地球科学进展 ›› 2024, Vol. 39 ›› Issue (2): 124 -139. doi: 10.11867/j.issn.1001-8166.2024.005

综述与评述 上一篇    下一篇

长江三峡的形成:时间、证据及争议
杨超群 1 , 2 , 3( ), 朱祥峰 4, 王亮 5, 沈传波 2( ), 李云帅 6 , 7   
  1. 1.成都理工大学 油气藏地质及开发工程全国重点实验室,四川 成都 610059
    2.中国地质大学(武汉) 构造与油气资源教育部重点实验室,湖北 武汉 430074
    3.成都理工大学 地质资源与地质工程博士后 流动站,四川 成都 610059
    4.长江三峡勘测研究院有限公司(武汉),湖北 武汉 430074
    5.中国 地震局地球物理勘探中心,河南 郑州 450002
    6.天津大学 地球系统科学学院,天津 300072
    7.中国地震局地质研究所 地震动力学国家重点实验室,北京 100029
  • 收稿日期:2023-07-19 修回日期:2023-12-03 出版日期:2024-02-10
  • 通讯作者: 沈传波 E-mail:chaoqunyang980@gmail.com;cbshen@cug.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(41972152);地震动力学国家重点实验室开放基金(LED2022B04);湖北省自然科学基金创新群体项目(2021CFA031)

The Formation of the East-flowing Yangtze Three Gorges: Time, Evidence and Controversy

Chaoqun YANG 1 , 2 , 3( ), Xiangfeng ZHU 4, Liang WANG 5, Chuanbo SHEN 2( ), Yunshuai LI 6 , 7   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
    2.Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China
    3.Post-Doctoral Station of Geological Resource and Geological Engineering, Chengdu University of Technology, Chengdu 610059, China
    4.Three Gorges Geotechnical Consultants CO. , LTD, Wuhan 430074, China
    5.Geophysical Exploration Center, China Earthquake Administration, Zhengzhou 450002, China
    6.School of Earth System Science, Tianjin University, Tianjin 300072, China
    7.State Key laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
  • Received:2023-07-19 Revised:2023-12-03 Online:2024-02-10 Published:2024-03-05
  • Contact: Chuanbo SHEN E-mail:chaoqunyang980@gmail.com;cbshen@cug.edu.cn
  • About author:YANG Chaoqun, Assistant professor, research area includes thermochronology. E-mail: chaoqunyang980@gmail.com
  • Supported by:
    the National Natural Science Foundation of China(41972152);Open Foundation of State Key Laboratory of Earthquake Dynamics(LED2022B04);Innovation Team Project of Natural Science Foundation of Hubei Province(2021CFA031)

长江是亚洲最大的河流系统,其形成演化对东亚地区的地形、气候变化、生物演化和物质循环都具有重要的指示意义。长江三峡位于扬子板块中部,其形成贯通了四川盆地和江汉盆地水系,被认为是长江演化过程中最重要的事件之一。然而,有关三峡的形成却颇具争议,为了厘清长江三峡的形成过程,回溯了关于长江三峡的成因和形成时间的百年争议,并对长江三峡形成机制和过程研究进行了梳理。通过分析发现,由于研究思路、研究对象和研究方法的限制,长江三峡侵蚀时间和下游物源分析结果矛盾,长江三峡东流贯通时间存在较大争议。综合分析认为,长江三峡的形成研究应通过峡谷基岩的侵蚀以及江汉盆地沉积物物源分析来共同约束,尤其是通过独居石裂变径迹和宇宙成因核素定年等年代学方法以及单颗粒矿物地球化学分析和全岩同位素分析的联合应用可以为峡谷侵蚀时间和江汉盆地及四川盆地源汇体系建立时间提供更为精确的约束。研究表明,可基于地球系统科学和源—汇系统理论,从构造—地貌—气候演化的视角,对后续的长江三峡以及其他大型河流演化进行全流域的系统分析,尤其是可以综合青藏高原等源区的地球化学特征、隆升时间以及沉积盆地演化、盆地沉积物碎屑矿物地球化学特征等,共同分析长江等大型河流演化过程。

The Yangtze River is the largest river system in Asia, and its formation and evolution are of great significance for understanding the topography, climate change, biological evolution, and material cycles of East Asia. The Three Gorges lie in the central Yangtze Block, and its formation connects the drainage in the Sichuan Basin and the Jianghan Basin; therefore, it is regarded as one of the most critical events in the history of the Yangtze River. However, the debate over how and when the Three Gorges were formed has been ongoing for over a century. This study reviews the century-long debate, especially regarding the