[1] |
HANNA E, PATTYN F, NAVARRO F, et al. Mass balance of the ice sheets and glaciers-progress since AR5 and challenges[J]. Earth-Science Reviews, 2020, 201. DOI: 10.1016/j.earscirev.2019.102976 .
|
[2] |
MASSON-DELMOTTE V, ZHAI P, PIRANI A,et al. Climate Change 2021-the physical science basis: working group I to the sixth assessment report of the intergovernmental panel on climate change[EB/OL]. [2025-06-17].
|
[3] |
RIGNOT E, MOUGINOT J, SCHEUCHL B, et al. Four decades of Antarctic Ice Sheet mass balance from 1979-2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(4): 1 095-1 103.
|
[4] |
STEINER D, WALTER A, ZUMBÜHL H J. The application of a non-linear back-propagation neural network to study the mass balance of Grosse Aletschgletscher, Switzerland[J]. Journal of Glaciology, 2005, 51(173): 313-323.
|
[5] |
BOLIBAR J, RABATEL A, GOUTTEVIN I, et al. A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967-2015[J]. Earth System Science Data, 2020, 12(3): 1 973-1 983.
|
[6] |
STEINER D, PAULING A, NUSSBAUMER S U, et al. Sensitivity of European glaciers to precipitation and temperature-two case studies[J]. Climatic Change, 2008, 90(4): 413-441.
|
[7] |
ANDERSSON T R, HOSKING J S, PÉREZ-ORTIZ M, et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning[J]. Nature Communications, 2021, 12. DOI: 10.1038/s41467-021-25257-4 .
|
[8] |
VERJANS V, ROBEL A. Accelerating subglacial hydrology for ice sheet models with deep learning methods[J]. Geophysical Research Letters, 2024, 51(2). DOI: 10.1029/2023GL105281 .
|
[9] |
WERDER M A, HEWITT I J, SCHOOF C G, et al. Modeling channelized and distributed subglacial drainage in two dimensions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2 140-2 158.
|
[10] |
SURAWY-STEPNEY T, HOGG A E, CORNFORD S L, et al. Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery[J]. The Cryosphere, 2023, 17(10): 4 421-4 445.
|
[11] |
TOLLENAAR V, ZEKOLLARI H, LHERMITTE S, et al. Unexplored Antarctic meteorite collection sites revealed through machine learning[J]. Science Advances, 2022, 8(4). DOI: 10.1126/sciadv.abj8138 .
|
[12] |
XU M Z, CRANDALL D J, FOX G C, et al. Automatic estimation of ice bottom surfaces from radar imagery[C]// 2017 IEEE International Conference on Image Processing (ICIP). Beijing, China: IEEE, 2017: 340-344.
|
[13] |
RAHNEMOONFAR M, FOX G C, YARI M, et al. Automatic ice surface and bottom boundaries estimation in radar imagery based on level-set approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5 115-5 122.
|
[14] |
LEONG W J, HORGAN H J. DeepBedMap: a deep neural network for resolving the bed topography of Antarctica[J]. The Cryosphere, 2020, 14(11): 3 687-3 705.
|
[15] |
DONG S, TANG X Y, GUO J X, et al. EisNet: extracting bedrock and internal layers from radiostratigraphy of ice sheets with machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60. DOI: 10.1109/TGRS.2021.3136648 .
|
[16] |
VARSHNEY D, RAHNEMOONFAR M, YARI M, et al. Deep learning on airborne radar echograms for tracing snow accumulation layers of the Greenland Ice Sheet[J]. Remote Sensing, 2021, 13(14). DOI: 10.3390/rs13142707 .
|
[17] |
YARI M, RAHNEMOONFAR M, PADEN J. Multi-scale and temporal transfer learning for automatic tracking of internal ice layers[C]// IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium. Waikoloa, HI, USA. IEEE, 2020: 6 934-6 937.
|
[18] |
GIFFORD C M, AGAH A. Subglacial water presence classification from polar radar data[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 853-868.
