[1] |
SETON M, WHITTAKER J M, WESSEL P, et al. Community infrastructure and repository for marine magnetic identifications[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1 629-1 641.
|
[2] |
SETON M, MÜLLER R D, ZAHIROVIC S, et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(10). DOI: 10.1029/2020GC009214 .
|
[3] |
VINE F J. Spreading of the ocean floor: new evidence[J]. Science, 1966, 154(3 755): 1 405-1 415.
|
[4] |
RAFF A D, MASON R G. Magnetic survey off the west coast of North America, 40°N. latitude to 52°N. latitude[J]. Geological Society of America Bulletin, 1961, 72(8). DOI: 10.1130/0016-7606(1961)72 [1267:MSOTWC]2.0.CO;2.
|
[5] |
MASON R G, RAFF A D. Magnetic survey off the west coast of North America, 32°N. latitude to 42°N. latitude[J]. Geological Society of America Bulletin, 1961, 72(8). DOI: 10.1130/0016-7606(1961)72 [1259:MSOTWC]2.0.CO;2.
|
[6] |
VINE F J, MATTHEWS D H. Magnetic anomalies over oceanic ridges[J]. Nature, 1963, 199(4 897): 947-949.
|
[7] |
LI Yuanjie, WEI Dongping. A comprehensive review of marine magnetic anomaly stripes[J]. Progress in Geophysics, 2016, 31(3): 949-959.
|
|
李园洁,魏东平.海底磁异常条带研究综述[J].地球物理学进展,2016, 31(3): 949-959.
|
[8] |
BUKRY D, BRAMLETTE M N. Coccolith age determinations leg 3, deep sea drilling project[R] Initial reports of the deep sea drilling project, 3. U.S. Government Printing Office, 1970.
|
[9] |
HONSHO C, URA T, KIM K, et al. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4 085-4 102.
|
[10] |
WU S, THORAM S, SUN J, et al. Characterizing marine magnetic anomalies: a machine learning approach to advancing the understanding of oceanic crust formation[J]. Journal of Geophysical Research: Solid Earth, 2025, 130(2). DOI: 10.1029/2024JB030682 .
|
[11] |
HARSHVARDHAN G, GOURISARIA M K, PANDEY M, et al. A comprehensive survey and analysis of generative models in machine learning[J]. Computer Science Review, 2020, 38. DOI: 10.1016/j.cosrev.2020.100285 .
|
[12] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7 553): 436-444.
|
[13] |
MENDEL V, MUNSCHY M, SAUTER D. MODMAG, a MATLAB program to model marine magnetic anomalies[J]. Computers & Geosciences, 2005, 31(5): 589-597.
|
[14] |
SCHETTINO A. Magan: a new approach to the analysis and interpretation of marine magnetic anomalies[J]. Computers & Geosciences, 2012, 39: 135-144.
|
[15] |
IVANOV S A, MERKUR’EV S A. Interpretation of marine magnetic anomalies. part I. a survey of existing methods and analysis of the analytic signal method[J]. Geomagnetism and Aeronomy, 2014, 54(3): 388-396.
|
[16] |
IVANOV S A, MERKUR’EV S A. Interpretation of marine magnetic anomalies. part II. analysis of the new method and algorithm based on the least squares method[J]. Geomagnetism and Aeronomy, 2014, 54(4): 530-536.
|
[17] |
MEYER B, CHULLIAT A, SALTUS R. Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc Min resolution version 3 (EMAG2v3)[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4 522-4 537.
|
[18] |
DYER L. Identifying marine magnetic anomalies using machine learning[D]. Kent: Kent State University, 2022.
|
[19] |
WANG S G, ZHANG X Y, QIN Y Q, et al. Marine target magnetic anomaly detection based on multitask deep transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20. DOI: 10.1109/LGRS.2023.3273722 .
|
[20] |
WANG C, PENG G, WANG H, et al. Multi-feature fusion and intelligent iterative optimization algorithm based magnetic anomaly detecting method, involves inputting magnetic signal sample into magnetic anomaly detection model to obtain magnetic anomaly detection result [P]. 2021, CN112633147-A.
