10 |
LI M X, PENG C H, ZHOU X L, et al. Modeling global riverine DOC flux dynamics from 1951 to 2015[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(2): 514-530.
|
11 |
LI M X, PENG C H, HE N P. Global patterns of particulate organic carbon export from land to the ocean[J]. Ecohydrology, 2022, 15(2). DOI:10.1002/eco.2373 .
|
12 |
AN Zhihong, SUN Ziyong, HU Yalu, et al. Export of dissolved organic carbon in streams draining permafrost-dominated areas: a review[J]. Geological Science and Technology Information, 2018, 37(1): 204-211.
|
|
安志宏, 孙自永, 胡雅璐, 等. 多年冻土区河流溶解性有机碳输出的研究进展[J]. 地质科技情报, 2018, 37(1): 204-211.
|
13 |
DUAN Weiyan, HUANG Chang. Research progress on the carbon cycle of rivers and lakes[J]. China Environmental Science, 2021, 41(8): 3 792-3 807.
|
|
段巍岩, 黄昌. 河流湖泊碳循环研究进展[J]. 中国环境科学, 2021, 41(8): 3 792-3 807.
|
14 |
ZHANG Yongling. The review of the research of the riverine organic carbon cycle[J]. Journal of Henan Polytechnic University (Natural Science), 2012, 31(3): 344-351.
|
|
张永领. 河流有机碳循环研究综述[J]. 河南理工大学学报(自然科学版), 2012, 31(3): 344-351.
|
15 |
WANG Yuchao, XU Xuan, CAO Penghe, et al. A review of carbon dioxide emissions from streams[J]. Chinese Journal of Ecology, 2022, 41(1): 182-189.
|
|
王玉超, 徐璇, 曹鹏鹤, 等. 溪流二氧化碳排放研究进展[J]. 生态学杂志, 2022, 41(1): 182-189.
|
16 |
THURMAN E M. Organic geochemistry of natural waters[M]. Dordrech: Springer, 1985.
|
17 |
KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000, 165(4): 277-304.
|
18 |
GALY V, PEUCKER-EHRENBRINK B, EGLINTON T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7 551): 204-207.
|
19 |
WEN Z D, SONG K S, SHANG Y X, et al. Natural and anthropogenic impacts on the DOC characteristics in the Yellow River continuum[J]. Environmental Pollution, 2021, 287. DOI:10.1016/j.envpol.2021.117231 .
|
20 |
HOTCHKISS E R, JrHA LL R O, SPONSELLER R A, et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers[J]. Nature Geoscience, 2015, 8(9): 696-699.
|
21 |
HOSEN J D, AHO K S, FAIR J H, et al. Source switching maintains dissolved organic matter chemostasis across discharge levels in a large temperate river network[J]. Ecosystems, 2021, 24(2): 227-247.
|
22 |
AUFDENKAMPE A K, MAYORGA E, RAYMOND P A, et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere[J]. Frontiers in Ecology and the Environment, 2011, 9(1): 53-60.
|
23 |
LASAREVA E V, PARFENOVA A M, ROMANKEVICH E A, et al. Organic matter and mineral interactions modulate flocculation across arctic river mixing zones[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1 651-1 664.
|
24 |
TANK S E, RAYMOND P A, STRIEGL R G, et al. A land‐to-ocean perspective on the magnitude, source and implication of DIC flux from major arctic rivers to the arctic ocean[J]. Global Biogeochemical Cycles, 2012, 26(4). DOI:10.1029/2011GB004192 .
|
25 |
LIU J K, HAN G L. Effects of chemical weathering and CO2 outgassing on δ13C DIC signals in a Karst watershed[J]. Journal of Hydrology, 2020, 589. DOI:10.1016/j.jhydrol.2020.125192 .
|
26 |
AARNOS H, GÉLINAS Y, KASURINEN V, et al. Photochemical mineralization of terrigenous DOC to dissolved inorganic carbon in ocean[J]. Global Biogeochemical Cycles, 2018, 32(2): 250-266.
|
27 |
MAYORGA E, AUFDENKAMPE A K, MASIELLO C A, et al. Young organic matter as a source of carbon dioxide outgassing from amazonian rivers[J]. Nature, 2005, 436(7 050): 538-541.
|
28 |
ENGEL F, ATTERMEYER K, AYALA A I, et al. Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: insights from high frequency water quality monitoring[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-43008-w .
