地球科学进展 ›› 2013, Vol. 28 ›› Issue (12): 1349 -1353. doi: 10.11867/j.issn.1001-8166.2013.12.1349

上一篇    下一篇

张琳琳( ), 赵晓英 *( ), 原慧   
  1. 新疆师范大学生命科学学院, 新疆乌鲁木齐830054
  • 收稿日期:2013-05-30 修回日期:2013-10-30 出版日期:2013-12-10
  • 通讯作者: 赵晓英 E-mail:536879053@139.com;zzhaoxy@163.com
  • 基金资助:

Advances in the Effects of Wind on Plants

Linlin Zhang( ), Xiaoying Zhao( ), Hui Yuan   

  1. College of Life Science, Xinjiang Normal University, Urumqi830054, China
  • Received:2013-05-30 Revised:2013-10-30 Online:2013-12-10 Published:2013-12-10


Wind is a important factor. It can strongly affect development, growth and reproduction of terrestrial plants. The plant in wind environment can adapt to wind by special mechanism to decrease damage. This paper reviews the effects of wind on plant in phenotype, anatomy and root archetecture. Some plant species show a resistance strategy, but other species show an avoidance strategy. After the analysis of the restriction of current research in this area, the authors suggest that studies in the area should be extended to taking the wholeplant as an integrated system rather than focusing on specific tissue level. Furthermore to understand the general mechanism across species, it is required to study different species from different environmental conditions. Advances in bioinformatics, molecular and physiological research will facilitate crossdisciplinary studies to understand the complicated responses of plants to wind.