|
[19] |
ILISEI A M, BRUZZONE L. A system for the automatic classification of ice sheet subsurface targets in radar sounder data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3 260-3 277.
|
[20] |
ILISEI A M, KHODADADZADEH M, FERRO A, et al. An automatic method for subglacial lake detection in ice sheet radar sounder data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3 252-3 270.
|
[21] |
RAHNEMOONFAR M, YARI M, PADEN J, et al. Deep multi-scale learning for automatic tracking of internal layers of ice in radar data[J]. Journal of Glaciology, 2021, 67(261): 39-48.
|
[22] |
LAI C Y, KINGSLAKE J, WEARING M G, et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture[J]. Nature, 2020, 584(7 822): 574-578.
|
[23] |
GONÇALVES B C, LYNCH H J. Fine-scale sea ice segmentation for high-resolution satellite imagery with weakly-supervised CNNs[J]. Remote Sensing, 2021, 13(18). DOI: 10.3390/rs13183562 .
|
[24] |
WANG Y R, LI X M. Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning[J]. Earth System Science Data, 2021, 13(6): 2 723-2 742.
|
[25] |
LÖSING M, EBBING J. Predicting geothermal heat flow in Antarctica with a machine learning approach[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(6). DOI: 10.1029/2020JB021499 .
|
[26] |
HU Z Y, KUIPERS M P, LHERMITTE S, et al. Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf[J]. The Cryosphere, 2021, 15(12): 5 639-5 658.
|
[27] |
CHENG D, HAYES W, LAROUR E, et al. Calving front machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972-2019[J]. The Cryosphere, 2021, 15(3): 1 663-1 675.
|
[28] |
BRAAKMANN-FOLGMANN A, SHEPHERD A, HOGG D, et al. Mapping the extent of giant Antarctic icebergs with deep learning[J]. The Cryosphere, 2023, 17(11): 4 675-4 690.
|
[29] |
LI L, AITKEN A R A, LINDSAY M D, et al. Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks[J]. Nature Geoscience, 2022, 15: 645-650.
|
[30] |
ROSIER S H R, BULL C Y S, WOO W L, et al. Predicting ocean-induced ice-shelf melt rates using deep learning[J]. The Cryosphere, 2023, 17(2): 499-518.
|
[31] |
JOUVET G, CORDONNIER G, KIM B, et al. Deep learning speeds up ice flow modelling by several orders of magnitude[J]. Journal of Glaciology, 2022, 68(270): 651-664.
|
[32] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical image computing and computer-assisted intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241.
|
[33] |
MOHAJERANI Y, WOOD M, VELICOGNA I, et al. Detection of glacier calving margins with convolutional neural networks: a case study[J]. Remote Sensing, 2019, 11(1). DOI: 10.3390/rs11010074 .
|
[34] |
RADHAKRISHNAN K, SCOTT K A, CLAUSI D A. Sea ice concentration estimation: using passive microwave and SAR data with a U-Net and curriculum learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5 339-5 351.
|
[35] |
NIU L H, TANG X Y, YANG S H, et al. Detection of Antarctic surface meltwater using Sentinel-2 remote sensing images via U-Net with attention blocks: a case study over the Amery Ice Shelf[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3275076 .
|
[36] |
de RODA H S, LHERMITTE S, BOLIBAR J, et al. A high-resolution record of surface melt on Antarctic ice shelves using multi-source remote sensing data and deep learning[J]. Remote Sensing of Environment, 2024, 301. DOI: 10.1016/j.rse.2023.113950 .
|
[37] |
SIMMONDS I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979-2013[J]. Annals of Glaciology, 2015, 56(69): 18-28.
|
[38] |
SHEN X Y, KE C Q, WANG Q M, et al. Assessment of Arctic sea ice thickness estimates from ICESat-2 using IceBird airborne measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 3 764-3 775.
|
[39] |
REN Y B, LI X F. Predicting the daily sea ice concentration on a subseasonal scale of the Pan-Arctic during the melting season by a deep learning model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61. DOI: 10.1109/TGRS.2023.3279089 .
