地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.055

   

台风中尺度波动与精细结构及强度变化关系的研究进展
黄昕1,2,3,4,戴华宁1,2,赵玉春1,2,崔梦雪1,2,荀爱萍1,5,潘宁6,周玉淑3,4   
  1. (1. 厦门市气象局 海峡气象开放重点实验室,福建 厦门 361012;2. 厦门市气象台,福建 厦门 361012; 3. 中国科学院大气物理研究所 云降水物理与强风暴重点实验室,北京 100029;4. 中国科学院大学, 北京 100049;5.厦门市集美区气象局,福建 厦门 361021;6.福建省气象台,福建 福州 350008)
  • 基金资助:
    福建省自然科学基金项目“台风在东南沿海发生近海快速增强的前兆信号研究”(编号:2023J05061);国家自然科学基金 项目“近海台风降水非对称微物理特征的双偏振雷达分析”(编号:42205011)资助.

Review of Studies on Mesoscale Waves: Relationships with the Fine-Scale Structure and Intensity Changes of Typhoons

HUANG Xin1, 2, 3, 4, DAI Huaning1, 2, ZHAO Yuchun1, 2, CUI Mengxue1, 2, XUN Aiping1, 5, PAN Ning6, ZHOU Yushu3, 4   

  1. (1. Xiamen Key Laboratory of Straits Meteorology, Xiamen Meteorological Bureau, Xiamen 361012, China; 2. Xiamen Meteorological Observatory, Xiamen 361012, China; 3. Key Laboratory of Cloud–Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China; 5. Jimei Meteorological Bureau, Xiamen 361021, China; 6. Fujian Meteorological Observatory, Fuzhou 350008, China)
  • About author:HUANG Xin, Engineer, research areas include mesoscale meteorological mechanism and diagnostic analysis. E-mail: huangxin_aria@163.com
  • Supported by:
    Project supported by the Natural Science Foundation of Fujian Province (Grant No. 2023J05061); The National Natural Science Foundation of China (Grant No. 42205011).
目前处于台风强度预报能力进一步提升的瓶颈期,其中的中尺度过程尚不清晰,限制了对 台风强度变化的预报能力。总结了台风中尺度波动(涡旋罗斯贝波和台风重力波)成因和特征,梳 理了中尺度波动与台风眼墙、螺旋雨带及其对流强度和(不)对称结构的关系,讨论了这些结构变 化对台风强度的影响以及波动特征与台风强度变化之间的统计相关关系。结果表明:①台风非圆 形眼墙的形成与螺旋内雨带的外传理论均已由重力波学说发展为涡旋罗斯贝波学说。涡旋罗斯 贝波能够部分解释台风不对称结构和双眼墙形成,是螺旋外雨带形成机制之一。涡旋罗斯贝波影 响台风强度变化的机制复杂,不同区域(内核/外围)、不同高度或不同时期(增强/减弱)产生的波动 以及不同波动传播方向(切向/径向)均可对台风强度产生不同影响。②台风重力波的波动特征(振 幅、波长、周期、出现频次)与台风强度变化具有相关性,有望成为未来台风增强及快速增强的先兆 信号,这源于该波动主要由眼墙和螺旋雨带中的对流所激发并快速垂直传播。③两类中尺度波动 均可驱动台风内部动量和热量径向外传,通过波流相互作用改变局地环流场并增强台风对称性, 进而导致台风增强甚至快速增强。最后提出:涡旋罗斯贝波和台风重力波是两类波动提高台风精 细化风雨分布和强度变化的预报预警能力中需要进一步解决的问题。
Abstract:Current limitations in typhoon forecasting are primarily attributed to insufficient understanding of mesoscale processes. To address this gap, this review synthesizes current understanding of mesoscale waves in typhoons, including vortex Rossby waves (VRWs) and typhoon-induced gravity waves (TGWs). It investigates their generation mechanisms and characteristics, and systematically examines the linkages between these waves and key typhoon structural features, including the eyewall, spiral rainbands, convective intensity, and (a) symmetric structure. Furthermore, it investigates the impacts of these structural modifications on typhoon intensity, alongside the statistical correlations between wave characteristics and typhoon intensity changes. The results show that: (1) The theoretical frameworks for polygonal eyewall and inner spiral rainbands formation have evolved from TGWs theory to VRWs theory. VRWs provide partial explanations for typhoon asymmetric structures and double-eyewall formation, while representing one plausible mechanism for outer spiral rainbands. The intensity changes induced by VRWs manifests through complex processes, characterized by different dynamical responses depending on (i) the wave propagation directionality (tangential/radial), (ii) spatial domain (inner-core/outer region) and (iii) levels (mid-lower/upper) during (iv) different periods over the typhoon lifecycle phase (intensification/decay). (2) The wave characteristics of TGWs (including amplitude, wavelength, period, and occurrence frequency) exhibit a correlation with typhoon intensity changes. TGWs, primarily excited by convection in the eyewall and spiral rainbands and rapidly propagating vertically, may serve as a precursor signal for typhoon (rapid) intensification. (3) Both VRWs and TGWs can drive the outward radial transport of momentum and heat within typhoons. Through wave-mean flow interactions, they modify local circulation and enhance typhoon symmetry, ultimately contributing to typhoon intensification (including rapid intensification). Some scientific issues remain in applying VRWs and TGWs to improve fine-scale wind/precipitation distributions and advance the forecasting skill of typhoon intensity changes. Current research underscores the necessity of integrating high-resolution numerical simulations with multi-platform coordinated observations to quantitatively analyze the mesoscale wave – typhoon interactions, thereby identifying precursor signals for typhoon intensification, including rapid intensification. Tools such as wave spectrum analysis and wave energy flux diagnostics are instrumental in extracting early-warning indicators from both wave characteristics and energy transport perspectives. Advances in satellite and radar detection technologies will enable the validation of theoretical frameworks through multi-platform observational data, ultimately enhancing monitoring and forecasting capabilities for typhoon structural and intensity changes.

中图分类号: 

[1] 赵兵科, 汤杰, 雷小途, 张雪芬, 段晚锁, 李泓, 高志球, 钱传海, 鲍旭炜, 骆婧瑶, 张帅. 近海台风立体协同观测科学试验进展[J]. 地球科学进展, 2022, 37(8): 771-785.
[2] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[3] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[4] 雷小途,张雪芬,段晚锁,李泓,高志球,钱传海,赵兵科,汤杰. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
[5] 尹碧文, 任福民, 李国平. 1951—2014年西北太平洋双台风活动气候特征研究[J]. 地球科学进展, 2017, 32(6): 643-650.
[6] 陈华, 霍也. 台风变性过程中下游环流发展的个例对比研究[J]. 地球科学进展, 2016, 31(4): 409-421.
[7] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(9): 847-854.
[8] 端义宏. 登陆台风精细结构的观测、预报与影响评估[J]. 地球科学进展, 2015, 30(8): 847-854.
[9] 雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283.
[10] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[11] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[12] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[13] 赵兵科,鲁小琴,万日金,张维. 0608号超强台风“桑美”强度变化位涡诊断分析[J]. 地球科学进展, 2011, 26(5): 528-537.
[14] 詹奕哲,王振会,官莉, 张蕾. 卫星导风在台风路径预报中的应用进展[J]. 地球科学进展, 2011, 26(4): 386-393.
[15] 赵兵科,邵德民,鲁小琴,徐同,翁永元. 多通道地基微波辐射计在0713号“韦帕”台风登陆前后探测性能及特征分析[J]. 地球科学进展, 2009, 24(9): 1001-1008.
阅读次数
全文


摘要