地球科学进展 ›› 2025, Vol. 40 ›› Issue (3): 221 -227. doi: 10.11867/j.issn.1001-8166.2025.016

青藏高原综合科学考察研究 上一篇    下一篇

亚洲水塔冰湖变化与冰湖溃决灾害风险及应对
姚檀栋1(), 张太刚1,2, 王伟财1, 张国庆1, 刘时银3, 安宝晟1   
  1. 1.中国科学院青藏高原研究所,北京 100101
    2.兰州大学 资源环境学院,甘肃 兰州 730000
    3.云南大学 国际河流与生态安全研究院,云南 昆明 650091
  • 收稿日期:2024-12-25 修回日期:2025-01-22 出版日期:2025-03-10
  • 基金资助:
    第二次青藏高原综合科学考察研究项目(2024QZKK0400)

Glacial Lake Change and Outburst Risk Assessment on the Asian Water Tower

Tandong YAO1(), Taigang ZHANG1,2, Weicai WANG1, Guoqing ZHANG1, Shiyin LIU3, Baosheng AN1   

  1. 1.Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    3.Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
  • Received:2024-12-25 Revised:2025-01-22 Online:2025-03-10 Published:2025-05-07
  • About author:YAO Tandong, Member of the Chinese Academy of Sciences, research areas include glaciers and environmental change. E-mail: tdyao@itpcas.ac.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2024QZKK0400)

青藏高原超常的气候变暖引起亚洲水塔失衡。亚洲水塔失衡伴随着冰川普遍退缩、冰崩以及冰湖溃决等冰冻圈灾害频发,进而冲毁公路、桥梁和村庄,对下游居民生命财产安全和社会经济发展造成严重影响。在第二次青藏高原综合科学考察中,通过实地考察、遥感监测和台站观测等手段,对亚洲水塔冰湖和冰湖溃决进行了广泛深入的研究。发现2020年时亚洲水塔共发育冰湖14 310个,面积1 148.3 km2,其中西藏自治区冰湖7 312个,面积642.6 km2。1990年以来,亚洲水塔冰湖数量和面积增长均超过20%。评估发现,亚洲水塔有1 256个极高危险和高危险冰湖,其中182个冰湖存在溃决的极高风险或高风险。喜马拉雅山东段和藏东南地区是当前亚洲水塔冰湖最为集中、扩张幅度最大、溃决洪水灾害最为严重的区域,也是溃决风险极高冰湖分布最多的区域,为冰湖研究和灾害防控的重点区域。在未来的冰湖研究和预警防控工作中,需要提高对冰湖溃决风险的精准识别,加强冰湖溃决监测预警体系建设,强化布局冰湖溃决洪水的次生灾害和跨境威胁的应对等。

Abnormal atmospheric warming on the Tibetan Plateau has caused an imbalance in Asian Water Towers, leading to widespread and frequent cryospheric disasters such as ice avalanches and Glacial Lake Outburst Floods (GLOFs). These events pose a significant threat to life and infrastructure downstream, impacting regional socioeconomic development. Our recent studies, conducted during the Second Tibetan Plateau Scientific Expedition and Research Program, utilized field observations, remote sensing, and modeling to examine glacial lakes and GLOFs on the Tibetan Plateau. As of 2020, we had identified 14 310 glacial lakes on the Tibetan Plateau, covering an area of 1 148.3 km2, along with a 20.4% increase in lake number and a 20.2% increase in lake area since 1990. Hazard and risk assessments revealed 1 256 glacial lakes with high or very high hazard levels, including 182 glacial lakes with high or very high-risk levels. These high-risk glacial lakes pose severe GLOF threats to communities and infrastructure downstream. At the regional scale, the eastern Himalayan and southeastern Tibetan regions exhibit the highest number of glacial lakes, the largest area expansion, the most destructive GLOF hazards, and the highest concentration of very high hazard level and very high-risk level glacial lakes on the Tibetan Plateau. In terms of administrative regions, Shigatse City, Nyingchi City, and Shannan City in the Tibet Autonomous Region have the highest distribution of very high-risk level glacial lakes. Future research should focus on precise GLOF assessments, the development of monitoring and early warning systems, and strategies for adapting to GLOF disaster chains and transboundary threats.