formation mechanism and age of the Three Gorges, to clarify the formation of the Yangtze Three Gorges. A comparison highlighted a conflict between the erosion time of the Three Gorges and the provenance analysis in the downstream basin, stemming from limitations in research ideas, objects, and methods. Determining the formation time of the Three Gorges necessitates a comprehensive approach that integrates gorge erosion and provenance analysis in the Jianghan Basin. Methods such as monazite fission track, cosmogenic nuclide dating, and geochemical analysis of single-grain minerals offer precise constraints on gorge erosion and aid in establishing a source-sink system between the Jianghan Basin and Sichuan Basin. Drawing on the principles of Earth system science and source-sink systems, this study proposes an analysis of tectonics, landforms, and climatic evolution to understand the evolution of large drainage systems such as the Yangtze River. In particular, a comprehensive analysis of the geochemical characteristics and exhumation histories of the Qinghai-Xizang Plateau, basin development, and geochemical characteristics of detritus minerals is required to investigate the evolutionary processes of large rivers such as the Yangtze River.

中图分类号: 

图1 长江流域数字高程模型(DEM
Fig. 1 Digital Elevation ModelDEMof the Yangtze drainage basin
图2 三峡及其邻区地质图
Fig. 2 Sketch geological map of the Three Gorges and its adjacent areas
图3 长江三峡形成的2种模型(据参考文献[ 44 ]修改)
(a)“下切说”模型:(a1)三峡深切峡谷形成前存在区域性河流,(a2)川东地区的抬升和江汉盆地的沉降导致先存河下切形成现今的深切河谷;(b)“溯源说”模型:(b1)三峡贯通前黄陵背斜为四川盆地与江汉盆地水系的分水岭,(b2)分水岭两侧水系不断向黄陵溯源侵蚀,最终贯通了三峡
Fig. 3 Two dynamic mechanisms of the formation of the Yangtze Three Gorgesmodified after reference 44 ])
(a) The downcutting model: (a1) The pre-existing rivers lied in the Three Gorges areas before the formation of the deep-cuting canyon; (a2) The uplift of the Eastern Sichuan Basin and the subsidence of the Jianghan Basin led to the downcutting of pre-existing rivers and forming deep-cutting canyons. (b) The headwards capture model: (b1) Before the formation of the Three Gorges, the Huangling anticline served as the watershed between the drainage systems of the Sichuan Basin and the Jianghan Basin; (b2) The drainage systems on both sides of the watershed continuously eroded upstream towards the Huangling anticline, eventually forming the Three Gorges
图4 长江的溯源袭夺的简要概念模型 (据参考文献[ 27 31 - 32 ]修改)
(a)三峡形成前,其所在黄陵背斜为长江上游水系与长江中游水系的分水岭,分水岭西侧的长江上游水系为古红河的支流,分水岭东侧的长江中游水系汇入江汉盆地;(b)华东地区的沉降促使长江中下游形成一条东流入海的河流; (c) 长江中下游水系逐渐向上游进行溯源袭夺,袭夺了四川盆地内一系列河流;(d)溯源袭夺持续进行,长江水系最终在第一湾附近袭夺了金沙江上游,形成类似于现今的东流长江
Fig. 4 The headwards capture model of the Yangtze Rivermodified after references2731-32])
(a)Before the formation of the Three Gorges, the Huangling anticline where the Three Gorges lies is the watershed between the upper and middle reaches of the Yangtze drainages. On the west side of the watershed, the upper reaches of the Yangtze drainage were tributaries of the paleo-Red River. On the east side of the watershed, the middle reaches of the Yangtze drainage flowed into the Jianghan Basin. (b) Subsidence in eastern China contributes to the formation of an east-flowing middle-lower Yangtze River. (c) The middle-lower Yangtze River captured a series of local drainage in the Sichuan Basin by headwards capture. (d) Headwards capture continued, ultimately the Yangtze River capture the upper reaches of the Jinsha River near the First Bend, forming a drainage system similar to the present-day eastflowing Yangtze River
