地球科学进展 ›› 2025, Vol. 40 ›› Issue (3): 228 -242. doi: 10.11867/j.issn.1001-8166.2025.022

青藏高原综合科学考察研究 上一篇    下一篇

基于InVEST模型的年楚河流域生态系统格局与水源涵养服务关系研究
高小源1(), 龙芊芊2,3()   
  1. 1.中国科学院青藏高原研究所,北京 100101
    2.中国科学院、水利部成都山地灾害与环境研究所,四川 成都 610299
    3.中国科学院大学,北京 101408
  • 收稿日期:2024-05-13 修回日期:2024-09-18 出版日期:2025-03-10
  • 通讯作者: 龙芊芊 E-mail:xzhbgxy@126.com;lqq@imde.ac.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究项目(2019QZKK0201)

Relationship Between Ecosystem Patterns and Water Conservation Services in the Nianchu River Basin Based on the InVEST Model

Xiaoyuan GAO1(), Qianqian LONG2,3()   

  1. 1.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
    3.University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2024-05-13 Revised:2024-09-18 Online:2025-03-10 Published:2025-05-07
  • Contact: Qianqian LONG E-mail:xzhbgxy@126.com;lqq@imde.ac.cn
  • About author:GAO Xiaoyuan, research areas include resource industrial economics, water ecological environment protection and restoration. E-mail: xzhbgxy@126.com
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0201)

研究生态系统格局与水源涵养服务的关系对促进生态系统管理和保护水源供给具有重要意义。以青藏高原南缘的年楚河流域为研究区,基于InVEST模型、景观生态学理论和Pearson相关系数,探索了年楚河流域2010年、2015年和2020年生态系统格局与水源涵养服务的相关关系。结果表明:①草地占比超过78%,裸地面积稳定但与草地有活跃的双向转移。②2010—2020年,草地的斑块面积占比、平均斑块面积和聚集度指数最高;裸地斑块形状最不规则,森林斑块密度增加,城镇持续扩张。③2010年、2015年和2020年的水源涵养总量分别为2.72亿m3、0.95亿m3和2.47亿m3,草地的贡献率接近80%。④水源涵养量与复合生态系统的斑块密度、边缘密度、斑块形状指数、修正的Simpson多样性指数和修正的Simpson均匀度指数呈正相关,与平均斑块面积和聚集度指数呈负相关;草地的斑块面积占比和平均斑块面积与水源涵养量呈负相关,而冰川的斑块面积占比和平均斑块面积与水源涵养量呈正相关。综上所述,草地主导了年楚河流域的生态系统格局,其破碎化程度与水源涵养服务呈正相关,不同类型的生态系统格局与水源涵养服务之间的关系表现出显著差异,可以为区域生态系统管理和水资源保护提供科学依据。

Studying the relationship between ecosystem patterns and water conservation services is important for promoting ecosystem management and protecting the water supply. Based on the InVEST model, landscape ecology theory, and Pearson correlation coefficient analysis, this study explored the relationship between ecosystem patterns and water conservation services in the Nianchu River Basin during 2010—2020. The study yielded several interesting results: Grasslands account for more than 78% of the area, with stable bare land but active bidirectional transitions with grasslands. From 2010 to 2020, there was a slight increase in the fragmentation level of the composite ecosystem patterns within the basin. Grassland had a significantly higher Percentage of Landscape (PLAND), Mean Patch Size (MPS), and Aggregation Index (AI) than other ecosystem types. Bare land exhibited the most irregular patch shapes. Forest showed the most significant increase in Patch Density (PD) and a slight decrease in MPS. Urban areas expanded continuously. The total water conservation services for 2010, 2015, and 2020 were 272 million m3, 95 million m3, and 247 million m3, respectively, with grasslands contributing nearly 80% of the total. There is a significant correlation between the composite ecosystem pattern and water conservation services. Water conservation services are positively correlated with PD, Edge Density (ED), Landscape Shape Index (LSI), Modified Simpson’s Diversity Index (MSIDI), and Modified Simpson’s Evenness Index (MSIEI) but negatively correlated with MPS and AI. However, the correlations between different types of ecosystem patterns and water conservation services show significant variations. For example, PLAND and MPS are negatively correlated with water conservation services for grasslands but positively correlated with glaciers. In summary, grasslands dominate the ecological patterns of the Nianchu River Basin, and their degree of fragmentation is positively correlated with water conservation services. Furthermore, the relationships between different types of ecological patterns and water conservation services exhibit significant differences. This study provides a scientific basis for regional ecosystem management and water resource protection.