中图分类号: 

图1 亚洲水塔冰湖分布和变化
(a)2020年各地区冰湖分布与数量占比;(b)1990—2020年亚洲水塔冰湖扩张速率以及各地区冰湖总扩张面积
Fig. 1 Distribution and changes of glacial lakes on the Asian Water Tower
(a) Distribution and proportion of glacial lakes based on the Global Terrestrial Network for Glaciers (GTN-G) regions; (b) The glacial lake change rate during 1990-2020 on the Asian Water Tower and the expansion area in different regions
表1 19902020年西藏自治区冰湖数量和面积分布与变化
Table 1 Distribution and changes of number and area of glacial lakes in the Xizang Autonomous Region during 1990-2020
图2 1980年以来亚洲水塔冰湖溃决灾害分布
Fig. 2 The spatial distribution of moraine-dammed lake outburst floods on the Asian Water Tower since 1980
图3 亚洲水塔冰湖溃决风险
(a)高危险和极高危险冰湖分布;(b)高风险和极高风险冰湖分布
Fig. 3 Glacial lake outburst potential on the Asian Water Tower
(a) Spatial distribution and regional share of glacial lakes with high and very high hazard levels; (b) Glacial lakes with high and very high risk levels
图4 西藏自治区冰湖溃决风险
(a)和(b)高危险和极高危险冰湖分布;(c)和(d)高风险和极高风险冰湖分布
Fig. 4 Glacial lake outburst potential in the Xizang Autonomous Region
(a) and (b) Spatial distribution and regional share of glacial lakes with high and very high hazard levels; (c) and (d) Glacial lakes with high and very high risk levels
图5 次仁玛错动态变化与冰湖溃决灾害监测预警体系
Fig. 5 The dynamic evolution of Cirenmaco glacial lake and the portion of the monitoring unit of its early warning system for potential outburst flood
1 YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change20122(9): 663-667.
2 IMMERZEEL W W, van BEEK L P H, BIERKENS M F P. Climate change will affect the asian water towers[J]. Science2010328(5 984): 1 382-1 385.
3 YAO T D, BOLCH T, CHEN D L, et al. The imbalance of the Asian Water Tower[J]. Nature Reviews Earth & Environment20223(10): 618-632.
4 PRITCHARD H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature2019569(7 758): 649-654.
5 YAO T D, XUE Y K, CHEN D L, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society2019100(3): 423-444.
6 KANG Shichang, GUO Wanqin, WU Tonghua,et al. Cryospheric changes and their impacts on water resources in the Belt and Road regions[J]. Advances in Earth Science202035(1): 1-17.
康世昌, 郭万钦, 吴通华, 等. “一带一路”区域冰冻圈变化及其对水资源的影响[J]. 地球科学进展202035(1): 1-17.
7 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin201560(32): 3 025-3 035.
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报201560(32): 3 025-3 035.
8 IMMERZEEL W W, LUTZ A F, ANDRADE M, et al. Importance and vulnerability of the world’s water towers[J]. Nature2020577: 364-369.
9 NIE Y, SHENG Y W, LIU Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment2017189: 1-13.
10 SHUGAR D H, BURR A, HARITASHYA U K, et al. Rapid worldwide growth of glacial lakes since 1990[J]. Nature Climate Change202010: 939-945.
11 ZHANG G Q, BOLCH T, YAO T D, et al. Underestimated mass loss from lake-terminating glaciers in the greater Himalaya[J]. Nature Geoscience202316: 333-338.
12 HAEBERLI W, BUETLER M, HUGGEL C, et al. New lakes in deglaciating high-mountain regions-opportunities and risks[J]. Climatic Change2016139(2): 201-214.
13 EMMER A, COCHACHIN A. The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas[J]. AUC Geographica201348(2): 5-15.
14 ZHANG T G, WANG W C, AN B S, et al. Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole[J]. Nature Communications202314(1). DOI:10.1038/s41467-023-44123-z .
15 RICHARDSON S D, REYNOLDS J M. An overview of glacial hazards in the Himalayas[J]. Quaternary International200065: 31-47.
16 COOK K L, ANDERMANN C, GIMBERT F, et al. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya[J]. Science2018362(6 410): 53-57.
17 NIE Y, LIU Q, WANG J D, et al. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis[J]. Geomorphology2018308: 91-106.
18 LÜTZOW N, VEH G, KORUP O. A global database of historic glacier lake outburst floods[J]. Earth System Science Data202315(7): 2 983-3 000.
19 YAO Xiaojun, LIU Shiyin, SUN Meiping, et al. Study on the glacial lake outburst flood events in Tibet since the 20th century[J]. Journal of Natural Resources201429(8): 1 377-1 390.