表1 长江三峡形成主要时间研究及其研究内容
Table 1 The formation time of the Yangtze Three Gorges and their research contents
图5 三峡下游盆地碎屑锆石U-Pb年龄分布(据参考文献[ 11 - 12 30 44 47 57 - 58 70 ]修改)
Fig. 5 Detrital zircon U-Pb ages of downstream basin of the Three Gorgesmodified after references11-1230444757-5870])
图6 磷灰石(U-Th/He定年检测到地表地质活动的原理示意图
(a) 磷灰石(U-Th)/He定年体系中封闭温度对应深度(约2 km)的样品才能检测地表地质活动;(b) 峡谷深度大于2 km的样品才能检测到地表的快速侵蚀事件
Fig. 6 Schematic diagram of how apatiteU-Th/He dating detectes geological activities on surface
(a) The of samples with burial depth (about 2 km) corresponding to the closure temperature can detect surface geological activities through apatite (U-Th)/He dating; (b) Samples with canyon depths greater than 2 km are needed to detect rapid surface erosion event through apatite (U-Th)/He dating
图7 碎屑锆石U-Pb确定物源的原理示意图
约1 300 Ma特征锆石出现在样品7~9中,代表E为主要源区;具有不同结晶基底的沉积岩源区,可以通过锆石年龄分布判断其源区,如可以通过样品5、3和2,判断A为样品3的源区;具有相同结晶基底的沉积岩源区,不能通过碎屑锆石U-Pb定年判断其具体源区,A和C锆石年龄分布一致,不能通过样品1和2判断样品2的源区是A还是C
Fig. 7 Schematic diagram of provenance analysis through using detrital zircon U-Pb dating
Age peak at about 1 300 Ma zircon in samples 7,8,9 implies that E is the main source area; U-Pb ages can be used to analyze source area with different crystalline basements ( e. g., A is the main source area of sample 3 through the comparison among samples 5, 3, 2); U-Pb ages cannot be used to analyze source area with same crystalline basement ( e. g., samples 1,2 cannot be judged from A or C which are indistinguishable)
图8 计算机数值模拟预测三峡侵蚀时间的原理示意图
(a)推测的三峡侵蚀前初始地貌; (b)现今的三峡地貌; (c)不同抬升速率—侵蚀开始时间对应的不匹配度; (d)不同抬升速率最佳模型对应的侵蚀时间(据参考文献[ 87 ]修改)
Fig. 8 Schematic diagram of computer numerical simulation to predict the erosion time of the Three Gorges
(a) Presumably initial landforms before the erosion of the Three Gorges; (b) The present-day landforms of the Three Gorges; (c) Misfit value of uplift rates vs. erosion onset times; (d) Erosion times of the best model in different uplift rates (modified after reference [ 87 ])
1 MOLNAR P, TAPPONNIER P. Cenozoic Tectonics of Asia: effects of a Continental Collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4 201): 419-426.
2 YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
3 TAPPONNIER P, XU Z Q, ROGER F. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
4 WANG Pinxian. Deformation of Asia and global cooling: searching links between climate and tectonics[J]. Quaternary Sciences, 1998, 18(3): 213-221.
汪品先. 亚洲形变与全球变冷:探索气候与构造的关系[J]. 第四纪研究, 1998, 18(3): 213-221.
5 WANG P X. Cenozoic deformation and the history of sea-land interactions in Asia[M]// Continent-Ocean Interactions Within East Asian Marginal Seas. Washington, D.C.: American Geophysical Union, 2004: 1-22.