|
[40] |
ZAMPIERI L, GOESSLING H F, JUNG T. Predictability of Antarctic sea ice edge on subseasonal time scales[J]. Geophysical Research Letters, 2019, 46(16): 9 719-9 727.
|
[41] |
WANG Y H, YUAN X J, REN Y B, et al. Subseasonal prediction of regional Antarctic sea ice by a deep learning model[J]. Geophysical Research Letters, 2023, 50(17). DOI: 10.1029/2023GL104347 .
|
[42] |
DONG X R, NIE Y F, WANG J F, et al. Deep learning shows promise for seasonal prediction of Antarctic sea ice in a rapid decline scenario[J]. Advances in Atmospheric Sciences, 2024, 41(8): 1 569-1 573.
|
[43] |
LIANG Z Y, PANG X P, JI Q, et al. An entropy-weighted network for polar sea ice open lead detection from Sentinel-1 SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60. DOI: 10.1109/TGRS.2022.3169892 .
|
[44] |
WANG Zhihao, KE Changqing. Identification of melt pond on sea ice based on deep learning technology[J]. Remote Sensing Information,2022, 37(6): 85-93.
|
|
王智豪, 柯长青. 基于深度学习的海冰融池识别[J]. 遥感信息, 2022, 37(6): 85-93.
|
[45] |
LI H L, KE C Q, ZHU Q H, et al. A deep learning approach to retrieve cold-season snow depth over Arctic sea ice from AMSR2 measurements[J]. Remote Sensing of Environment, 2022, 269. DOI: 10.1016/j.rse.2021.112840 .
|
[46] |
LIANG Z Y, JI Q, PANG X P, et al. Estimation of daily Arctic winter sea ice thickness from thermodynamic parameters using a Self-Attention Convolutional Neural Network[J]. Remote Sensing, 2023, 15(7). DOI: 10.3390/rs15071887 .
|
[47] |
HE B, ZHAO X, CHEN Y, et al. Application of feature tracking using K-Nearest-Neighbor Vector Field Consensus in sea ice tracking[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4 326-4 336.
|
[48] |
LIU X M, FENG T T, SHEN X F, et al. PMDRnet: a progressive multiscale deformable residual network for multi-image super-resolution of AMSR2 Arctic sea ice images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60. DOI: 10.1109/TGRS.2022.3151623 .
|
[49] |
FENG T T, JIANG P, LIU X M, et al. Applications of deep learning-based super-resolution networks for AMSR2 Arctic sea ice images[J]. Remote Sensing, 2023, 15(22). DOI: 10.3390/rs15225401 .
|
[50] |
FENG T T, LIU X M, LI R X. Super-resolution-aided sea ice concentration estimation from AMSR2 images by encoder-decoder networks with atrous convolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 962-973.
|
[51] |
LIU X M, FENG T T, YANG Y S, et al. Characterization of north Greenland polynyas with super-resolved passive microwave sea ice concentration[J]. GIScience & Remote Sensing, 2024, 61(1). DOI: 10.1080/15481603.2023.2300222 .
|
[52] |
SHANG X Y, CHENG X, ZHENG L, et al. Decadal changes in Greenland ice sheet firn aquifers from radar scatterometer[J]. Remote Sensing, 2022, 14(9). DOI: 10.3390/rs14092134 .
|
[53] |
ZHENG L, CHENG X, SHANG X Y, et al. Greenland ice sheet daily surface melt flux observed from space[J]. Geophysical Research Letters, 2022, 49(6). DOI: 10.1029/2021GL096690 .
|
[54] |
HU J J, HUANG H B, CHI Z H, et al. Distribution and evolution of supraglacial lakes in Greenland during the 2016-2018 melt seasons[J]. Remote Sensing, 2022, 14(1). DOI: 10.3390/rs14010055 .
|
[55] |
PENG Boyang, ZHOU Chunxia, ZHU Dongyu, et al. Extraction and area change analysis of supraglacial lakes in Greenland ice sheet using U-Net model[J]. Geomatics and Information Science of Wuhan University,2024, 49(9): 1 621-1 629.
