地球科学进展 ›› 2014, Vol. 29 ›› Issue (11): 1303 -1313. doi: 10.11867/j.issn.1001-8166.2014.11.1303

所属专题: IODP研究

上一篇    

颗石藻室内培养及应用研究进展
芮晓庆 1, 2( ), 刘传联 1, 李志明 2   
  1. 1.同济大学海洋地质国家重点实验室, 上海 200092
    2.中国石油化工股份有限公司 石油勘探开发研究院 无锡石油地质研究所 , 江苏 无锡 214151
  • 出版日期:2014-11-27
  • 基金资助:
    国家自然科学基金项目“从室内培养到地质记录探索颗石藻在南海碳循环中的作用”(编号:9228204);国家科技部创新方法工作专项“海洋科学创新方法研究”(编号:2011IM010700)资助

Advances in Coccolithophore laboratory culture and their application research

Xiaoqing Rui 1, 2( ), Chuanlian Liu 1, Zhiming Li 2   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    2.Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration and Production, SINOPEC, Wuxi 214151 China
  • Online:2014-11-27 Published:2014-11-20

介绍了颗石藻室内培养的研究进展, 重点阐述了基于室内培养颗石藻在生态学、古海洋学和石油地质学等方面的应用。颗石藻在全球海洋环境变化、碳循环及地质演变中扮演着重要角色, 这种重要性是由其独特的生物、生理特点所决定的。颗石藻培养方面介绍了藻种的分离与保存、室内培养方法、培养基的选择。应用方面, 首先介绍了颗石藻对海洋酸化的响应;其次, 颗石藻是二甲基硫丙酸(DMSP)的高产者, 释放的二甲基硫(DMS)经过一系列变化后能够对附近海域甚至全球气候产生影响;另外还介绍了基于室内培养颗石藻地球化学指标在古海洋、古气候学方面的应用;最后探讨了颗石藻热模拟实验在石油地质方面的应用。

This paper summarizes previous studies of coccolithophores laboratory culture with emphasis on the application of cultured coccolithophores in the ecology, paleoceanography and petroleum. Because of the particular biology and physiology characteristics, coccolithophorid bloom can influence marine and atmosphere environment deeply , play an important roal in global carbon cycle and geological evolution. In the aspect of culture, we introduce the cultural method, the influence of cocolithophores growth by setting different environment parameters, the principle of suitable culture meduim depending on different research purpose. In the aspect of application, firstly, this paper discusses the physiological responses of coccolithophorids about ocean acidification. Then, coccolithophorid is high producer of DMSP(dimethylsulphoniopropionate)which can be divides into gas DMS, which can influence marine and atmosphere environment deeply through some chemical course. Further, another important application is the element geochemistry of coccoliths which is very meaningful in paleoceanography and paleoclimatology study. Finally, this paper also discusses the application of coccolithophores hydrocarbon generation to petroleum geology.

中图分类号: 