6 ZHENG H B. Birth of the Yangtze River: age and tectonic-geomorphic implications[J]. National Science Review, 2015, 2(4): 438-453.
7 AN Z S, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J].Nature, 2001, 411(6 833): 62-66.
8 MOLNAR P, BOOS W R, BATTISTI D S. Orographic controls on climate and Paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth & Planetary Sciences, 2010, 38(1): 77-102.
9 DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya Orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218.
10 NIE J S, RUETENIK G, GALLAGHER K, et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation[J]. Nature Geoscience, 2018, 11(12): 944-948.
11 HE M Y, ZHENG H B, HUANG X T, et al. Yangtze River sediments from source to sink traced with clay mineralogy[J]. Journal of Asian Earth Sciences, 2013, 69: 60-69.
12 HE M Y, ZHENG H B, CLIFT P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360/361: 186-203.
13 CLIFT P D. Asian monsoon dynamics and sediment transport in SE Asia[J]. Journal of Asian Earth Sciences, 2020, 195. DOI:10.1016/j.jseaes.2020.104352 .
14 CHEN F, XUE G, WANG Y K, et al. Evolution of the Yangtze River and its biodiversity[J]. The Innovation, 2023, 4(3). DOI:10.1016/j.xinn.2023.100417 .
15 WILLIS B. Research in China [M]. Washington: Press of Gibson Brothers, 1907.
16 LEE J S, CHAO Y T. Geology of the gorge district of the Yangtze (from ichang to tzekuei) with special reference to the development of the gorges[J]. Bulletin of the Geological Society of China, 1924, 3(3/4): 351-392.
17 YE Liangfu, XIE Jiarong. Geological structure and history of geological culture development below Wushan Mountain in the Yangtze River Basin [J]. Geological report, 1925(7): 69-70.
叶良辅, 谢家荣. 扬子江流域巫山以下地质构造与地文发育史[J]. 地质汇报, 1925(7): 69-70.
18 DING Wenjiang. South bank of Jinsha River—Wuding, Yuanmou[J]. Independent Review, 1933(48):50-53.
丁文江. 金沙江的南岸——武定、元谋[J]. 独立论评, 1933(48):50-53.
19 LEE C Y. The development of the Upper Yangtze valley[J]. Bulletin of the Geological Society of China, 1934, 13(1): 107-118.
20 BARBOUR G B. Physiographic history of the Yangtze[J]. The Geographical Journal, 1936, 87(1): 17-32.
21 YANG Huairen. A gehgraphical sketch of the Minkiang Valley [J]. Acta Geographica Sinica, 1946 (1): 11-29.
杨怀仁.岷江峡谷地理之初步考察[J]. 地理学报, 1946(1): 11-29.
22 LI Chengsan. Development history of the Yangtze River[J]. Yangtze River, 1956(12): 3-6.
李承三. 长江发育史[J]. 人民长江, 1956(12): 3-6.
23 REN Meie, BAO Haosheng, HAN Tongchun, et al. Geomorphic study of the Jinsha River in the northwest Yunnan Province and river capture[J]. Acta Geographica Sinica, 1959, 25:135-155.
任美锷,包浩生,韩同春,等.云南西北部金沙江河谷地貌与河流袭夺问题[J].地理学报, 1959, 25: 135-155.
24 SHEN Yuchang. Geomorphology of upper Yangtze River valley [M]. Beijing: Science Press, 1965.
沈玉昌.长江上游河谷地貌[M]. 北京:科学出版社,1965.
25 YANG Dayuan. Genetic mechanism of the alluvial terraces along the Three-Gorges course of the Changjiang River [J]. Acta Geographica Sinica, 1988, 43(2): 120-126.
杨达源.长江三峡阶地的成因机制[J].地理学报, 1988, 43(2): 120-126.