|
29 |
HUANG T H, FU Y H, PAN P Y, et al. Fluvial carbon fluxes in tropical rivers[J]. Current Opinion in Environmental Sustainability, 2012, 4(2): 162-169.
|
30 |
CHRIST M J, DAVID M B. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol[J]. Soil Biology and Biochemistry, 1996, 28(9): 1 191-1 199.
|
31 |
KEMMITT S J, WRIGHT D, GOULDING K W T, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry, 2006, 38(5): 898-911.
|
32 |
CASSON N J, EIMERS M C, WATMOUGH S A, et al. The role of wetland coverage within the near‐stream zone in predicting of seasonal stream export chemistry from forested headwater catchments[J]. Hydrological Processes, 2019, 33(10): 1 465-1 475.
|
33 |
LIU D, TIAN L Q, JIANG X T, et al. Human activities changed organic carbon transport in Chinese Rivers during 2004-2018[J]. Water Research, 2022, 222. DOI:10.1016/j.watres.2022.118872 .
|
34 |
MEYBECK M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450.
|
35 |
LAUDON H, BERGGREN M, ÅGREN A, et al. Patterns and dynamics of Dissolved Organic Carbon (DOC) in boreal streams: the role of processes, connectivity, and scaling[J]. Ecosystems, 2011, 14(6): 880-893.
|
36 |
CREED I F, MCKNIGHT D M, PELLERIN B A, et al. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(8): 1 272-1 285.
|
37 |
KOULOURI M, GIOURGA C. Land abandonment and slope gradient as key factors of soil erosion in mediterranean terraced lands[J]. Catena, 2007, 69(3): 274-281.
|
38 |
YANG Weidong, ZENG Lianbo, LI Xiang. Advances in research of carbon sinks and their influencing factors evaluation[J]. Advances in Earth Science, 2023, 38(2): 151-167.
|
|
杨卫东,曾联波,李想. 碳汇效应及其影响因素研究进展[J]. 地球科学进展,2023, 38(2): 151-167.
|
39 |
SUCHET P A, PROBST J L. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: application to the garonne, congo and amazon basins[J]. Chemical Geology, 1993, 107(3/4): 205-210.
|
40 |
WU Weihua, ZHENG Hongbo, YANG Jiedong, et al. Chemical weathering of large river catchments in china and the global carbon cycle[J]. Quaternary Sciences, 2011, 31(3): 397-407.
|
|
吴卫华, 郑洪波, 杨杰东, 等. 中国河流流域化学风化和全球碳循环[J]. 第四纪研究, 2011, 31(3): 397-407.
|
41 |
SCHLESINGER W H, MELACK J M. Transport of organic carbon in the world’s rivers[J]. Tellus, 1981, 33(2): 172-187.
|
42 |
LUDWIG W, SUCHET P A, PROBST J. River discharges of carbon to the world’s oceans: determining local inputs of alkalinity and of dissolved and particulate organic carbon[J]. Sciences de la terre et des Planètes (Comptes rendus de l’ Académie des Sciences), 1996, 323: 1 007-1 014.
|
43 |
LUDWIG W, PROBST J L, KEMPE S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1): 23-41.
|
44 |
AITKENHEAD J A, MCDOWELL W H. Soil C∶N ratio as a predictor of annual riverine DOC flux at local and global scales[J]. Global Biogeochemical Cycles, 2000, 14(1): 127-138.
|
1 |
LUDWIG W, PROBST J L. River sediment discharge to the oceans: present-day controls and global budgets[J]. American Journal of Science, 1998, 298(4): 265-295.
|
2 |
COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185.
|
3 |
BATTIN T J, KAPLAN L A, FINDLAY S, et al. Biophysical controls on organic carbon fluxes in fluvial networks[J]. Nature Geoscience, 2008, 1(2): 95-185.
|
4 |
REGNIER P, RESPLANDY L, NAJJAR R G, et al. The land-to-ocean loops of the global carbon cycle[J]. Nature, 2022, 603(7 901): 401-410.
|
5 |
DRAKE T W, RAYMOND P A, SPENCER R G M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018, 3(3): 132-142.
|
6 |
DOWNING J. Global abundance and size distribution of streams and rivers[J]. Inland Waters, 2012, 2(4): 229-236.
|
7 |
PILLA R M, GRIFFITHS N A, GU L H, et al. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: what have we learned and where are we going?[J]. Global Change Biology, 2022, 28(19): 5 601-5 629.
