A, KEMP P R, et al. Impact of drought on desert shrubs: effects of seasonality and degree of resource island development[J]. Ecological Monographs199969(1): 69-106.
83 RYEL R J, LEFFLER A J, PEEK M S, et al. Water conservation in Artemisia tridentata through redistribution of precipitation[J]. Oecologia2004141(2): 335-345.
84 ZHAO Y, WANG L, CHUN K P, et al. Dynamic hydrological niche segregation: how plants compete for water in a semi-arid ecosystem[J]. Journal of Hydrology2024, 630. DOI:10.1016/j.jhydrol.2024.130677 .
85 ZHAI Jiaqi, DONG Yiyang, QI Shenglin, et al. Advances in ecological groundwater level threshold in arid oasis regions[J]. Journal of China Hydrology202141(1): 7-14.
翟家齐, 董义阳, 祁生林, 等. 干旱区绿洲地下水生态水位阈值研究进展[J]. 水文202141(1): 7-14.
86 FENG H B, DUAN Y, ZHOU J W, et al. Effects of groundwater level decline on soil-vegetation system in semiarid grassland influenced by coal mining[J]. Land Degradation & Development202435(6): 2 297-2 312.
87 HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics19734: 1-23.
88 PONCE C G E, MORAN M S, HUETE A, et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions[J]. Nature2013494(7 437): 349-352.
89 YAO Y, FU B J, LIU Y X, et al. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time[J]. Agricultural and Forest Meteorology2022, 314. DOI:10.1016/j.agrformet.2022.108809 .
90 JOHNSTONE J F, ALLEN C D, FRANKLIN J F, et al. Changing disturbance regimes, ecological memory, and forest resilience[J]. Frontiers in Ecology and the Environment201614(7): 369-378.
91 XUE B L, HELMAN D, WANG G Q, et al. The low hydrologic resilience of Asian Water Tower basins to adverse climatic changes[J]. Advances in Water Resources2021, 155. DOI:10.1016/j.advwatres.2021.103996 .
92 ANDEREGG W R L, TRUGMAN A T, BADGLEY G, et al. Divergent forest sensitivity to repeated extreme droughts[J]. Nature Climate Change202010: 1 091-1 095.
93 TURNBULL L, WILCOX B P, BELNAP J, et al. Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands[J]. Ecohydrology20125(2): 174-183.
94 TAURO F. River basins on the edge of change[J]. Science2021372(6 543): 680-681.
95 CHOAT B, BRODRIBB T J, BRODERSEN C R, et al. Triggers of tree mortality under drought[J]. Nature2018558(7 711): 531-539.
96 ZHAO Wenzhi, REN Heng, DU Jun, et al. Thoughts and suggestions on oasis ecological construction and agricultural development in Hexi Corridor[J]. Bulletin of Chinese Academy of Sciences202338(3): 424-434.
赵文智, 任珩, 杜军, 等. 河西走廊绿洲生态建设和农业发展的若干思考与建议[J]. 中国科学院院刊202338(3): 424-434.
97 MUNSON S M, REED S C, PEÑUELAS J, et al. Ecosystem thresholds, tipping points, and critical transitions[J]. New Phytologist2018218(4): 1 315-1 317.
98 OUIMET C, LEGENDRE P. Practical aspects of modelling ecological phenomena using the cusp catastrophe[J]. Ecological Modelling198842(3/4): 265-287.
99 DORE E, BIDDAU R, LORRAI M, et al. Combining hydrogeochemistry, statistics and explorative mapping to estimate regional threshold values of trace elements in groundwater (Sardinia, Italy)[J]. Journal of Geochemical Exploration2022, 243. DOI:10.1016/j.gexplo.2022.10710410.1016/j.gexplo.2022.107104 .
100 ZHANG Ming, FU Dongmei, CHENG Xuequn, et al. A two-step method for cusp catastrophe model construction based on the selection of important variables[J]. Chinese Journal of Engineering202345(1): 128-136.
张明, 付冬梅, 程学群, 等. 基于变量选择的尖点突变模型的两步构建方法[J]. 工程科学学报202345(1): 128-136.
[1] 龚咏琪, 于海鹏, 周洁, 任钰, 魏韵, 程姗岭, 杨耀先, 罗红羽. 东亚干旱半干旱区水汽来源研究进展[J]. 地球科学进展, 2023, 38(2): 168-182.
[2] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 肖生春,彭小梅,丁爱军,田全彦,韩超. 中国寒旱区灌木年轮学研究进展[J]. 地球科学进展, 2020, 35(6): 561-567.
[7] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[8] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[9] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[10] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[11] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[12] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[13] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[14] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[15] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
阅读次数
全文


摘要