26 LI J J, XIE S Y, KUANG M S. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 2001, 41(2/3): 125-135.
27 CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 2004, 23(1). DOI:10.1029/2002TC001402 .
28 ZHANG Y F, LI C A, WANG Q L, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590.
29 RICHARDSON N J, DENSMORE A L, SEWARD D, et al. Did incision of the Three Gorges begin in the Eocene?[J]. Geology, 2010, 38(6): 551-554.
30 ZHENG H B, CLIFT P D, WANG P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7 556-7 561.
31 SUN X L, TIAN Y T, KUIPER K F, et al. No Yangtze River prior to the late Miocene: evidence from detrital muscovite and K-feldspar 40Ar/39Ar geochronology[J]. Geophysical Research Letters, 2021, 48(5). DOI: 10.1029/2020GL089903 .
32 ZHANG Z J, DALY J S, LI C A, et al. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma[J]. Earth-Science Reviews, 2021, 216. DOI:10.1016/j.earscirev. 2021.103601 .
33 CLIFT P D, BLUSZTAJN J, NGUYEN A D. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam[J]. Geophysical Research Letters, 2006, 33(19). DOI:10.1029/2006GL027772 .
34 CLIFT P D, van LONG H, HINTON R, et al. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4). DOI:10.1029/2007GC001867 .
35 CLIFT P D, CARTER A, WYSOCKA A, et al. A late eocene‐oligocene through‐flowing river between the upper Yangtze and South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(7). DOI:10.1029/2020GC009046 .
36 KONG P, ZHENG Y, CAFFEE M W. Provenance and time constraints on the formation of the first bend of the Yangtze River[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6). DOI:10.1029/2012GC004140 .
37 ZHENG H B, CLIFT P D, HE M Y, et al. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39.
38 HE M Y, ZHENG H B, CLIFT P D, et al. Paleogene sedimentary records of the paleo-Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(6). DOI:10.1029/2020GC009500 .
39 MA Daquan, DU Shaohua, XIAO Zhifa. The origin of Huangling granite batholith[J]. Acta Petrologica et Mineralogica, 2002, 21(2): 151-161.
马大铨, 杜绍华, 肖志发. 黄陵花岗岩基的成因[J]. 岩石矿物学杂志, 2002, 21(2): 151-161.
40 XIONG Chengyun, WEI Changshan, JIN Guangfu, et al. Pre-sinian paleostructural framework and major geological events in the Huangling anticline, western Hubei[J]. Journal of Geomechanics, 2004, 10(2): 97-112.
熊成云, 韦昌山, 金光富, 等. 鄂西黄陵背斜地区前南华纪古构造格架及主要地质事件[J]. 地质力学学报, 2004, 10(2): 97-112.
41 LING Wenli, GAO Shan, CHENG Jianping, et al. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes[J]. Acta Petrologica Sinica, 2006, 22(2): 387-396.
凌文黎, 高山, 程建萍, 等. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义: 来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束[J]. 岩石学报, 2006, 22(2): 387-396.
42 LI Yilong, ZHOU Hanwen, LI Xianhua, et al. 40Ar-39Ar plateau ages of biotite and amphibole from tonalite of Huangling granitoids and their cooling curve[J]. Acta Petrologica Sinica, 2007, 23(5): 1 067-1 074.
李益龙, 周汉文, 李献华, 等. 黄陵花岗岩基英云闪长岩的黑云母和角闪石40Ar-39Ar年龄及其冷却曲线[J]. 岩石学报, 2007, 23(5): 1 067-1 074.
43 SHEN Chuanbo, MEI Lianfu, LIU Zhaoqian, et al. Apatite and zircon fission track data, evidences for the mesozoic-cenozoic uplift of Huangling dome, central China[J]. Journal of Mineralogy and Petrology, 2009, 29(2): 54-60.
沈传波, 梅廉夫, 刘昭茜, 等. 黄陵隆起中—新生代隆升作用的裂变径迹证据[J]. 矿物岩石, 2009, 29(2): 54-60.
44 WANG P, ZHENG H, CHEN L, et al. Exhumation of the Huangling anticline in the Three Gorges region: cenozoic sedimentary record from the western Jianghan Basin, China[J]. Basin Research, 2014, 26(4): 505-522.