|
8 |
YIN Jiabo, GUO Shenglian, WANG Jun, et al. Thermodynamic driving mechanisms for the formation of global precipitation extremes and ecohydrological effects [J]. Science China: Earth Sciences, 2023, 66(1): 92-110.
|
|
尹家波, 郭生练, 王俊, 等. 全球极端降水的热力学驱动机理及生态水文效应 [J]. 中国科学: 地球科学, 2023, 66(1): 92-110.
|
9 |
VONK J E, TANK S E, WALVOORD M A. Integrating hydrology and biogeochemistry across frozen landscapes[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-13361-5 .
|
45 |
LI M X, PENG C H, WANG M, et al. The carbon flux of global rivers: a re-evaluation of amount and spatial patterns[J]. Ecological Indicators, 2017, 80: 40-51.
|
46 |
HARARUK O, JONES S E, SOLOMON C T. Hydrologic export of soil organic carbon: continental variation and implications[J]. Global Biogeochemical Cycles, 2022, 36(6). DOI: 10.1029/2021GB007161 .
|
47 |
KÖHLER S J, BUFFAM I, SEIBERT J, et al. Dynamics of stream water TOC concentrations in a boreal headwater catchment: controlling factors and implications for climate scenarios[J]. Journal of Hydrology, 2009, 373(1/2): 44-56.
|
48 |
ÅGREN A, BUFFAM I, BISHOP K, et al. Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G1). DOI:10.1029/2009JG001013 .
|
49 |
LIU D, BAI Y, HE X, et al. Changes in riverine organic carbon input to the ocean from mainland china over the past 60 years[J]. Environment International, 2020, 134. DOI:10.1016/j.envint.2019.105258 .
|
50 |
SAMSON C C, RAJAGOPALAN B, SUMMERS R S. Modeling source water TOC using hydroclimate variables and local polynomial regression[J]. Environmental Science & Technology, 2016, 50(8): 4 413-4 421.
|
51 |
BOITHIAS L, SAUVAGE S, MERLINA G, et al. New insight into pesticide partition coefficient kd for modelling pesticide fluvial transport: application to an agricultural catchment in south-western france[J]. Chemosphere, 2014, 99: 134-142.
|
52 |
ZHANG L J, XUE M, WANG M, et al. The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the three gorges reservoir[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 741-757.
|
53 |
BUTMAN D, RAYMOND P A. Significant efflux of carbon dioxide from streams and rivers in the united states[J]. Nature Geoscience, 2011, 4(12): 839-842.
|
54 |
RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7 476): 355-359.
|
55 |
ABRIL G, BOUILLON S, DARCHAMBEAU F, et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters[J]. Biogeosciences, 2015, 12(1): 67-78.
|
56 |
LIU S D, KUHN C, AMATULLI G, et al. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(11). DOI:10.1073/pnas.2106322119 .
|
57 |
HORGBY Å, SEGATTO P L, BERTUZZO E, et al. Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains[J]. Nature Communications, 2019, 10(1). DOI: 10.1038/s41467-019-12905-z .
|
58 |
ALIN S R, de FÁTIMA F L R M, SALIMON C I, et al. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets[J]. Journal of Geophysical Research, 2011, 116(G1). DOI:10.1029/2010JG001398 .
|
59 |
RAYMOND P A, COLE J J. Gas exchange in rivers and estuaries: choosing a gas transfer velocity[J]. Estuaries, 2001, 24(2): 312-317.
|
60 |
RAYMOND P A, ZAPPA C J, BUTMAN D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers[J]. Limnology and Oceanography: Fluids and Environments, 2012, 2(1): 41-53.
|
61 |
ULSETH A J, HALL R O, BOIX C M, et al. Distinct air-water gas exchange regimes in low-and high-energy streams[J]. Nature Geoscience, 2019, 12(4): 259-263.
|
62 |
SCHELKER J, SINGER G A, ULSETH A J, et al. CO2 evasion from a steep, high gradient stream network: importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer[J]. Limnology and Oceanography, 2016, 61(5): 1 826-1 838.
|
63 |
LAUERWALD R, LARUELLE G G, HARTMANN J, et al. Spatial patterns in CO2 evasion from the global river network[J]. Global Biogeochemical Cycles, 2015, 29(5): 534-554.
|
64 |
RAN L S, BUTMAN D E, BATTIN T J, et al. Substantial decrease in CO2 emissions from chinese inland waters due to global change[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-21926-6 .