图1 风对植物的作用及植物适应策略示意图
Fig.1 A diagrammatic sketch of wind effects on plants and the adaptation strategies
[32] Zhao Halin, He Yuhui, Yue Guangyang, et al. Effects of wind blow and sand burial on the seedling growth and photosynthetic and transpiration rates of desert plants[J]. Chinese Journal of Ecology, 2010,(3): 413-419.
[赵哈林, 何玉惠, 岳广阳, 等. 风吹、沙埋对沙地植物幼苗生长和光合蒸腾特性的影响[J]. 生态学杂志, 2010,(3): 413-419.]
[33] White D O, Turner N C, Galbraith J H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia[J]. Tree Physiology, 2000, 20: 1 157-1 165.
[34] Niklas K J. Differences between Acer saccharum leaves from open and wind-protected sites[J]. Annals of Botany, 1996, 78(1): 61-66.
[35] Ibrahim S, Mustapha S, Randjbaran E, et al. Comparison of daily and monthly results of three evapotranspiration models in tropical zone:A case study[J]. American Journal of Environmental Sciences, 2009, 5(6): 698-705.
[36] Anten N P R, Alcal#cod#x000e1;-Herrera R, Schieving F, et al. Wind and mechanical stimuli differentially affect leaf traits in Plantago major[J]. New Phytologist, 2010, 188(2): 554-564.
[37] James J C, Grace J, Hoad S P. Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland[J]. Journal of Ecology, 1994, 82: 297-306.
[38] Grant S A, Hunter R F. The effects of frequency and season of clipping on the morphology,productivity and chemical composition of Calluna vulgaris(L.)Hull[J]. New Phytologist, 1966, 65: 125-133.
[39] Coutand C. Mechanosensing and thigmomorphogenesis,a physiological and biomechanical point of view[J]. Plant Science, 2010, 179: 168-182.
[40] Braam J. In touch:Plant responses to mechanical stimuli[J]. New Phytologist, 2005, 165: 373-389.
[1] Hughes L. Climate change and Australia:Trends,projections and impacts[J]. Austral Ecology, 2003, 28(4): 423-443.
[2] Grace J. Plant Response to Wind[M]. California: Academic Press, 1977.
[3] Coutts M P, Grace J. Wind and Trees[M]. Cambridge: Cambridge University Press, 1995.
[4] Onoda Y, Anten N P R. Challenges to understand plant responses to wind[J]. Plant Signaling & Behavior, 2011, 6(7) : 1057-1059
[5] Ennos A R. Wind as an ecological factor[J]. Trends in Ecology and Evolution, 1997, 12 : 108-111.
[6] Vogel S. Leaves in the lowest and highest winds:Temperature,force and shape[J]. New Phytologist, 2009, 183: 13-26.
[7] Cordero R A, Fetcher N, Voltzow J. Effects of wind on the allometry of two species of plants in an elfin cloud forest[J]. Biotropica, 2007, 39(2): 117-185.
[8] Nan Jiang, Zhao Xiaoying, Yu Baofeng. The effect of simulated chronic high wind on the phenotype of Salsola arbuscula[J]. Acta Ecologica Sinica, 2012, 32(20): 6 354-6 360.
[南江, 赵晓英, 余保峰. 模拟长期大风对木本猪毛菜表观特征的影响[J]. 生态学报, 2012, 32(20): 6 354-6 360.]
[9] Wang Y H, He W M, Dong M, et al. Effects of shaking on the growth and mechanical properties of Hedysarum leave may be independent of water regimes[J]. International Journal of Plant Sciences, 2008, 169(4): 503-508.
[10] Li S L, Werger M J A, Zuidema P A, et al. Seedlings of the semi-shrub Artemisia ordosica are resistant to moderate wind denudation and sand burial in Mu Us sandland,China[J]. Trees, 2010, 24: 515-521.
[11] Smith V C, Ennos A R. The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. [J]. Journal of Experimental Botany, 2003, 383(54): 845-849.
[12] Liu Y. Differential response to wind and shade in mother leaf of Potentilla reptans[J]. Acta Ecologica Sinica, 2007, 27(7): 2 756-2 764.
[13] Vogel S. Drag and reconfiguration of broad leaves in high wind[J]. Journal of Experimental Botany, 1989, 40: 941-948.
[14] Riedere M, Schreiber L. Protecting against water loss:Analysis of the barrier properties of plant cuticles[J]. Journal of Experimental Botany, 2001, 52(363): 2 023-2 032.
[15] Bosabalidis A M, Kofidis G. Comparative effects of drought stress on leaf anatomy of two olive cultivars[J]. Plant Science, 2002, 163(2): 375-379.
[16] Wirthensohn M G, Sedgley M. Epicuticular wax structure and regeneration on developing Juvenile Eucalyptus leaves[J]. Australian Journal of Botany, 1996, 44(6): 691-704.
[17] Niels P R A, Rafael A H. Wind and mechanical stimuli differentially affect leaf traits in Plantago major[J]. New Phytologist, 2010, 188: 554-564.
[18] Grace J. Plant response to wind[J]. Agriculture,Ecosystems and Environment,1988, 22/23: 71-88.
[19] Gulimire, Zhao Xiaoying, Yuan Hui. Leaf anatomical structure of Zygophyllum xanthoxylum under chronic high wind[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(10): 2 047-2 052.
[古力米热#cod#x000b7;热孜, 赵晓英, 原慧. 模拟长期大风胁迫对霸王叶解剖结构特征的影响[J]. 西北植物学报, 2012, 32(10): 2 047-2 052. ]
[20] White D O, Turner N C, Galbraith J H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia[J]. Tree Physiology, 2000, 20: 1 157-1 165.
[21] Telewski F W, Jaffe M J. Thigmomorphogenesis:Anatomical,morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation[J]. Physiologia Plantarum, 1986, 66(2): 219-226.
[22] Ennos A R. The scaling of root anchorage[J]. Journal of Theoretical Biology, 1993, 161(1): 61-75.
[23] Stokes A, Fitter A H, Coutts M P. Responses of young trees to wind and shading-effects on root architecture[J]. Journal of Experimental Botany, 1995, 46(290): 1 139-1 146.
[24] Tamasi E, Stokes A, Lasserre B, et al. Influence of wind loading on root system development and architecture I in oak(Quercus robur L.)seedlings[J]. Trees-Structure and Function, 2005, 19(4): 374-384.
[25] Danjon F, Fourcaud T, Bert D. Root architecture and wind firmness of mature Pinus pinaster(Ait. )[J]. New Phytologist, 2005, 168: 387-400.
[26] Liu Guojun, Zhang Ximing, Li Xiaorong, et al. Adaptive growth of Tamarix taklamakanensis root systems in response to wind action[J]. Chinese Science Bulletin, 2008, 53: 147-150.
[27] Dupuy L X, Fourcaud T, Lac P, et al. A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture[J]. American Journal of Botany, 2007, 94(9): 1 506-1 514.
[28] Khuder H, Stokes A, Danjon F, et al. Is it possible to manipulate root anchorage in young trees?[J]. Plant and Soil, 2007, 294(1/2): 87-102.
[29] Nicoll B C, Ray D. Adaptive growth of tree root systems in response to wind action and site conditions[J]. Tree Physiology, 1996, 16(11/12): 891-898.
[30] Yu Yunjiang, Shi Peijun, Lu Chunxia, et al. Response of the eco-physiological characteristics of some plants under blown sand[J]. Acta Phytoecologica Sinica, 2003, 27(1): 53-58.
[于云江, 史培军, 鲁春霞, 等. 不同风沙条件对几种植物生态生理特征的影响[J]. 植物生态学报, 2003, 27(1): 53-58.]
[31] Qu Hao, Zhao Xueyong, Yue Guangyang, et al. Physiological response to wind of some common plants in Horqin Sand Land[J]. Journal of Desert Research, 2009, 29(4): 668-673.
[曲浩, 赵学勇, 岳广阳, 等. 科尔沁沙地几种常见植物对风胁迫的生理响应[J]. 中国沙漠, 2009, 29(4): 668-673.]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 王军, 李梦雅, 吴绍洪. 多灾种综合风险评估与防范的理论认知:风险防范“五维”范式[J]. 地球科学进展, 2021, 36(6): 553-563.
[5] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[6] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[7] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[8] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[9] 董治宝, 李超, 吕萍, 胡光印. 侵蚀型沙丘:来自火星的启示[J]. 地球科学进展, 2021, 36(2): 125-138.
[10] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[11] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[12] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[13] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[14] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[15] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.