45 WU L L, MEI L F, LIU Y S, et al. Multiple provenance of rift sediments in the composite basin-mountain system: constraints from detrital zircon U-Pb geochronology and heavy minerals of the early Eocene Jianghan Basin, central China[J]. Sedimentary Geology, 2017, 349: 46-61.
46 ZHU X F, SHEN C B, ZHOU R J, et al. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin, East China: constraints from detrital zircon UPb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 553. DOI:10.1016/j.palaeo.2020.109776 .
47 YANG C Q, SHEN C B, ZATTIN M, et al. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges[J]. International Geology Review, 2019, 61(16): 1 980-1 999.
48 FAN D D, LI C X. Timing of the Yangtze initiation draining the Tibetan Plateau throughout to the East China Sea: a review[J]. Frontiers of Earth Science in China, 2008, 2(3): 302-313.
49 XIANG F, ZHU L D, WANG C S, et al. Quaternary sediment in the Yichang area: implications for the formation of the Three Gorges of the Yangtze River[J]. Geomorphology, 2007, 85(3/4): 249-258.
50 ZHANG Z J, TYRRELL S, LI C A, et al. Provenance of detrital K-feldspar in Jianghan Basin sheds new light on the Pliocene-Pleistocene evolution of the Yangtze River[J]. Geological Society of America Bulletin, 2016, 128(9/10): 1 339-1 351.
51 YANG S Y, LI C X, YOKOYAMA K. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: implications for sediment provenance and development history of the Changjiang River[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 762-776.
52 YANG S Y, JIANG S Y, LING H F, et al. Sr-Nd isotopic compositions of the Changjiang sediments: implications for tracing sediment sources[J]. Science in China Series D: Earth Sciences, 2007, 50(10): 1 556-1 565.
53 KANG Chunguo, LI Changan, WANG Jietao, et al. Heavy mnerals characteristics of sediments in Jianghan Hain and its indication to the forming of the Three Gorges [J]. Earth Science—Journal of China University of Geosciences, 2009, 34(3): 419-427.
康春国,李长安,王节涛,等.江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学:中国地质大学学报, 2009, 34(3): 419-427.
54 LUO Chao, ZHENG Hongbo, WU Weihua, et al. Temporal variation in Sr and 87Sr/86Sr of Yangtze River: an example from Datong hydrological station[J]. Advances in Earth Science, 2014, 29(7): 835-843.
罗超, 郑洪波, 吴卫华, 等. 长江河水87Sr/86Sr值的季节性变化及其指示意义: 以长江大通站为例[J]. 地球科学进展, 2014, 29(7): 835-843.
55 JIA J T, ZHENG H B, HUANG X T, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528.
56 YUAN Shengyuan, LI Chang’an, ZHANG Yufen, et al. Trace element characteristics of sediments in Jianghan Basin: implications for expansion of the upper reaches of the Yangtze River[J]. Geology in China, 2012, 39(4): 1 042-1 048.
袁胜元, 李长安, 张玉芬, 等. 江汉盆地沉积物微量元素特征与长江上游水系拓展[J]. 中国地质, 2012, 39(4): 1 042-1 048.
57 WANG J T, LI C A, YANG Y, et al. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan Plain, China[J]. Journal of Earth Science, 2010, 21(3): 257-271.
58 WANG P, ZHENG H B, WANG Y D, et al. Sedimentology, geochronology, and provenance of the late Cenozoic “Yangtze Gravel”: implications for Lower Yangtze River reorganization and tectonic evolution in southeast China[J]. Geological Society of America Bulletin, 2021, 134(1/2): 463-486.
59 SHAO L, LI C A, YUAN S Y, et al. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 2012, 45: 57-64.
60 ZHANG Yang, CHEN Xiaokang, LIN Xu, et al. Early Cenozoic drainage evolution in the Jianghan Basin: constraints from detrital zircon U-Pb ages of surface rivers and cores in the basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 106-117.