|
65 |
LAUERWALD R, REGNIER P, GUENET B, et al. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the amazon basin[J]. One Earth, 2020, 3(2): 226-236.
|
66 |
LAUERWALD R, REGNIER P, CAMINO-SERRANO M, et al. ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the amazon basin[J]. Geoscientific Model Development, 2017, 10(10): 3 821-3 859.
|
67 |
GOMMET C, LAUERWALD R, CIAIS P, et al. Spatiotemporal patterns and drivers of terrestrial Dissolved Organic Carbon (DOC) leaching into the european river network[J]. Earth System Dynamics, 2022, 13(1): 393-418.
|
68 |
TIAN H Q, YANG Q C, NAJJAR R G, et al. Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: a process-based modeling study[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(4): 757-772.
|
69 |
YAO Y Z, TIAN H Q, PAN S F, et al. Riverine carbon cycling over the past century in the mid-atlantic region of the United States[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(5). DOI:10.1029/2020JG005968 .
|
70 |
LI Mingxu. The development of TRIPLEX-hydra model and its spatio-temporal simulations of organic carbon flux exported by global rivers[D]. Xianyang:Northwest A&F University, 2019.
|
|
李明旭. TRIPLEX-hydra模型的构建及其对全球河流有机碳输送时空变化的模拟研究[D]. 咸阳:西北农林科技大学, 2019.
|
71 |
NAKAYAMA T. Impact of anthropogenic disturbances on carbon cycle changes in terrestrial‐aquatic‐estuarine continuum by using an advanced process‐based model[J]. Hydrological Processes, 2022, 36(2). DOI:10.1002/hyp.14471 .
|
72 |
TANG J, YUROVA A Y, SCHURGERS G, et al. Drivers of dissolved organic carbon export in a subarctic catchment: importance of microbial decomposition, sorption-desorption, peatland and lateral flow[J]. Science of the Total Environment, 2018, 622: 260-274.
|
73 |
COE M T. Modeling terrestrial hydrological systems at the continental scale: testing the accuracy of an atmospheric GCM[J]. Journal of Climate, 2000, 13(4): 686-704.
|
74 |
FISHER R A, KOVEN C D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(4). DOI:10.1029/2018MS001453 .
|
75 |
WINTERDAHL M, FUTTER M, KÖHLER S, et al. Riparian soil temperature modification of the relationship between flow and dissolved organic carbon concentration in a boreal stream[J]. Water Resources Research, 2011, 47(8). DOI:10.1029/2010WR010235 .
|
76 |
ONI S K, FUTTER M N, TEUTSCHBEIN C, et al. Cross-scale ensemble projections of dissolved organic carbon dynamics in boreal forest streams[J]. Climate Dynamics, 2014, 42(9/10): 2 305-2 321.
|
77 |
JUTEBRING S E, LIDMAN F, SJÖBERG Y, et al. Groundwater travel times predict DOC in streams and riparian soils across a heterogeneous boreal landscape[J]. Science of the Total Environment, 2022, 849. DOI:10.1016/j.scitotenv.2022.157398 .
|
78 |
STROHMENGER L, FOVET O, HRACHOWITZ M, et al. Is a simple model based on two mixing reservoirs able to reproduce the intra-annual dynamics of DOC and NO3 stream concentrations in an agricultural headwater catchment?[J]. Science of the Total Environment, 2021, 794. DOI:10.1016/j.scitotenv.2021.148715 .
|
79 |
BIRKEL C, SOULSBY C, TETZLAFF D. Integrating parsimonious models of hydrological connectivity and soil biogeochemistry to simulate stream DOC dynamics[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 1 030-1 047.
|
80 |
BIRKEL C, BRODER T, BIESTER H. Nonlinear and threshold-dominated runoff generation controls DOC export in a small peat catchment[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(3): 498-513.
|
81 |
BIRKEL C, DUVERT C, CORREA A, et al. Tracer-aided modeling in the low‐relief, wet‐dry tropics suggests water ages and DOC export are driven by seasonal wetlands and deep groundwater[J]. Water Resources Research, 2020, 56(4). DOI:10.1029/2019WR026175 .
|
82 |
YUROVA A, SIRIN A, BUFFAM I, et al. Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: importance of representing sorption[J]. Water Resources Research, 2008, 44(7). DOI:10.5194/hess-24-945-2020 .