中图分类号: 

图1 年楚河流域地理位置概况
Fig. 1 Geographical overview of the Nianchu River Basin
表1 数据来源及精度
Table 1 Data source and resolution
表2 景观格局指数含义及计算方法
Table 2 Meaning and calculation method of landscape pattern index
表3 地表径流系数和植被蒸散系数
Table 3 The surface flow rate coefficient and the vegetation evapotranspiration coefficient
图2 年楚河流域2010年、2015年和2020年各类型生态系统面积
Fig. 2 Area of different ecosystems of the Nianchu River Basin in 20102015and 2020
图3 年楚河流域2010年、2015年和2020年生态系统空间分布
Fig.3 Spatial distribution of ecosystems of the Nianchu River Basin in 20102015and 2020
图4 年楚河流域20102015年、20152020年和20102020年生态系统面积转移弦图
Fig. 4 Ecosystems transfer chord diagram of the Nianchu River Basin in 2010-20152015-2020and 2010-2020
图5 年楚河流域2010年、2015年和2020年复合生态系统景观格局指数
PD:斑块密度;ED:边缘密度;LSI:景观形状指数;MPS:平均斑块面积;MSIDI:修正的Simpson多样性指数;MSIEI:修正的Simpson均匀度指数;AI:聚集度指数
Fig. 5 Composite ecosystems landscape pattern index of the Nianchu River Basin in 20102015and 2020
PD:Patch Density;ED:Edge Density;LSI:Landscape Shape Index;MPS:Mean Patch Size; MSIDI:Modified Simpson’s Diversity Index;MSIEI:Modified Simpson’s Evenness Index; AI:Aggregation Index
图6 年楚河流域2010年、2015年和2020年各类型生态系统景观格局指数
PLAND:斑块面积占比;PD:斑块密度;ED:边缘密度;LSI:景观形状指数;MPS:平均斑块面积;AI:聚集度指数
Fig. 6 Landscape pattern indices by different type of ecosystem of the Nianchu River Basin in 20102015and 2020
PLAND: Percentage of Landscape; PD: Patch Density; ED: Edge Density; LSI: Landscape Shape Index; MPS: Mean Patch Size; AI: Aggregation Index
图7 年楚河流域2010年、2015年和2020年水源涵养年际总量
Fig. 7 Interannual total of water conservation of the Nianchu River Basin in 20102015and 2020
表4 降水量和潜在蒸散发量的年均值及其与水源涵养量的相关系数
Table 4 Annual mean values of precipitation and potential evapotranspiration and their correlation coefficients with water conservation services
图8 年楚河流域2010年、2015年和2020年水源涵养量空间分布情况
Fig. 8 Spatial distribution of water conservation of the Nianchu River Basin in 20102015and 2020
图9 年楚河流域2010年、2015年和2020年各类型生态系统平均水源涵养量和贡献率
Fig. 9 Average water conservation services and contribution rate of different types of ecosystems of the Nianchu River Basin in 20102015and 2020
图10 年楚河流域复合生态系统格局与水源涵养量的Pearson相关系数分析
PD:斑块密度;ED:边缘密度;LSI:景观形状指数;MPS:平均斑块面积;MSIDI:修正的Simpson多样性指数;MSIEI:修正的Simpson均匀度指数;AI:聚集度指数
Fig. 10 Pearson correlation coefficient analysis of composite ecosystem patterns and water conservation in the Nianchu River Basin
PD: Patch Density; ED: Edge Density; LSI: Landscape Shape Index; MPS: Mean Patch Size; MSIDI: Modified Simpson’s Diversity Index; MSIEI: Modified Simpson’s Evenness Index; AI: Aggregation Index
图11 年楚河流域各类型生态系统格局与水源涵养量的Pearson相关系数分析
PLAND:斑块面积占比;PD:斑块密度;ED:边缘密度;LSI:景观形状指数;MPS:平均斑块面积;AI:聚集度指数
Fig. 11 Pearson correlation coefficient analysis of different ecosystem patterns and water conservation in the Nianchu River Basin
PLAND: Percentage of Landscape; PD: Patch Density; ED: Edge Density; LSI: Landscape Shape Index; MPS: Mean Patch Size; AI: Aggregation Index
1 COSTANZA R, D’ARGE R, de GROOT R, et al. The value of the world’s ecosystem services and natural capital[J]. Nature1997387: 253-260.