张洋, 陈孝康, 林旭,等. 江汉盆地新生代早期河流演化研究:来自地表河流和盆地钻孔碎屑锆石U-Pb年龄的约束[J]. 地质科技通报, 2023, 42(6): 106-117.
61 LUO C, ZHENG H B, TADA R, et al. Tracing Sr isotopic composition in space and time across the Yangtze River Basin[J]. Chemical Geology, 2014, 388: 59-70.
62 YUE W, LIU J T, ZHANG D, et al. Magnetite with anomalously high Cr2O3 as a fingerprint to trace Upper Yangtze sediments to the sea[J]. Geomorphology, 2016, 268: 14-20.
63 SUN X L, LI C A, KUIPER K F, et al. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research, 2018, 30(4): 636-649.
64 YANG C Q, SHEN C B, ZATTIN M, et al. Formation of the Yangtze Three Gorges: insights from detrital apatite fission-track dating of sediments from the Jianghan Basin[J]. Terra Nova, 2021, 33(5): 511-520.
65 WEI C Y, VOINCHET P, ZHANG Y F, et al. Chronology and provenance of the Yichang Gravel Layer deposits in the Jianghan Basin, middle Yangtze River Valley, China: implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International, 2020, 550(10): 39-54.
66 FU X W, ZHU W L, GENG J H, et al. The present-day Yangtze River was established in the late Miocene: evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 2021, 205. DOI:10.1016/j.jseaes.2020.104600 .
67 LI Y W, ZHAO J X, LI C A, et al. Cadmium and clay mineral analysis of late Pliocene-Pleistocene deposits from Jianghan Basin, central China: implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, 2021, 598: 1-14.
68 LIU Fenliang, GAO Hongshan, LI Zongmeng, et al. Terraces development and their implications for valley evolution of the Jinsha River since late Pleistocene near longjie, Yunnan[J]. Advances in Earth Science, 2020, 35(4): 431-440.
刘芬良, 高红山, 李宗盟, 等. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
69 FAN D D, LI C X, YOKOYAMA K, et al. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang Run-through time[J]. Science in China Series D: Earth Sciences, 2005, 48(10): 1 718-1 727.
70 RICHARDSON N J, DENSMORE A L, SEWARD D, et al. Extraordinary denudation in the Sichuan Basin: insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau[J]. Journal of Geophysical Research, 2008, 113(B4). DOI:10.1029/2006JB004739 .
71 YANG Z, SHEN C B, RATSCHBACHER L, et al. Sichuan Basin and beyond: eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(6): 4 712-4 740.
72 ZHENG H B, JIA D, CHEN J, et al. Did incision of the Three Gorges begin in the Eocene?Comment[J]. Geology, 2011, 39(9). DOI: 10.1130/G31944C.1 .
73 ZHANG J Y, KRIJGSMAN W, LU Y C, et al. Detrital zircon ages reveal Yangtze provenance since the early Oligocene in the East China Sea Shelf Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577. DOI:10.1016/j.palaeo.2021.110548 .
74 ZHANG Z J, DALY J S, TIAN Y T, et al. Sedimentary provenance perspectives on the evolution of the major rivers draining the eastern Tibetan Plateau[J]. Earth-Science Reviews, 2022, 232. DOI:10.1016/j.earscirev.2022.104151 .
75 SHEN C B, DONELICK R A, O’SULLIVAN P B, et al. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze Block, central China[J]. Sedimentary Geology, 2012, 281: 194-207.
76 YANG Shouye, WEI Gangjian, XIA Xiaoping, et al. Provenance study of the late Cenozoic sediments in the Changjiang delta REE and Nd isotopic constraints[J]. Quaternary Sciences, 2007, 27(3): 339-346.
杨守业,韦刚健,夏小平,等.长江口晚新生代沉积物的物源研究:REE和Nd同位素制约[J].第四纪研究, 2007, 27(3):339-346.
77 WANG Zhanghua, ZHANG Dan, LI Xiao, et al. Magnetic properties and relevant minerals of late Cenozoic sediments in the Yangtze River delta and their implications [J]. Geology in China, 2008, 35(4): 670-682.
