地球科学进展 2014, Vol. 29 Issue (11): 1303-1313 DOI: 10.11867/j.issn.1001-8166.2014.11.1303 |
IODP研究 |
|
|
|
|
颗石藻室内培养及应用研究进展 |
芮晓庆1, 2, 刘传联1, 李志明2 |
1.同济大学海洋地质国家重点实验室, 上海 200092; 2.中国石油化工股份有限公司 石油勘探开发研究院 无锡石油地质研究所 , 江苏 无锡 214151 |
|
Advances in Coccolithophore laboratory culture and their application research |
Rui Xiaoqing1, 2, Liu Chuanlian1, Li Zhiming2 |
1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; 2.Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration and Production, SINOPEC, Wuxi 214151 China |
[1] Xiang.Cocolith Records during Late Quaternary in South China Sea and Paleoceanography Research[D].Shanghai: Tongji University, 2009.[苏翔. 南海晚第四纪颗石藻化石记录及古海洋学意义[D].上海: 同济大学, 2009.] [2] T, Hoffert M I. Ocean carbon pumps: Analysis of relativestrengths and efficiencies in ocean-driven atmospheric CO 2 changes[C]\\ Sundquist E T, Broecker W S, eds. The Carbon Cycleand Atmospheric CO 2 : Natural Variations Archean to Present. Wasnington DC:American Geophysical Union, 1985: 99-110. [3] Lijia. The Research on Coccolithophorids Physiological Characteristic of Bio-calcification and DMS Production and Species Molecular Marker[D].Xiamen: Xiamen University, 2009.[欧阳丽佳.球石藻生物钙化和DMS释放的生理学特性及其种类分子标记研究[D].厦门: 厦门大学, 2009.] [4] G, Steinke M. Dimethylsulfide Production: What is the Contribution of the Coccolithophores?[M]. Berlin: Springer Berlin Heidelberg, 2004: 127-164. [5] D, Maier-Reimer E. Effect of deep-sea sedimentary cal-cite preservation on atmospheric CO 2 concentration[J]. Nature, 1994, 367: 260-263. [6] Qingyu, Song Yitao. Study of molecular organic geochemistry on hydrocarbons originated from micro-organisms[J]. Science Foundation of China, 1997, 2: 97-103.[吴庆余, 宋一涛.微生物成烃的分子有机地球化学研究[J].中国科学基金, 1997, 2: 97-103.] [7] Yichun, Li Huisheng. The significance of calcareous nannofossils in early Tertiary along Bohai Coast and adjancent area[J]. Chinese Science Bulletin, 1984, 29(12): 741-745.[郝诒纯, 李蕙生. 渤海沿岸及邻近地区早第三纪钙质超微化石的发现及其意义[J]. 科学通报, 1984, 29(12): 741-745.] [8] Yitao, Li Shuqing. Experimental study on simulating hydrocarbon generation of coccolithophoridaes by heating I. Generation rate and property of hydrocarbons, characteristic of Alkanes and Alkenes[J].Geological Journal of Universities, 1995, 1(2): 95-106.[宋一涛, 李树青.颗石藻成烃的热模拟实验研究 Ⅰ:烃的产率、性质及烯烃、烷烃的特征[J].高校地质学报, 1995, 1(2):95-106.] [9] Chuanlian, Xu Jinli. Distribution of Paleocene coccolithophorids in Jiyang depressionandtheir relationship with oil and gas[J]. Marine Geology and Quateranry Geology, 2000, 20(3): 73-78.[刘传联, 徐金鲤.济阳坳陷下第三系颗石藻化石的分布与油气的关系[J].海洋地质与第四纪地质, 2000, 20(3): 73-78.] [10] R W, Cros L, Young J R. A revised classification scheme for living haptophytes[J].Micropaleontology, 2004, 50: 55-79. [11] Varga C A M, Probert I, Young J. The origin and evolution of coccolithophores: Form coastal hunters to oceanic farmers[M]∥Falkowski P G, Knoll A H, eds. Evolution of Primary Producers in the Sea. Amsterdam: Elsevier Academic, 2007: 251-286. [12] C, Taylor A. Calcification in coccolithophores: A cellular perspective[M]∥Theirstein H R, Young J R, eds. Coccolithophore-from Molecular Process to Global Impacts. Berlin: Springer-Verlag, 2004: 31-50. [13] R, Aragon J L, Torres M, et al. Strong far field coherent scattering of ultraviolet radiation by holococcolithophore[J]. Physical Review, 2004, 74: 32901. [14] H, Young J R. Kataspinifera baumannii: A new genusan dspecies of deep photic coccolithophores resemble in gthenon-calcify in ghaptophyte Chrysochromulina[J]. Journal of Micropalaeontology, 2010, 29: 135-147. [15] L E. Physiological ecology of marine coccolithophores[M]∥Winter A, Siesser W, eds. Coccolithophores. Cambridge: Cambridge University Press, 1994: 39-50. [16] E M. Succession and diversity in the plankton flora of the western North Atlantic[J]. Bulletin of Marine Science of the Gulf and Caribbean, 1964, 14: 33-44. [17] L E. The salinity tolerance of forty-six marine photoplankton isolates[J].Estuarine, Coastal and Shelf Science, 1984, 18: 543-556. [18] E L. Phytoplankton in an oligotrophic ocean: Observation and questions[J]. Ecological Monographs, 1982, 52: 129-154. [19] L E, Guillard R R, Murphy L S. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates[J].Journal of Plankton Research, 1981, 3: 193-201. [20] L E.Nutrition and culture of autotropjic ultraplankton and picoplankton[J]. Canadian Bulletin of Fisheries and Aquatic Sciences, 1986, 214: 205-233. [21] Baoning. Effect and Significance of Phosphorus on Key Physiological and Ecological Process of Pleurochrysis sp. under Eutrophic Conditions[D]. Ningbo: Ningbo University, 2011.[刘宝宁.富营养化条件下磷对颗石藻关键生理生态过程的作用及意义[D].宁波: 宁波大学, 2011.] [22] Shaofei. The Diversity of Living Coccolithophore in East China Sea and South China Sea, Spring and Autumn[D]. Qingdao: Institute of Oceanoligy, Chinese Academy of Sciences, 2012.[靳少非.东海和南海春秋季今生颗石藻多样性研究[D].青岛:中国科学院海洋所, 2012.] [23] Wal P, de Jong E W, Westbroek P, et al. Calcification in the coolithophorid algae Hymenomonas carterae[J]. Environmental Biogeochemistry, 1983(35): 251-258. [24] M E. Polyanions in the CaCO 3 mineralization of coolithophores[M]∥Baeuerlein E, ed. Biomineraliztion: From Biology to Biotechnology and Medical Application. Weinhein: Wiley-VCA, 2000: 251-268. [25] T B, Hein J W B, Marcel J W V. Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species[J]. Journal of Phycology, 1999, 35:949-959. [26] U, Ingrid Z, Bjorn R. Reduced calcification of marine plankton in response to increased atmosphere CO 2 [J].Nature, 2000, 407: 364-367. [27] E. Roles of nitrogen and phosphorus in Colith formation in Emiliania huxleyi (Prymnesiophyceae)[J]. European Journal of Phycology, 1998 , 33(1): 33-42. [28] Xiaoling, Merrett M J. Inorganic carbon transport in relation to culture age and inorganic carbon concentration in E. huxleyi[J].Journal of Ningde Teachers College(Natural Science), 1999, 11(2): 94-96.[缪晓玲, Merrett M J. E.huxleyi 藻无机碳转运与藻龄及无机碳浓度的关系[J].宁德师专学报: 自然科学版, 1999, 11(2):94-96.] [29] X, Song J. Phytoplankton distributions and their relation ship with the environment in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2005, 50: 327-335. [30] Jinlan, Li Li, Wan Minxi, et al. Isolation and identification of two strains of microalgae and the effect of Fe 3+ on their growth and lipid accumulation[J]. Journal of Wuhan University(Natural Science), 2010, 56(3): 325-330.[夏金兰, 李丽, 万民熙, 等.两株微藻的分离鉴定及Fe 3+ 对其生长和脂质积累的影响[J].武汉大学学报: 理学版, 2010, 56(3):325-330.] [31] Qian. Isolation and Screening of Marine Microalgae with High Energy Productivity[D]. Ningbo: Ningbo University, 2010.[刘倩.产能微藻的分离筛选[D].宁波:宁波大学, 2010.] [32] R R L, Ryther J H. Studies of marine planktonic diatoms[J].Canadian Journal of Microbiology, 1962, 8: 229-239. [33] M D, Bellows W K, Guillard R L, et al. Microwave treatment for sterilization of phytoplankton culture media[J].Journal of Experimental Marine Biology and Ecology, 1988, 117: 279-283. [34] J P, Allemad D, Frankignoulle M. Photosynthesis and calcification at cellular, organismal and community levels in croalreefs: A review on interactions and control by carbonate chemistry[J]. American Zoologist, 1999, 39: 160-183. [35] U, Schulz K, Gand Bellerby R G J. Enhanced biological carbon consumption in a high CO 2 ocean[J].Nature, 2007, 450: 545-549. [36] J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437: 681-686. [37] Yuanyuan, Warner M E. Interactive effects of increased p CO 2 , temperature and irradiance on the marine coccolithophore Emiliania huxleyi (PrymnesiopHyceae)[J].European Journal of Phycology, 2008, 43(1): 87-98. [38] M D, Halloran P R, Rickaby R E M, et al. Phytoplankton calcification in a high- CO 2 world[J].Science, 2008, 320: 336-340. [39] D, Xu Y, Morel F M M. Effects of the pH/ p CO 2 control method on medium chemistry and phytoplankton growth[J].Biogeosciences, 2009, 6: 1 199-1 207. [40] U, Bellerby R G J, Engel A, et al. Comment on“phytoplankton calcification in a high CO 2 -world”[J]. Science, 2008, doi:10.1126/science.1161096. [41] M D, Buitenhuis E T, Raven J A, et al. Response to comment on“phytoplankton calcification in a high-CO 2 world”[J]. Science, 2008, doi:10.1126/science.1161501. [42] B, Harlay J, Zondervan I, et al.Response of primary production and calcification to changes of p CO 2 during experimental blooms of the coccolithophorid Emiliania huxle [J].Global Biogeochemical Cycles, 2005, 19: 1-2. [43] G, Geisen M, Baumann K H, et al. Species specific responses of calcifying algae to changing seawater carbonate chemistry[J].Geochemistry Geophysics Geosystems, 2006, 7(9): 1-2. [44] Kai T U R, Thorsten B H R. Adaptive evolution of a key phytoplankton species to ocean acidification[J]. Nature Geoscience, 2012, 5: 346-351, doi:10. 1038 /ngeo 1441: 1-6. [45] L, Probert I, de Garidel-Thoron T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature, 2011, 476: 80-83. [46] Xiaoxia, Pan Jianming, Zhang Haina, et al. Effects of elevated CO 2 concentration on growth and calcification of the coccolithes Emiliania huxleyi [J].Marine Environmental Science, 2013, 32(2): 249-253.[蔡小霞, 潘建明, 张海娜, 等. CO 2 加富对颗石藻 Emiliania huxleyi 生长及钙化作用的影响[J].海洋环境科学, 2013, 32(2):249-253.] [47] Kunshan. Positive and negative effects of ocean acidification: Physiological responses of algae[J].Journal of Xiamen University(Natural Science), 2011, 50(2):411-417.[高坤山.海洋酸化正负效应:藻类的生理学响应[J].厦门大学学报: 自然科学版, 2011, 50(2):411-417.] [48] Zuoxi, Gao Kunshan. Relationship between algal calcification and elevating atmospheric CO 2 concentration[J].Plant Physiology Communications, 2007, 43(4): 773-778.[阮祚喜, 高坤山.钙化藻类的钙化过程与大气中CO 2 浓度变化的关系[J].植物生理学通讯, 2007, 43(4): 773-778.] [49] Jianrong. Effect of elevated CO 2 concentration of phytoplankton assemnlae[J].Journal of Zhanjiang Ocean University, 2006, 26(3): 106-110.[夏建荣.大气CO 2 浓度升高对海洋浮游植物影响的研究进展[J].湛江海洋大学学报, 2006, 26(3):106-110.] [50] Jun. Organic carbon pump and carbonate counter pump of living coccolithophorid[J].Advances in Earth Science, 2007, 22(12): 1 231-1 239.[孙军.今生颗石藻的有机碳和碳酸盐反向泵[J].地球科学进展, 2007, 22(12): 1 231-1 239.] [51] A, Andreae M A, Iverson R L.Biosynthesis of diethylsulfide and dimethylpropionthetin by Hymenomotms carteme in relation to sulfur source and salinity variations[J].Limnol Oceanogr, 1985, 30:59-70. [52] V R, Winfried W C. Temperature, light, and the dimethylsulfoniopropionate(DMSP) content of Emiliania huxleyi (Prynmesiophyceae)[J].Journal of Sea Research, 2002, 48: 17-27. [53] V W, Suzanne L S, Jan L H, et al. Dimethylsulfoniopropionate cleavage by marine phytoplankton in response to mechanical, chemical or dark stress[J].Journal of Phycology, 2002, 38:948-960. [54] M, Wolfe G V, Kirst G O. Partial characterlsation of dimethylsulfoniopropionate(DMSP)lyase isozymes in 6 strains of Emiliania huxleyi [J].Marine Ecology Progress Series, 1998, 175:215-225. [55] T, Merico A. Emiliania huxleyi : Bloom observation and the conditions that induce them[M]∥Thierstein H R, Young J R, eds. Coccolithophores: From Molecular Processes to Global Impact. Berlin: Springer Press, 2004: 75-98. [56] Yang, Gao Yahui, Huang Deqiang. The andances of marine coccolithophorids[J].Ocean Science, 2002, 26(3): 11-16.[李扬, 高亚辉, 黄德强.海洋球石藻研究进展[J].