|
83 |
WEN H, PERDRIAL J, ABBOTT B W, et al. Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale[J]. Hydrology and Earth System Sciences, 2020, 24(2): 945-966.
|
84 |
LIAO C, ZHUANG Q L, LEUNG L R, et al. Quantifying dissolved organic carbon dynamics using a three-dimensional terrestrial ecosystem model at high spatial-temporal resolutions[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4 489-4 512.
|
85 |
SON K, LIN L, BAND L, et al. Modelling the interaction of climate, forest ecosystem, and hydrology to estimate catchment dissolved organic carbon export[J]. Hydrological Processes, 2019, 33(10): 1 448-1 464.
|
86 |
FUTTER M N, BUTTERFIELD D, COSBY B J, et al. Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments[J]. Water Resources Research, 2007, 43(2). DOI:10.1029/2006WR004960 .
|
87 |
XU J, MORRIS P J, LIU J, et al. Increased dissolved organic carbon concentrations in peat‐fed UK water supplies under future climate and sulfate deposition scenarios[J]. Water Resources Research, 2020, 56(1). DOI:10.1029/2019WR025592 .
|
88 |
LEDESMA J L J, KÖHLER S J, FUTTER M N. Long-term dynamics of dissolved organic carbon: implications for drinking water supply[J]. Science of the Total Environment, 2012, 432. DOI:10.1016/j.scitotenv.2012.05.071 .
|
89 |
DU X Z, ZHANG X S, MUKUNDAN R, et al. Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes[J]. Environmental Pollution, 2019, 249: 125-135.
|
90 |
QI J Y, DU X Z, ZHANG X S, et al. Modeling riverine dissolved and particulate organic carbon fluxes from two small watersheds in the northeastern United States[J]. Environmental Modelling & Software, 2020, 124. DOI:10.1016/j.envsoft.2019.104601 .
|
91 |
DU X Z, LOISELLE D, ALESSI D S, et al. Hydro-climate and biogeochemical processes control watershed organic carbon inflows: development of an in-stream organic carbon module coupled with a process-based hydrologic model[J]. Science of the Total Environment, 2020, 718. DOI:10.1016/j.scitotenv.2020.137281 .
|
92 |
YIN J B, GENTINE P, SLATER L, et al. Future socio-ecosystem productivity threatened by compound drought-heatwave events[J]. Nature Sustainability, 2023, 6: 259-272.
|
93 |
HUANG Chunlin, HOU Jinliang, LI Weide, et al. Data assimilation in terrestrial hydrology based on deep learning fusing remote sensing big data: research advances and key scientific issues[J]. Advances in Earth Science, 2023, 38(5): 441-452.
|
|
黄春林,侯金亮,李维德,等. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J].地球科学进展,2023, 38(5): 441-452.
|
94 |
LI Xin, MA Hanqing, RAN Youhua, et al. Terrestrial carbon cyclemodel-data fusion: progress and challenges[J]. Science China: Earth Sciences, 2021, 64(10): 1 645-1 657.
|
|
李新, 马瀚青, 冉有华, 等. 陆地碳循环模型—数据融合:前沿与挑战[J]. 中国科学:地球科学, 2021, 64(10):1 645-1 657.
|
95 |
LI Yimin, TAN Zhenyu, YANG Chen, et al. Extraction of algal blooms in Dianchi Lake based on multi-source satellites using machine learning algorithms[J]. Advances in Earth Science, 2022, 37(11): 1 141-1 156.
|
|
李一民,谭振宇,杨辰,等. 基于多源卫星的滇池藻华提取机器学习算法研究[J]. 地球科学进展,2022, 37(11): 1 141-1 156.
|
96 |
XU Yongsheng, GAO Le, ZHANG Yunhua. New deneration altimetry satellite SWOT and its reference to China’s swath altimetrysatellite[J]. Remote Sensing Technology and Application, 2017, 32(1): 84-94.
|
|
徐永生, 高乐, 张云华. 美国新一代测高卫星SWOT——评述我国宽刈幅干涉卫星的发展借鉴[J]. 遥感技术与应用, 2017, 32(1): 84-94.
|
97 |
REGNIER P, FRIEDLINGSTEIN P, CIAIS P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.
|
98 |
HE Daming, TANG Qicheng. Chinese international rivers [M]. Beijing:Science Press, 2000.
|
|
何大名, 汤奇成. 中国国际河流[M]. 北京:科学出版社, 2000.
|