[1] Su Xiang. Cocolith Records during Late Quaternary in South China Sea and Paleoceanography Research[D]. Shanghai: Tongji University, 2009.
[苏翔. 南海晚第四纪颗石藻化石记录及古海洋学意义[D].上海: 同济大学, 2009.]
[2] Volk T, Hoffert M I. Ocean carbon pumps: Analysis of relativestrengths and efficiencies in ocean-driven atmospheric CO2 changes[C]\\ Sundquist E T, Broecker W S, eds. The Carbon Cycleand Atmospheric CO2: Natural Variations Archean to Present. Wasnington DC: American Geophysical Union, 1985: 99-110.
[3] Ouyang Lijia. The Research on Coccolithophorids Physiological Characteristic of Bio-calcification and DMS Production and Species Molecular Marker[D]. Xiamen: Xiamen University, 2009.
[欧阳丽佳.球石藻生物钙化和DMS释放的生理学特性及其种类分子标记研究[D].厦门: 厦门大学, 2009.]
[4] Malin G, Steinke M. Dimethylsulfide Production: What is the Contribution of the Coccolithophores?[M]. Berlin: Springer Berlin Heidelberg, 2004: 127-164.
[5] Archer D, Maier-Reimer E. Effect of deep-sea sedimentary cal-cite preservation on atmospheric CO2 concentration[J]. Nature, 1994, 367: 260-263.
[6] Wu Qingyu, Song Yitao. Study of molecular organic geochemistry on hydrocarbons originated from micro-organisms[J]. Science Foundation of China, 1997, 2: 97-103.
[吴庆余, 宋一涛.微生物成烃的分子有机地球化学研究[J].中国科学基金, 1997, 2: 97-103.]
[7] Hao Yichun, Li Huisheng. The significance of calcareous nannofossils in early Tertiary along Bohai Coast and adjancent area[J]. Chinese Science Bulletin, 1984, 29(12): 741-745.
[郝诒纯, 李蕙生. 渤海沿岸及邻近地区早第三纪钙质超微化石的发现及其意义[J]. 科学通报, 1984, 29(12): 741-745.]
[8] Song Yitao, Li Shuqing. Experimental study on simulating hydrocarbon generation of coccolithophoridaes by heating I. Generation rate and property of hydrocarbons, characteristic of Alkanes and Alkenes[J].Geological Journal of Universities, 1995, 1(2): 95-106.
[宋一涛, 李树青.颗石藻成烃的热模拟实验研究 Ⅰ: 烃的产率、性质及烯烃、烷烃的特征[J].高校地质学报, 1995, 1(2): 95-106.]
[9] Liu Chuanlian, Xu Jinli. Distribution of Paleocene coccolithophorids in Jiyang depressionandtheir relationship with oil and gas[J]. Marine Geology and Quateranry Geology, 2000, 20(3): 73-78.
[刘传联, 徐金鲤.济阳坳陷下第三系颗石藻化石的分布与油气的关系[J].海洋地质与第四纪地质, 2000, 20(3): 73-78.]
[10] Jordan R W, Cros L, Young J R. A revised classification scheme for living haptophytes[J].Micropaleontology, 2004, 50: 55-79.
[11] de Varga C A M, Probert I, Young J. The origin and evolution of coccolithophores: Form coastal hunters to oceanic farmers[M]∥Falkowski P G, Knoll A H, eds. Evolution of Primary Producers in the Sea. Amsterdam: Elsevier Academic, 2007: 251-286.
[12] Brownlee C, Taylor A. Calcification in coccolithophores: A cellular perspective[M]∥Theirstein H R, Young J R, eds. Coccolithophore-from Molecular Process to Global Impacts. Berlin: Springer-Verlag, 2004: 31-50.
[13] Quintero-Torres R, Aragon J L, Torres M, et al. Strong far field coherent scattering of ultraviolet radiation by holococcolithophore[J]. Physical Review, 2004, 74: 32901.
[14] Andruleit H, Young J R. Kataspinifera baumannii: A new genusan dspecies of deep photic coccolithophores resemble in gthenon-calcify in ghaptophyte Chrysochromulina[J]. Journal of Micropalaeontology, 2010, 29: 135-147.
[15] Brand L E. Physiological ecology of marine coccolithophores[M]∥Winter A, Siesser W, eds. Coccolithophores. Cambridge: Cambridge University Press, 1994: 39-50.