2 OUYANG Zhiyun, WANG Xiaoke, MIAO Hong. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values[J]. Acta Ecologica Sinica199919(5): 19-25.
欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态经济价值的初步研究[J]. 生态学报199919(5): 19-25.
3 LIU Ju, FU Bin, ZHANG Chenghu, et al. Assessment of ecosystem water retention and its value in the upper reaches of Minjiang River based on InVEST model[J]. Resources and Environment in the Yangtze Basin201928(3): 577-585.
刘菊, 傅斌, 张成虎, 等. 基于InVEST模型的岷江上游生态系统水源涵养量与价值评估[J]. 长江流域资源与环境201928(3): 577-585.
4 SU Changhong, FU Bojie. Discussion on links among landscape pattern, ecological process, and ecosystem services[J]. Chinese Journal of Nature201234(05): 277-283.
苏常红, 傅伯杰. 景观格局与生态过程的关系及其对生态系统服务的影响[J]. 自然杂志201234(05): 277-283.
5 FU Bojie, ZHANG Liwei. Land-use change and ecosystem services: concepts, methods and progress[J]. Progress in Geography201433(4): 441-446.
傅伯杰, 张立伟. 土地利用变化与生态系统服务: 概念、方法与进展[J]. 地理科学进展201433(4): 441-446.
6 TAN J, PENG L, WU W X, et al. Mapping the evolution patterns of urbanization, ecosystem service supply-demand, and human well-being: a tree-like landscape perspective[J]. Ecological Indicators2023, 154. DOI: 10.1016/j.ecolind.2023.110591 .
7 TOLESSA T, SENBETA F, ABEBE T. Land use/land cover analysis and ecosystem services valuation in the central Highlands of Ethiopia[J]. Forests, Trees and Livelihoods201726(2): 111-123.
8 YUSHANJIANG A, ZHANG F, YU H Y, et al. Quantifying the spatial correlations between landscape pattern and ecosystem service value: a case study in Ebinur Lake Basin, Xinjiang, China[J]. Ecological Engineering2018113: 94-104.
9 ZHANG Fa, YUSUPJIANG Rusuli, AIERKEN Tuerxun. Spatio-temporal change of ecosystem service value in Bosten Lake Watershed based on land use[J]. Acta Ecologica Sinica202141(13): 5 254-5 265.
张发, 玉素甫江·如素力, 艾尔肯·图尔逊. 基于土地利用的博斯腾湖流域生态系统服务价值时空变化[J]. 生态学报202141(13): 5 254-5 265.
10 ZHENG Bofu, HUANG Qiongyao, TAO Lin, et al. Landscape pattern change and its impacts on the ecosystem services value in southern Jiangxi Province[J]. Acta Ecologica Sinica202141(15): 5 940-5 949.
郑博福, 黄琼瑶, 陶林, 等. 赣南地区景观格局变化及其对生态系统服务价值的影响[J]. 生态学报202141(15): 5 940-5 949.
11 YANG Wanqing, YANG Peng, SUN Xiao, et al. Changes of landscape pattern and its impacts on multiple ecosystem services in Beijing[J]. Acta Ecologica Sinica202242(16): 6 487-6 498.
杨婉清, 杨鹏, 孙晓, 等. 北京市景观格局演变及其对多种生态系统服务的影响[J]. 生态学报202242(16): 6 487-6 498.
12 WANG Fei, TAO Yu, Weixin OU. Research progress on response relationship of water quality purification service with landscape pattern change[J]. Advances in Earth Science202136(1): 17-28.
王飞, 陶宇, 欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展202136(1): 17-28.
13 ZHOU Shuang, LIU Shaoquan, PENG Li. The correlation effect between landscape pattern and ecosystem services in Chengdu[J]. Journal of Mountain Science202139(2): 262-274.
周爽, 刘邵权, 彭立. 成都市景观格局与生态系统服务的关联效应[J]. 山地学报202139(2): 262-274.
14 XU Jianying, FAN Feifei, LIU Yanxu, et al. Response of ecosystem services to landscape pattern and its changes in Wenchuan County, Sichuan Province[J]. Acta Ecologica Sinica202040(14): 4 724-4 736.
徐建英, 樊斐斐, 刘焱序, 等. 汶川县生态系统服务对景观格局及其变化的响应[J]. 生态学报202040(14): 4 724-4 736.