|
[21] |
SAGER W W, KIM J, KLAUS A, et al. Bathymetry of shatsky rise, northwest Pacific Ocean: implications for ocean plateau development at a triple junction[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B4): 7 557-7 576.
|
[22] |
ZHANG J C, SAGER W W, KORENAGA J. The seismic Moho structure of Shatsky Rise oceanic plateau, northwest Pacific Ocean[J]. Earth and Planetary Science Letters, 2016, 441: 143-154.
|
[23] |
ZHANG Jinchang, LUO Yiming, LI Haiyong, et al. Internal structure and evolutionary mechanisms of west Pacific oceanic plateaus[J]. Science & Technology Review, 2023,41(2): 65-79.
|
|
张锦昌,罗怡鸣,李海勇,等.西太平洋洋底高原内部结构与形成演化[J].科技导报, 2023, 41(2): 65-79.
|
[24] |
HUANG Y M, SAGER W, ZHANG J C, et al. Magnetic anomaly map of shatsky rise and its implications for oceanic plateau formation[J]. Journal of Geophysical Research: Solid Earth, 2018. DOI: 10.1029/2019JB019116 .
|
[25] |
THORAM S, SAGER W W, REED W, et al. Improved high-resolution bathymetry map of Tamu massif and southern shatsky rise and its geologic implications[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11). DOI: 10.1029/2022JB024304 .
|
[26] |
HUANG Y M, SAGER W W, TOMINAGA M, et al. Magnetic anomaly map of Ori Massif and its implications for oceanic plateau formation[J]. Earth and Planetary Science Letters, 2018, 501: 46-55.
|
[27] |
SAGER W W, HUANG Y M, TOMINAGA M, et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies[J]. Nature Geoscience, 2019, 12: 661-666.
|
[28] |
SAGER W W, ZHANG J C, KORENAGA J, et al. An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean[J]. Nature Geoscience, 2013, 6(11): 976-981.
|
[29] |
NAKANISHI M, SAGER W W, KLAUS A. Magnetic lineations within shatsky rise, northwest Pacific Ocean: implications for hot spot-triple junction interaction and oceanic plateau formation[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B4): 7 539-7 556.
|
[30] |
NAKANISHI M, TAMAKI K, KOBAYASHI K. Mesozoic magnetic anomaly lineations and seafloor spreading history of the northwestern Pacific[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B11): 15 437-15 462.
|
[31] |
NAKANISHI M, TAMAKI K, KOBAYASHI K. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean[J]. Geophysical Journal International, 1992, 109(3): 701-719.
|
[32] |
TOMINAGA M, SAGER W W, TIVEY M A, et al. Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B7). DOI: 10.1029/2007JB005527 .
|
[33] |
KOPPERS A A P, STAUDIGEL H, WIJBRANS J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion[J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 53-68.
|
[34] |
ZHAO Guochun, ZHANG Guowei. Origin of continents[J]. Acta Geologica Sinica, 2021, 95(1): 1-19.
|
|
赵国春, 张国伟. 大陆的起源[J]. 地质学报, 2021, 95(1): 1-19.
|
[35] |
ZHANG X B, BROWN E L, ZHANG J C, et al. Magmatism of Shatsky Rise controlled by plume-ridge interaction[J]. Nature Geoscience, 2023, 16(11): 1 061-1 069.
|
[36] |
MEYER B, SALTUS R, CHULLIAT A. EMAG2v3: Earth magnetic anomaly grid (2-arc-minute resolution) Version 3 [DS]. NOAA National Centers for Environmental Information, 2017.
|
[37] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]// Medical image computing and computer-assisted intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241.
|
[38] |
WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 6 450-6 458.
|
[39] |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698.
|
[40] |
BARASH G, CASTILLO-EFFEN M, CHHAYA N, et al. Reports of the Workshops Held at the 2019 AAAI Conference on Artificial Intelligence [R]. AI Magazine, 2019, 40(3).
|
[41] |
YANG B, BENDER G, LE Q V, et al. CondConv: conditionally parameterized convolutions for efficient Inference 33rd Conference on Neural Information Processing Systems [C]. Vancouver, Canada, 2019.
|
[42] |
ESTEVES C, SLOTINE J J, MAKADIA A. Scaling spherical CNNs[C]. 40th International Conference on Machine Learning, 2023.
|