海洋科学, 2002, 26(3):11-16.] [57] R, Stolte W, Noordeloos A A M. Nutrient uptake and alkaline phosphatase (EC.3.1.3.1) activity of Emiliania huxleyi (PrymnesiopHyceae)during growth under N and P limitation in continuous culture[J].Journal of Phycology, 2000, 36: 87-96. [58] H. Phosphatase activity in the sea[J]. Hydrobiology, 2003, 493: 187-200. [59] H, Ziveri P.Coccolithophorid-based geochemical paleoproxies[M]∥Thierstein H, Young J, eds. Coccolithophores from Molecular Processes to Global Impact. Berlin Heidelberg: Springer Verlag, 2004: 529-558. [60] E. Comparison of alkenone estimates with other paleotemperture proxies[J]. Geochemistry Geophysics Geosystems, 2001, 2(1), doi:10.1029/2000GC000050. [61] J P, Hayes J M. A carbon isotope record of CO 2 levels during the late Quaternary[J].Nature, 1990, 347: 462-464. [62] Dan, Liu Chuanlian. Advances in element geochemistry analysis of coccolith[J]. Advances in Earth Science, 2012, 27(2): 217-223.[梁丹, 刘传联.颗石藻元素地球化学研究进展[J].地球科学进展, 2012, 27(2):217-223.] [63] Stoll H, Schrag D. Coccolith Sr /Ca as a new indicator of coccolithophorid calcification and growth rate[J].Geochemistry Geophysics Geosystem, 2000, 1(5): 1-24. [64] H, Encinar J, Alonso J, et al. A first look at paleotemperature prospects from Mg in coccolith carbonate: Cleaning techniques and culture measurements[J].Geochemistry Geophysics Geosystems, 2000, 2: 2000GC000144. [65] H, Christine M, Jorge Ruiz Encinar, et al.Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of coccolithophorids in culture[J].Global and Planetary Change, 2002, 34: 153-171. [66] H, Yair Rosenthal, Paul Falkowski.Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi [J].Geochimica et Cosmochimica Acta, 2002, 66(6): 927-936. [67] H, Ziveri P, Markus Geisen.Protential and limitations of Sr/Ca ratios in coccolith carbonate: New perspectives from cultures and monospecific samples from sediments[J]. The Royal Society, 2002, 360: 719-747. [68] H, Bains S.Coccolith Sr/Ca records of productivity during the Paleocene-Eocene thermal maximum from the Weddell Sea[J]. Paleoceanography, 2003, 18(2): 10-29. [69] H, Shimizu N, Archer D. Coccolithophore productivity response to greenhouse event of the Paleocene-Eocene Thermal Maximum[J]. Earth and Planetary Science Letters, 2007, 258: 192-206. [70] W C, Goodney D E. Oxygen isotope content of coccoliths grown in culture[J].Deep-sea Research, 1979, 26A: 495-503. [71] P, Stoll H, Probert I, et al. Stable isotope ‘vital effects’ in coccolith calcite[J].Earth and Planetary Science Letters, 2003, 210 : 137-149. [72] Q, Dai J, Shiraiwa Y, et al.A renewable energy source-hydrocarbon gases resulting from pyrolysis of the marine nanoplanktonic alga Emiliania huxleyi [J].Journal of Applied Phycilogy, 1999, 11: 137-142. [73] Zhou Wen, Wu Qingyu, Wang Ruiyong, et al. Characteristics of aromatics biomarkers of coccolith in the simulation hydrocarbon generation by heating[J]. Chinese Science Bulletin, 2000, 45(22):2 438-2 446.[周文, 吴庆余, 王睿勇, 等.颗石藻热模拟产物中芳烃生物标志物分布[J].科学通报, 2000, 45(22):2 438-2 446.] [74] Qingyu, Shiraiwa Y. Effect of HCO - 3 on surface calcification and CO 2 fixation in marine Emiliania huxleyi [J].Acta Botanica Sinica, 1999, 41(3): 285-289.[吴庆余, 白岩善博. HCO - 3 对海生颗石藻细胞表面钙化和CO 2 固定作用的研究[J].植物学报, 1999, 41 (3): 285-289.] [75] Wu Qingyu, Song Yitao. Study of molecular organic geochemistry on hydrocarbons originated from micro-organisms[J]. Science Foundation of China, 1997, 2: 97-103.[吴庆余, 宋一涛.微生物成烃的分子有机地球化学研究[J].中国科学基金, 1997, 2: 97-103.] [76] Qingqiang, Ma Liangbang, Zou Ande, et al. Comparison of characteristics of hydrocarbon generation for different alga[J].Petrolem Geoglogy and Experiment, 2008, 30(3): 281-291.[孟庆强, 马亮帮, 邹安德, 等.不同藻类热模拟实验的生烃特征对比[J].石油实验地质, 2008, 30(3):281-291.] |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|