15 LIU Dizi, DU Shoushuai, WANG Chenxu. Landscape pattern change and its response to ecosystem services value in a rural tourism area—a case study at Taihu National Tourism Resort in Wuxi City of Jiangsu Province[J]. Bulletin of Soil and Water Conservation202141(5): 264-275, 286.
柳迪子, 杜守帅, 王晨旭. 旅游型乡村景观格局变化及生态系统服务价值响应——以江苏省无锡市太湖国家旅游度假区为例[J].水土保持通报202141(5): 264-275,286.
16 WANG Yao, XU Pei, FU Bin, et al. Water conservation function assessment models of forest ecosystem: a review[J]. Ecological Economy201834(2): 158-164, 169.
王尧, 徐佩, 傅斌, 等. 森林生态系统水源涵养功能评估模型研究进展[J]. 生态经济201834(2): 158-164, 169.
17 LEH M D K, MATLOCK M D, CUMMINGS E C, et al. Quantifying and mapping multiple ecosystem services change in West Africa[J]. Agriculture, Ecosystems & Environment, 2013165: 6-18.
18 PESSACG N, FLAHERTY S, BRANDIZI L, et al. Getting water right: a case study in water yield modelling based on precipitation data[J]. Science of the Total Environment2015537: 225-234.
19 BAO Yubin, LI Ting, LIU Hui, et al. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi Province by InVEST model[J]. Geographical Research201635(4): 664-676.
包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究201635(4): 664-676.
20 Leting LÜ, REN Tiantian, SUN Caizhi, et al. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016[J]. Acta Ecologica Sinica202040(3): 993-1 003.
吕乐婷, 任甜甜, 孙才志, 等. 1980—2016年三江源国家公园水源供给及水源涵养功能时空变化研究[J]. 生态学报202040(3): 993-1 003.
21 GU Zhengming, JIN Xiaobin, SHEN Chunzhu, et al. Variation and influence factors of water conservation service function in Jiangsu Province from 2000 to 2015[J]. Resources and Environment in the Yangtze Basin201827(11): 2 453-2 462.
顾铮鸣, 金晓斌, 沈春竹, 等. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境201827(11): 2 453-2 462.
22 YAO T D, THOMPSON L G, MOSBRUGGER V, et al. Third Pole Environment (TPE)[J]. Environmental Development20123: 52-64.
23 IMMERZEEL W W, van BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science2010328(5 984): 1 382-1 385.
24 TANG Wei, ZHONG Xianghao, ZHOU Wei. Study on the evolution of spatial distribution structure of population in “Three Rivers” area in Tibet[J]. China Population, Resources and Environment201121(3): 159-164.
唐伟, 钟祥浩, 周伟. 西藏“一江两河” 地区人口空间分布的动态演变[J]. 中国人口·资源与环境201121(3): 159-164.
25 WANG Junying. Analysis of the current situation of water resources development and utilization in the Nianchu River Basin [J]. Design of Water Resources & Hydroelectric Engineering200221(4): 25-26, 37.
王俊英. 年楚河流域水资源开发利用现状分析[J]. 水利水电工程设计200221(4): 25-26, 37.
26 GUAN Zhihua, CHEN Chuanyou. Rivers and lakes in Tibet[M]. Beijing: Science Press, 1984.
关志华, 陈传友. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984.
27 Zhujiacuo DUN. Runoff variation of the Nianchu River in Yarlung Tsangpo River Basin and its response to climate change[J]. Yellow River201537(4): 33-37.
顿珠加措. 年楚河流域径流变化及其对气候变化的响应[J]. 人民黄河201537(4): 33-37.
28 YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J]. Global and Planetary Change2014112: 79-91.
29 WANG Xiaofeng, YAO Wenjie, FENG Xiaoming, et al. Changes and driving factors of ecosystem services supply and demand on the Tibetan Plateau[J]. Acta Ecologica Sinica202343(17): 6 968-6 982.
王晓峰, 尧文洁, 冯晓明, 等. 青藏高原生态系统服务供需变化及其驱动因素[J]. 生态学报202343(17): 6 968-6 982.
30 QI Baozheng, YANG Haizhen, ZHOU Huakun, et al. Quantitative evaluation of the ecological service function on Qinghai-Tibet Plateau based on GIS analysis[J]. Ecological Science202342(1): 187-196.
戚宝正, 杨海镇, 周华坤, 等. 基于GIS的青藏高原生态服务功能定量评价[J]. 生态科学202342(1): 187-196.
31 WANG Qianxin, CAO Wei, HUANG Lin. Evolutionary characteristics and zoning of ecosystem functional stability on the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica202378(5): 1 104-1 118.