|
|
彭博洋, 周春霞, 朱冬雨, 等. 利用U-Net的格陵兰冰盖冰面湖提取和面积变化分析[J]. 武汉大学学报(信息科学版), 2024, 49(9): 1 621-1 629.
|
[56] |
ZIRIZZOTTI A, CAFARELLA L, BASKARADAS J A, et al. Dry-wet bedrock interface detection by radio echo sounding measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2 343-2 348.
|
[57] |
LINDZEY L E, BEEM L H, YOUNG D A, et al. Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica[J]. The Cryosphere, 2020, 14: 2 217-2 233.
|
[58] |
BENTLEY C R, LORD N, LIU C. Radar reflections reveal a wet bed beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West Antarctica[J]. Journal of Glaciology, 1998, 44(146): 149-156.
|
[59] |
SCHROEDER D M, BLANKENSHIP D D, YOUNG D A. Evidence for a water system transition beneath Thwaites Glacier, West Antarctica[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12 225-12 228.
|
[60] |
WRIGHT A, SIEGERT M. A fourth inventory of Antarctic subglacial lakes[J]. Antarctic Science, 2012, 24(6): 659-664.
|
[61] |
LIVINGSTONE S J, LI Y, RUTISHAUSER A, et al. Subglacial lakes and their changing role in a warming climate[J]. Nature Reviews Earth & Environment, 2022, 3(2): 106-124.
|
[62] |
HILLS B H, SIEGFRIED M R, SCHROEDER D M. Entrained water in basal ice suppresses radar bed‐echo power at active subglacial lakes[J]. Geophysical Research Letters, 2024, 51(13). DOI: 10.1029/2024GL109248 .
|
[63] |
WANG H, TANG X Y, XIAO E Z, et al. Basal melt patterns around the deep ice core drilling site in the Dome A region from Ice-Penetrating Radar measurements[J]. Remote Sensing, 2023, 15(7). DOI: 10.3390/rs15071726 .
|
[64] |
DONG S, FU L, TANG X Y, et al. Deep clustering in subglacial radar reflectance reveals subglacial lakes[J]. The Cryosphere, 2024, 18(3): 1 241-1 257.
|
[65] |
COLGAN W, RAJARAM H, ABDALATI W, et al. Glacier crevasses: observations, models, and mass balance implications[J]. Reviews of Geophysics, 2016, 54(1): 119-161.
|
[66] |
IZEBOUD M, LHERMITTE S. Damage detection on Antarctic ice shelves using the normalised radon transform[J]. Remote Sensing of Environment, 2023, 284. DOI: 10.1016/j.rse.2022.113359
|
[67] |
ZHAO J J, LIANG S, LI X W, et al. Detection of surface crevasses over Antarctic ice shelves using SAR imagery and deep learning method[J]. Remote Sensing, 2022, 14(3). DOI: 10.3390/rs14030487 .
|
[68] |
PANG A, LIANG Q, LI W J, et al. The distribution and evolution of surface fractures on pan-Antarctic ice shelves[J]. International Journal of Digital Earth, 2023, 16(1): 3 295-3 320.
|
[69] |
FUJITA S, MAENO H, URATSUKA S, et al. Nature of radio echo layering in the Antarctic ice sheet detected by a two‐frequency experiment[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B6): 13 013-13 024.
|
[70] |
SIME L C, HINDMARSH R C A, CORR H. Automated processing to derive dip angles of englacial radar reflectors in ice sheets[J]. Journal of Glaciology, 2011, 57(202): 260-266.
|
[71] |
XIONG S, MULLER J P, CARO C R. A new method for automatically tracing englacial layers from MCoRDS data in NW Greenland[J]. Remote Sensing, 2018, 10(1). DOI: 10.3390/rs10010043 .
|
[72] |
DELF R, SCHROEDER D M, CURTIS A, et al. A comparison of automated approaches to extracting englacial-layer geometry from radar data across ice sheets[J]. Annals of Glaciology, 2020, 61(81): 234-241.