姚晓军, 刘时银, 孙美平, 等. 20世纪以来西藏冰湖溃决灾害事件梳理[J]. 自然资源学报201429(8): 1 377-1 390.
20 LIU Jiankang, ZHANG Jiajia, GAO Bo, et al. An overview of glacial lake outburst flood in Tibet, China[J]. Journal of Glaciology and Geocryology201941(6): 1 335-1 347.
刘建康, 张佳佳, 高波,等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土201941(6): 1 335-1 347.
21 ZHANG T G, WANG W C, AN B S. A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas[J]. Landslides202421: 299-311.
22 ZHANG Taigang, WANG Weicai, GAO Tanguang, et al. Glacial lake outburst floods on the high mountain Asia: a review[J]. Journal of Glaciology and Geocryology202143(6): 1 673-1 692.
张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土202143(6): 1 673-1 692.
23 ZHANG G Q, YAO T D, XIE H J, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change2015131: 148-157.
24 WANG X, GUO X Y, YANG C D, et al. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from landsat images[J]. Earth System Science Data202012(3): 2 169-2 182.
25 CHEN F, ZHANG M M, GUO H D, et al. Annual 30 m dataset for glacial lakes in high mountain Asia from 2008 to 2017[J]. Earth System Science Data202113(2): 741-766.
26 DOU X Y, FAN X M, WANG X, et al. Spatio-temporal evolution of glacial lakes in the Tibetan Plateau over the past 30 years[J]. Remote Sensing202315(2). DOI:10.3390/rs15020416 .
27 ZHANG M M, CHEN F, GUO H D, et al. Glacial lake area changes in high mountain Asia during 1990-2020 using satellite remote sensing[J]. Research2022, 2022. DOI: 10.34133/2022/9821275 .
28 MOHANTY L K, MAITI S. Regional morphodynamics of supraglacial lakes in the Everest Himalaya[J]. Science of the Total Environment2021, 751. DOI:10.1016/j.scitotenv.2020.141586 .
29 STEINER J F, BURI P, MILES E S, et al. Supraglacial ice cliffs and ponds on debris-covered glaciers: spatio-temporal distribution and characteristics[J]. Journal of Glaciology201965(252): 617-632.
30 BOLCH T, PETERS J, YEGOROV A, et al. Identification of potentially dangerous glacial lakes in the northern Tien Shan[J]. Natural Hazards201159(3): 1 691-1 714.
31 EMMER A, VILÍMEK V. Review Article: lake and breach hazard assessment for moraine-dammed lakes: an example from the Cordillera Blanca (Peru)[J]. Natural Hazards and Earth System Sciences201313(6): 1 551-1 565.
32 KOUGKOULOS I, COOK S J, JOMELLI V, et al. Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes[J]. Science of the Total Environment2018621: 1 453-1 466.
33 ZHANG T G, WANG W C, GAO T G, et al. An integrative method for identifying potentially dangerous glacial lakes in the Himalayas[J]. Science of the Total Environment2022, 806.DOI:10.1016/j.scitotenv.2021.150442 .
34 FISCHER M, KORUP O, VEH G, et al. Controls of outbursts of moraine-dammed lakes in the greater Himalayan region[J]. The Cryosphere202115(8): 4 145-4 163.
35 SHRESTHA F, STEINER J F, SHRESTHA R, et al. A comprehensive and version-controlled database of glacial lake outburst floods in high mountain Asia[J]. Earth System Science Data202315(9): 3 941-3 961.
36 ZHENG G X, ALLEN S K, BAO A M, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change202111(5): 411-417.
37 NIE Y, DENG Q, PRITCHARD H D, et al. Glacial lake outburst floods threaten Asia’s infrastructure[J]. Science Bulletin202368(13): 1 361-1 365.
38 WANG W C, ZHANG T G, YAO T D, et al. Monitoring and early warning system of Cirenmaco glacial lake in the central Himalayas[J]. International Journal of Disaster Risk Reduction2022, 73. DOI:10.1016/j.ijdrr.2022.102914 .
[1] 刘金贵, 车助镁, 李尚鲁, 仉天宇. 2019年温州湾藻华期间海洋生态要素演变特征[J]. 地球科学进展, 2023, 38(2): 183-191.
[2] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[3] 胡桂胜, 陈宁生, Narendra Khanal, 韩大为. 科西河跨境流域水旱灾害与防治[J]. 地球科学进展, 2012, 27(8): 908-915.
[4] 张强,张良,崔显成,曾剑. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778.
阅读次数
全文
222
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 19 0 0 203

  来源 本网站 其他网站
  次数 146 76
  比例 66% 34%

摘要
185
最新录用 在线预览 正式出版
0 0 184
  来源 本网站 其他网站
  次数 83 102
  比例 45% 55%