王欠鑫, 曹巍, 黄麟. 青藏高原生态系统功能稳定性演化特征及分区[J]. 地理学报202378(5): 1 104-1 118.
32 HAO Jiayuan, ZHI Liehui, LI Xiaowen, et al. Temporal and spatial variations and the relationships of land use pattern and ecosystem services in Qinghai-Tibet Plateau, China[J]. Chinese Journal of Applied Ecology202334(11): 3 053-3 063.
郝嘉元, 智烈慧, 李晓文, 等. 青藏高原土地利用格局和生态系统服务的时空演变特征及关系[J]. 应用生态学报202334(11): 3 053-3 063.
33 LIU Y L, FU L J, LU X Y, et al. Characteristics of soil nutrients and their ecological stoichiometry in different land use types in the Nianchu River Basin[J]. Land202211(7). DOI: 10.3390/land11071001 .
34 BAN Chunguang, XU Zongxue, GOU Jiaojiao, et al. Trend and driving factors of runoff variation in the upper reaches of Nianchu River Basin from 1973-2015[J]. Journal of Beijing Normal University (Natural Science)201955(6): 748-754.
班春广, 徐宗学, 苟娇娇, 等. 1973—2015年年楚河上游流域径流变化趋势及驱动因素分析[J]. 北京师范大学学报(自然科学版)201955(6): 748-754.
35 CHEN Wenbo, XIAO Duning, LI Xiuzhen. Classification, application, and creation of landscape indices[J]. Chinese Journal of Applied Ecology200213(1): 121-125.
陈文波, 肖笃宁, 李秀珍. 景观指数分类、应用及构建研究[J]. 应用生态学报200213(1): 121-125.
36 PAN Tao, WU Shaohong, DAI Erfu, et al. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model[J]. Chinese Journal of Applied Ecology201324(1): 183-189.
潘韬, 吴绍洪, 戴尔阜, 等. 基于InVEST模型的三江源区生态系统水源供给服务时空变化[J]. 应用生态学报201324(1): 183-189.
37 WANG Baosheng, CHEN Huaxiang, DONG Zheng, et al. Impact of land use change on the water conservation service of ecosystems in the urban agglomeration of the Golden Triangle of Southern Fujian, China, in 2030[J]. Acta Ecologica Sinica202040(2): 484-498.
王保盛, 陈华香, 董政, 等. 2030年闽三角城市群土地利用变化对生态系统水源涵养服务的影响[J]. 生态学报202040(2): 484-498.
38 BO Liming, WEI Wei, ZHAO Lang, et al. Spatial and temporal evolution characteristics and the driving mechanism of water eco-space in the Tibetan Plateau[J]. Advances in Earth Science202338(4): 401-413.
薄立明, 魏伟, 赵浪, 等. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展202338(4): 401-413.
39 FU Bojie, OUYANG Zhiyun, SHI Peng, et al. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier[J]. Bulletin of Chinese Academy of Sciences202136(11): 1 298-1 306.
傅伯杰, 欧阳志云, 施鹏, 等. 青藏高原生态安全屏障状况与保护对策[J]. 中国科学院院刊202136(11): 1 298-1 306.
40 MOU Xuejie, ZHAO Xinyi, RAO Sheng, et al. Changes of ecosystem structure in Qinghai-Tibet Plateau ecological barrier area during recent ten years[J]. Acta Scientiarum Naturalium Universitatis Pekinensis201652(2): 279-286.
牟雪洁, 赵昕奕, 饶胜, 等. 青藏高原生态屏障区近10年生态系统结构变化研究[J]. 北京大学学报(自然科学版)201652(2): 279-286.
41 LI Yuehao, WANG Xiaofeng, CHU Bingyang, et al. Spatiotemporal ecosystem evolution and driving mechanism in the Qinghai-Tibet Plateau ecological barrier area[J]. Acta Ecologica Sinica202242(21): 8 581-8 593.
李月皓, 王晓峰, 楚冰洋, 等. 青藏高原生态屏障生态系统时空演变及驱动机制[J]. 生态学报202242(21): 8 581-8 593.
42 NIE Yihuang, GONG Bin, LI Zhong. The spatial-temporal variations of water conservation capacity in Qinghai-Tibet Plateau[J]. Earth Science Frontiers201017(1): 373-377.
聂忆黄, 龚斌, 李忠. 青藏高原水源涵养能力时空变化规律[J]. 地学前缘201017(1): 373-377.