王张华,张丹,李晓,等.长江三角洲晚新生代沉积物磁性特征和磁性矿物及其指示意义[J].中国地质, 2008, 35(4): 670-682.
78 SHU Qiang, LI Cailin, ZHAO Zhijun, et al. The records of mass susceptibility and grain size for climate changes in Subei Basin during the last deglaciation[J]. Acta Sedimentologica Sinica, 2009, 27(1): 111-117.
舒强, 李才林, 赵志军, 等. 苏北盆地浅钻沉积物磁化率与粒度记录的末次冰消期以来的环境变化[J]. 沉积学报, 2009, 27(1): 111-117.
79 ZHANG Dan, WANG Zhanghua, LI Weikang, et al. Formation of modern Yangtze Estuary and sedimentary environmental evolution since the last deglaciation[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 17-25.
张丹, 王张华, 李卫康, 等. 现代长江口的形成及末次冰消期以来沉积环境演变[J]. 海洋地质与第四纪地质, 2010, 30(2): 17-25.
80 GU J W, CHEN J, SUN Q L, et al. China’s Yangtze delta: geochemical fingerprints reflecting river connection to the sea[J]. Geomorphology, 2014, 227: 166-173.
87 张玉芬, 李长安, 李启文,等. 三峡巫山黄土Sr-Nd同位素组成与物源示踪[J]. 地球科学, 2020, 45(3): 960-967.
88 FAN Qingchao, XU Zhaokai, SUN Tianqi, et al. Sediment source-to-sink processes of the southeastern Indian Ocean during the Late Eocene-Oligocene and their potential significance for paleoclimate[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 9-19.
范庆超, 徐兆凯, 孙天琪, 等. 晚始新世—渐新世东南印度洋沉积物源—汇过程及其古气候指示意义[J]. 地质科技通报, 2022, 41(3): 9-19.
81 CHENG Yu, LI Xiangqian, ZHAO Zengyu, et al. Magnetostratigraphy and heavy minerals records of TZK9 core in Subei Basin[J]. Journal of Geomechanics, 2016, 22(4): 994-1 003.
程瑜, 李向前, 赵增玉, 等. 苏北盆地TZK9孔磁性地层及重矿物组合特征研究[J]. 地质力学学报, 2016, 22(4): 994-1 003.
82 CHEN Jing, WANG Zhe, WANG Zhanghua, et al. Heavy mineral distribution and its provenance implication in late Cenozoic sediments in western and eastern area of the Changjiang River delta[J]. Quaternary Sciences, 2007, 27(5): 700-708.
陈静, 王哲, 王张华, 等. 长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J]. 第四纪研究, 2007, 27(5): 700-708.
83 ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
84 SUN X J, WANG P X. How old is the Asian monsoon system?—Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
85 LI Chang’an, ZHANG Yufen, XU Wangsheng, et al. Paleogeographic pattern of Hankou and Hanjiang Estuary 350 years ago[J]. Earth Science, 2023, 48(9): 3 552-3 561.
李长安, 张玉芬, 徐望生, 等. 350年前的汉口及汉江河口段古地理格局[J]. 地球科学, 2023, 48(9): 3 552-3 561.
86 YANG C Q, JIAO R H, ZATTIN M, et al. Late Oligocene-Early Miocene incision of the Three Gorges and the initial establishment of an east-flowing Yangtze River[J]. Geomorphology, 2023, 441. DOI:10.1016/j.geomorph.2023.108897 .
87 ZHANG Yufen, LI Changan, LI Qiwen, et al. Sr-Nd isotopic composition and provenance tracing of Wushan Loess, Three Gorges, Yangtze River [J]. Earth Science, 2020, 45(3): 960-967.
[1] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.
[2] 史威,李世杰,马春梅,朱诚,张蕾. 中坝和中堡岛遗址文化堆积连续性的自然及人类活动因素[J]. 地球科学进展, 2010, 25(5): 523-532.
阅读次数
全文


摘要