|
[73] |
PANTON C. Automated mapping of local layer slope and tracing of internal layers in radio echograms[J]. Annals of Glaciology, 2014, 55(67): 71-77.
|
[74] |
BINGHAM R G, EISEN O, KARLSSON N B, et al. AntArchitecture[R/OL]. [2025-06-17]. The Scientific Committee on Antarctic Research (SCAR), 2021.
|
[75] |
TANG X Y, DONG S, LUO K, et al. Noise removal and feature extraction in airborne radar sounding data of ice sheets[J]. Remote Sensing, 2022, 14(2). DOI: 10.3390/rs14020399 .
|
[76] |
PENG C Y, ZHENG L, LIANG Q, et al. ST-SOLOv2: tracing depth hoar layers in Antarctic ice sheet from airborne radar echograms with deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62. DOI: 10.1109/TGRS.2024.3480698 .
|
[77] |
SHI Z Y, WANG Z M, ZHANG B J, et al. Bridging the spatiotemporal ice sheet mass change data gap between GRACE and GRACE-FO in Greenland using machine learning method[J]. Journal of Hydrology, 2024, 629. DOI: 10.1016/j.jhydrol.2024.130622 .
|
[78] |
ZENG Z L, WANG Z M, DING M H, et al. Estimation and long-term trend analysis of surface solar radiation in Antarctica: a case study of Zhongshan station[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1 497-1 509.
|
[79] |
PANG X P, LIU C, ZHAO X, et al. Application of machine learning for simulation of air temperature at Dome A[J]. Remote Sensing, 2022, 14(4). DOI: 10.3390/rs14041045 .
|
[80] |
HU Y L, LI Z F, FU L, et al. Environment‐modulated glacial seismicity near Dålk Glacier in east Antarctica revealed by deep clustering[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(4). DOI: 10.1029/2023JF007593 .
|
[81] |
SONG X Y, WANG Z M, LIANG J C, et al. Automatic extraction of the basal channel based on neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5 013-5 023.
|
[82] |
CHEN G X, KUSKY T, LUO L, et al. Hadean tectonics: insights from machine learning[J]. Geology, 2023, 51(8): 718-722.
|
[83] |
ZHANG S K, GONG L, ZENG Q, et al. Imputation of GPS coordinate time series using missForest[J]. Remote Sensing, 2021, 13(12). DOI: 10.3390/rs13122312 .
|
[84] |
ZHANG Q C, LI F, ZHANG S K, et al. Modeling and forecasting the GPS zenith troposphere delay in west Antarctica based on different blind source separation methods and deep learning[J]. Sensors, 2020, 20(8). DOI: 10.3390/s20082343 .
|
[85] |
RAN Youhua, LI Xin, CHE Tao,et al. Recent progress and emerging frontiers in China’s cryosphere remote sensing research[J]. National Remote Sensing Bulletin,2025,29(6):1 831-1 847.
|
|
冉有华, 李新, 车涛, 等. 中国冰冻圈遥感近期研究进展与若干前沿问题探讨[J]. 遥感学报, 2025, 29(6): 1 831-1 847.
|
[86] |
CHENG Xiao, CHEN Zhuogi, HUI Fengming, et al. Status and outlook of China’s space-based and airborne remote sensing systems for polar regions[J]. Science and Technology Foresight, 2022(2): 183-197.
|
|
程晓, 陈卓奇, 惠凤鸣, 等. 中国极地空天基遥感观测现状与展望[J]. 前瞻科技, 2022(2): 183-197.
|
[87] |
HAO Tong, WANG Xiaofeng, FENG Tiantian, et al. Intelligent and multi-scale surveying of key areas and processes of the Earth system[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1 084-1 095.
|
|
郝彤, 王晓峰, 冯甜甜, 等. 地球系统多尺度关键区域与关键过程的智能化测绘[J]. 测绘学报, 2021, 50(8): 1 084-1 095.
|