[16] Hulburt E M. Succession and diversity in the plankton flora of the western North Atlantic[J]. Bulletin of Marine Science of the Gulf and Caribbean, 1964, 14: 33-44.
[17] Brand L E. The salinity tolerance of forty-six marine photoplankton isolates[J].Estuarine, Coastal and Shelf Science, 1984, 18: 543-556.
[18] Venrick E L. Phytoplankton in an oligotrophic ocean: Observation and questions[J]. Ecological Monographs, 1982, 52: 129-154.
[19] BrL E, Guillard R R, Murphy L S. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates[J].Journal of Plankton Research, 1981, 3: 193-201.
[20] Brand L E. Nutrition and culture of autotropjic ultraplankton and picoplankton[J]. Canadian Bulletin of Fisheries and Aquatic Sciences, 1986, 214: 205-233.
[21] Liu Baoning. Effect and Significance of Phosphorus on Key Physiological and Ecological Process of Pleurochrysis sp. under Eutrophic Conditions[D]. Ningbo: Ningbo University, 2011.
[刘宝宁. 富营养化条件下磷对颗石藻关键生理生态过程的作用及意义[D].宁波: 宁波大学, 2011.]
[22] Jin Shaofei. The Diversity of Living Coccolithophore in East China Sea and South China Sea, Spring and Autumn[D]. Qingdao: Institute of Oceanoligy, Chinese Academy of Sciences, 2012.
[靳少非. 东海和南海春秋季今生颗石藻多样性研究[D].青岛: 中国科学院海洋所, 2012.]
[23] vander Wal P, de Jong E W, Westbroek P, et al. Calcification in the coolithophorid algae Hymenomonas carterae[J]. Environmental Biogeochemistry, 1983(35): 251-258.
[24] Marsh M E. Polyanions in the CaCO3 mineralization of coolithophores[M]∥Baeuerlein E, ed. Biomineraliztion: From Biology to Biotechnology and Medical Application. Weinhein: Wiley-VCA, 2000: 251-268.
[25] Erik T B, Hein J W B, Marcel J W V. Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species[J]. Journal of Phycology, 1999, 35: 949-959.
[26] Riebesell U, Ingrid Z, Bjorn R. Reduced calcification of marine plankton in response to increased atmosphere CO2[J].Nature, 2000, 407: 364-367.
[27] Paasche E. Roles of nitrogen and phosphorus in Colith formation in Emiliania huxleyi (Prymnesiophyceae)[J]. European Journal of Phycology, 1998 , 33(1): 33-42.
[28] Miao Xiaoling, Merrett M J. Inorganic carbon transport in relation to culture age and inorganic carbon concentration in E. huxleyi[J].Journal of Ningde Teachers College(Natural Science), 1999, 11(2): 94-96.
[缪晓玲, Merrett M J. E.huxleyi藻无机碳转运与藻龄及无机碳浓度的关系[J].宁德师专学报: 自然科学版, 1999, 11(2): 94-96.]
[29] Gao X, Song J. Phytoplankton distributions and their relation ship with the environment in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2005, 50: 327-335.
[30] Xia Jinlan, Li Li, Wan Minxi, et al. Isolation and identification of two strains of microalgae and the effect of Fe3+ on their growth and lipid accumulation[J]. Journal of Wuhan University(Natural Science), 2010, 56(3): 325-330.
[夏金兰, 李丽, 万民熙, 等.两株微藻的分离鉴定及Fe3+对其生长和脂质积累的影响[J].武汉大学学报: 理学版, 2010, 56(3): 325-330.]
[31] Liu Qian. Isolation and Screening of Marine Microalgae with High Energy Productivity[D]. Ningbo: Ningbo University, 2010.
[刘倩. 产能微藻的分离筛选[D].宁波: 宁波大学, 2010.]
[32] Guillard R R L, Ryther J H. Studies of marine planktonic diatoms[J].Canadian Journal of Microbiology, 1962, 8: 229-239.