43 ZHANG Changshun, XIE Gaodi, LIU Chunlan, et al. Evaluation of water conservation of China’s ecosystems based on benchmark[J]. Acta Ecologica Sinica202242(22): 9 250-9 260.
张昌顺, 谢高地, 刘春兰, 等. 基于水源涵养参照系的中国生态系统水源涵养功能优劣评估[J]. 生态学报202242(22): 9 250-9 260.
44 LENG Xian, ZENG Yuan, ZHOU Jian, et al. Analysis on habitat protection effectiveness of nature reserves based on landscape fragmentation in Southwest China[J]. Chinese Journal of Ecology202241(3): 569-579.
冷仙, 曾源, 周键, 等. 基于景观破碎化的西南自然保护区生境保护成效分析[J]. 生态学杂志202241(3): 569-579.
45 MITCHELL M G E, SUAREZ-CASTRO A F, MARTINEZ-HARMS M, et al. Reframing landscape fragmentation’s effects on ecosystem services[J]. Trends in Ecology & Evolution201530(4): 190-198.
46 ZHOU Ting, WANG Qiang, LIANG Jiale, et al. Impacts of landscape pattern on ecosystem services: a case study of the Hanjiang Eco-Economic Belt[J]. World Regional Studies202332(8): 152-165.
周婷, 王强, 梁加乐, 等. 景观格局对生态系统服务的影响研究——以汉江生态经济带为例[J]. 世界地理研究202332(8): 152-165.
47 WANG H R, ZHANG M D, WANG C Y, et al. Spatial and temporal changes of landscape patterns and their effects on ecosystem services in the Huaihe River Basin, China[J]. Land202211(4): 513. DOI: 10.3390/land11040513 .
48 QIAO Hao. Evolution of landscape pattern in the Taizi River Basin and its impact on water conservation[D]. Dalian: Liaoning Normal University, 2023.
乔皓. 太子河流域景观格局演变及其对水源涵养的影响[D]. 大连: 辽宁师范大学, 2023.
49 QIN H X, CHEN Y J. Spatial non-stationarity of water conservation services and landscape patterns in Erhai Lake Basin, China[J]. Ecological Indicators2023, 146. DOI: 10.1016/j.ecolind.2023.109894 .
50 WANG Yaoxin, GAO Jiayong, ZHANG Yushan, et al. Spatial and temporal differentiation of water conservation function in Karst Basin and its response to landscape pattern [J]. Journal of Soil and Water Conservation202337(2): 169-178.
王耀鑫,高家勇,张玉珊,等.喀斯特流域水源涵养功能时空分异及其对景观格局的响应[J]. 水土保持学报202337(2):169-178.
[1] 俞文政, 王珉焱, 魏柱灯, 于龙辉. 湟水流域极端径流对极端气候的响应[J]. 地球科学进展, 0, (): 1-.
[2] 俞文政, 王珉焱, 魏柱灯, 于龙辉. 湟水流域极端径流对极端气候的响应[J]. 地球科学进展, 2024, 39(12): 1272-1284.
[3] 刘娇娇, 刘军志, 宋超, 张蔚珍, 刘勇勤. 河流碳循环模型研究进展[J]. 地球科学进展, 2024, 39(2): 111-123.
[4] 孟宪萌, 黄檬, 黄杰, 赵琦, 刘登峰. 流域地貌与河网结构影响机制及其演化模型的研究进展[J]. 地球科学进展, 2023, 38(8): 780-789.
[5] 段梦伟, 李如仁, 刘东, 蒋昕桐, 仇志强, 李柯妤. 河流水体悬浮泥沙遥感研究进展与展望[J]. 地球科学进展, 2023, 38(7): 675-687.
[6] 王学良, 李洪源, 陈仁升, 刘俊峰, 刘国华, 韩春坛. 变化环境下19562020年黄河兰州站以上干支流径流演变特征及驱动因素研究[J]. 地球科学进展, 2022, 37(7): 726-741.
[7] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[8] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[9] 王雪梅,尉永平,马明国,张志强. 基于文献计量学的黑河流域研究进展分析[J]. 地球科学进展, 2019, 34(3): 316-323.
[10] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[11] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响*[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[12] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[13] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[14] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[15] 顾磊, 张洪波*, 陈克宇, 俞奇骏. 陕北地区河川基流的时空演变规律[J]. 地球科学进展, 2015, 30(7): 802-811.
阅读次数
全文


摘要