[33] Keller M D, Bellows W K, Guillard R L, et al. Microwave treatment for sterilization of phytoplankton culture media[J].Journal of Experimental Marine Biology and Ecology, 1988, 117: 279-283.
[34] Gattuso J P, Allemad D, Frankignoulle M. Photosynthesis and calcification at cellular, organismal and community levels in croalreefs: A review on interactions and control by carbonate chemistry[J]. American Zoologist, 1999, 39: 160-183.
[35] Riebesell U, Schulz K, Gand Bellerby R G J. Enhanced biological carbon consumption in a high CO2 ocean[J].Nature, 2007, 450: 545-549.
[36] Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437: 681-686.
[37] Feng Yuanyuan, Warner M E. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi(PrymnesiopHyceae)[J].European Journal of Phycology, 2008, 43(1): 87-98.
[38] Iglesias-Rodriguez M D, Halloran P R, Rickaby R E M, et al. Phytoplankton calcification in a high- CO2 world[J].Science, 2008, 320: 336-340.
[39] Shi D, Xu Y, Morel F M M. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth[J].Biogeosciences, 2009, 6: 1199-1207.
[40] Riebesell U, Bellerby R G J, Engel A, et al. Comment on“phytoplankton calcification in a high CO2-world”[J]. Science, 2008, doi: 10.1126/science.1161096.
[41] Iglesias-Rodriguez M D, Buitenhuis E T, Raven J A, et al. Response to comment on“phytoplankton calcification in a high-CO2 world”[J]. Science, 2008, doi: 10.1126/science.1161501.
[42] Delille B, Harlay J, Zondervan I, et al. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxle[J].Global Biogeochemical Cycles, 2005, 19: 1-2.
[43] Langer G, Geisen M, Baumann K H, et al. Species specific responses of calcifying algae to changing seawater carbonate chemistry[J].Geochemistry Geophysics Geosystems, 2006, 7(9): 1-2.
[44] Lohbeck Kai T U R, Thorsten B H R. Adaptive evolution of a key phytoplankton species to ocean acidification[J]. Nature Geoscience, 2012, 5: 346-351, doi: 10. 1038 /ngeo 1441: 1-6.
[45] Beaufort L, Probert I, de Garidel-Thoron T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature, 2011, 476: 80-83.
[46] Cai Xiaoxia, Pan Jianming, Zhang Haina, et al. Effects of elevated CO2 concentration on growth and calcification of the coccolithes Emiliania huxleyi[J].Marine Environmental Science, 2013, 32(2): 249-253.
[蔡小霞, 潘建明, 张海娜, 等. CO2加富对颗石藻Emiliania huxleyi生长及钙化作用的影响[J].海洋环境科学, 2013, 32(2): 249-253.]
[47] Gao Kunshan. Positive and negative effects of ocean acidification: Physiological responses of algae[J].Journal of Xiamen University(Natural Science), 2011, 50(2): 411-417.
[高坤山. 海洋酸化正负效应: 藻类的生理学响应[J].厦门大学学报: 自然科学版, 2011, 50(2): 411-417.]
[48] Ruan Zuoxi, Gao Kunshan. Relationship between algal calcification and elevating atmospheric CO2 concentration[J].Plant Physiology Communications, 2007, 43(4): 773-778.
[阮祚喜, 高坤山.钙化藻类的钙化过程与大气中CO2浓度变化的关系[J].植物生理学通讯, 2007, 43(4): 773-778.]
[49] Xia Jianrong. Effect of elevated CO2 concentration of phytoplankton assemnlae[J].Journal of Zhanjiang Ocean University, 2006, 26(3): 106-110.
[夏建荣. 大气CO2浓度升高对海洋浮游植物影响的研究进展[J].湛江海洋大学学报, 2006, 26(3): 106-110.]
[50] Sun Jun. Organic carbon pump and carbonate counter pump of living coccolithophorid[J].Advances in Earth Science, 2007, 22(12): 1231-1239.
[孙军. 今生颗石藻的有机碳和碳酸盐反向泵[J].地球科学进展, 2007, 22(12): 1231-1239.]
[51] Variamuthy A, Andreae M A, Iverson R L. Biosynthesis of diethylsulfide and dimethylpropionthetin by Hymenomotms carteme in relation to sulfur source and salinity variations[J].Limnol Oceanogr, 1985, 30: 59-70.
[52] Marion V R, Winfried W C. Temperature, light, and the dimethylsulfoniopropionate(DMSP) content of Emiliania huxleyi(Prynmesiophyceae)[J].Journal of Sea Research, 2002, 48: 17-27.
[53] Gordon V W, Suzanne L S, Jan L H, et al. Dimethylsulfoniopropionate cleavage by marine phytoplankton in response to mechanical, chemical or dark stress[J].Journal of Phycology, 2002, 38: 948-960.
[54] Steinke M, Wolfe G V, Kirst G O. Partial characterlsation of dimethylsulfoniopropionate(DMSP)lyase isozymes in 6 strains of Emiliania huxleyi[J].Marine Ecology Progress Series, 1998, 175: 215-225.
[55] Tyrrell T, Merico A. Emiliania huxleyi: Bloom observation and the conditions that induce them[M]∥Thierstein H R, Young J R, eds. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer Press, 2004: 75-98.
[56] Li Yang, Gao Yahui, Huang Deqiang. The andances of marine coccolithophorids[J].Ocean Science, 2002, 26(3): 11-16.
[李扬, 高亚辉, 黄德强.海洋球石藻研究进展[J].海洋科学, 2002, 26(3): 11-16.]
[57] Riegeman R, Stolte W, Noordeloos A A M. Nutrient uptake and alkaline phosphatase (EC.3.1.3.1) activity of Emiliania huxleyi (PrymnesiopHyceae)during growth under N and P limitation in continuous culture[J].Journal of Phycology, 2000, 36: 87-96.
[58] Hoppe H. Phosphatase activity in the sea[J]. Hydrobiology, 2003, 493: 187-200.
[59] Stoll H, Ziveri P. Coccolithophorid-based geochemical paleoproxies[M]∥Thierstein H, Young J, eds. Coccolithophores from Molecular Processes to Global Impact. Berlin Heidelberg: Springer Verlag, 2004: 529-558.
[60] Bard E. Comparison of alkenone estimates with other paleotemperture proxies[J]. Geochemistry Geophysics Geosystems, 2001, 2(1), doi: 10.1029/2000GC000050.
[61] Jasper J P, Hayes J M. A carbon isotope record of CO2 levels during the late Quaternary[J].Nature, 1990, 347: 462-464.
[62] Liang Dan, Liu Chuanlian. Advances in element geochemistry analysis of coccolith[J]. Advances in Earth Science, 2012, 27(2): 217-223.
[梁丹, 刘传联.颗石藻元素地球化学研究进展[J].地球科学进展, 2012, 27(2): 217-223.]
[63] Stoll H, Schrag D. Coccolith Sr /Ca as a new indicator of coccolithophorid calcification and growth rate[J].Geochemistry Geophysics Geosystem, 2000, 1(5): 1-24.
[1] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[2] 张琳琳, 赵晓英, 原慧. 风对植物的作用及植物适应对策研究进展[J]. 地球科学进展, 2013, 28(12): 1349-1353.
[3] 李锋瑞,刘继亮. 干旱区根土界面水分再分配及其生态水文效应研究进展与展望[J]. 地球科学进展, 2008, 23(7): 698-706.
[4] 吴炳方;曾源;黄进良;. 遥感提取植物生理参数LAI/FPAR的研究进展与应用[J]. 地球科学进展, 2004, 19(4): 585-590.
[5] 王学军. 沉积岩中无机CO 2热模拟实验研究[J]. 地球科学进展, 2003, 18(4): 515-520.
[6] 帅燕华,邹艳荣,彭平安. 天然气甲烷碳同位素动力学模型与地质应用新进展[J]. 地球科学进展, 2003, 18(3): 405-411.
[7] 杨劼,曹云,李国强,宋炳煜. 皇甫川流域百里香草原和人工沙棘灌木林的水分利用特征[J]. 地球科学进展, 2002, 17(2): 241-246.
[8] 于云江,史培军,贺丽萍,刘家琼. 风沙流对植物生长影响的研究[J]. 地球科学进展, 2002, 17(2): 262-267.
[9] 何学贤,彭子成,王兆荣,聂宝符,安芷生. 珊瑚的古环境信息研究进展[J]. 地球科学进展, 1999, 14(5): 505-512.
[10] 周广胜,张新时,郑元润. 中国陆地生态系统对全球变化的反应模式研究进展[J]. 地球科学进展, 1997, 12(3): 270-275.
[11] 姜峰,张友联,杜建国. 油气生成热模拟实验研究进展[J]. 地球科学进展, 1996, 11(5): 453-459.
[12] 庄育勋. 造山带变质作用PTt轨迹研究存在的问题和发展趋势[J]. 地球科学进展, 1994, 9(2): 35-40.
阅读次数
全文


摘要