地球科学进展 ›› 2025, Vol. 40 ›› Issue (8): 847 -863. doi: 10.11867/j.issn.1001-8166.2025.061

研究论文 上一篇    下一篇

C-A多重分形模型在复杂地球化学叠加场分解中的应用研究——以湖南沃溪金矿区为例
陈海龙1(), 张威1, 欧阳志强1(), 陈平波1, 彭南海2, 李浩3, 肖松春1, 张利军1   
  1. 1. 湖南省遥感地质调查监测所,湖南 长沙 410015
    2. 有色金属矿产地质调查中心南方地质调查所,湖南 长沙 410000
    3. 湖南辰州矿业有限责任公司,湖南 沅陵 419607
  • 收稿日期:2025-07-02 修回日期:2025-07-25 出版日期:2025-08-10
  • 通讯作者: 欧阳志强
  • 基金资助:
    湖南省自然资源厅科技计划项目(2023-0145DZ); 湖南省地质院科研项目(HNGSTP202559)

Application of C-A Multifractal Model in Complex Geochemical Superposition Dield Decomposition—A Case Study of the Woxi Au Mining Area in Hunan Province

Hailong CEHN1(), Wei ZHANG1, Zhiqiang OUYANG1(), Pingbo CHEN1, Nanhai PENG2, Hao LI3, Songchun XIAO1, Lijun ZHANG1   

  1. 1. Hunan Remote Sensing Geological Survey and Monitoring Institute, Changsha 410015, China
    2. Southern Geological Survey of China Non-ferrous Metals Resource Geological Survey, Changsha 410000, China
    3. Hunan Chen Zhou Mining Co. , Ltd. , Yuanling Hunan 419607, China
  • Received:2025-07-02 Revised:2025-07-25 Online:2025-08-10 Published:2025-10-20
  • Contact: Zhiqiang OUYANG
  • Supported by:
    the Science and Technology Plan Project of the Hunan Provincial Department of Natural Resources(2023-0145DZ); The Project of the Hunan Provincial Geological Institute(HNGSTP202559)

矿床的形成普遍伴随有不同地质事件的叠加或改造,成矿物质来源于不同(浅源与深源)的成矿地质事件,其成矿地质意义和相对应的地球化学场的找矿意义不同,多期叠加成矿,地球化学场通常表现为多源复杂叠加场,实现对“多源复杂叠加场”的有效分解,建立地球化学场与其成矿地质事件的耦合,能大幅提高勘查地球化学评价的精度。基于此,运用含量—面积(C-A)多重分形模型对湖南沃溪金矿区土壤介质中的烃汞综合气体测量数据进行了深入分析,通过对不同标度区的数据进行深度挖掘以揭示其关联性,结合研究区金矿的成矿规律,进而探讨了不同类型“叠加场”的成矿机理,开展了深部找矿潜力评价。研究结果表明:①湖南沃溪金矿区土壤地球化学异常多重分形特征模式存在2种类型:由2条直线段拟合而成的分形模式,称之为模型Ⅰ;由3条直线段拟合而成的分形模式,称之为模型Ⅱ,这种多重分形模型显示出研究区存在2期叠加成矿的可能。②通过对模型Ⅰ和模型Ⅱ中不同标度区成矿元素(Au)—有机烃(CH4和C2H6等)—汞(Hg)等化学元素之间关联性的深度挖掘,发现二者均存在两种不同成矿作用形成的地球学叠加异常:“同生叠加异常”代表区域成矿作用,浅源流体(变质流体和大气降水等)仅带来含矿地层中成矿物质参与Au的成矿,该类异常因受成矿物质来源限制,可能会形成金矿点或小型金矿床,深部找大矿的潜力相对较小;“深源叠加异常”代表受板块碰撞—离散或板内地幔热柱上涌及深大断裂搅动,地幔流体由深部向上运移,经多层次流体混合演化带来大量深部成矿物质对“同生叠加异常”再次叠加成矿,深部找矿潜力较大。研究成果与大量的工程验证高度契合,说明基于C-A多重分形模型深度挖掘的地球化学多源复杂叠加场分解,取得了更好的应用效果,为地球化学深部找矿潜力评价提供了新的研究思路和方法。

The formation of mineral deposits is generally accompanied by the superposition or transformation of different geological events, and involving varying sources (shallow and deep) of ore-forming materials. The geological significance of these ore-forming events and their corresponding geochemical fields have various implications for mineral exploration. Multistage superimposed mineralization typically manifests as a complex superimposed field comprising multiple sources in geochemical contexts. Effectively decomposing the ‘multi-source complex superimposed field’ and establishing the coupling between the geochemical field and its corresponding ore-forming geological events can greatly enhance the accuracy of geochemical evaluation in exploration. Based on this concept, this study utilized the C-A multifractal model to analyze hydrocarbon-mercury comprehensive gas measurement data from soil medium in the Woxi gold mining area of Hunan. By extensively exploring the correlations of data at different scales and combining the mineralization patterns of gold deposits in the study area, the study further investigated the mineralization mechanisms of various types of “superimposed fields” and conducted an assessment of deep-seated mineral exploration potential. The results indicate that: ① The study area exhibits two characteristic multifractal patterns of soil geochemical anomalies, formed by fitting either two (termed Model Ⅰ) or three (termed Model II) straight-line segments, respectively. This multifractal model suggests the possibility of two periods of overlapping mineralization in the study area. ② Examination of correlations between mineralization elements (Au), organic hydrocarbons (CH4, C2H6, etc.), and other chemical elements in the different scaling regions of Models I and II revealed that both showed two distinct superimposed geochemical anomalies, formed by different mineralization processes. The “syngenetic superimposed anomaly” represents regional mineralization, in which shallow-source fluids (metamorphic fluids, atmospheric precipitation, etc.) only bring mineralized materials from ore-forming strata to participate in Au mineralization. This type of anomaly, limited by the source of mineralization materials, may form gold points or small gold deposits, with correspondingly low potential for discovering large deposits. The “deep-source superimposed anomaly”, on the other hand, is influenced by plate collisions, dispersion, or the upwelling of mantle heat columns and the disturbance of deep large fractures. These processed facilitate the migration of mantle fluids from depth, and their evolution through multi-level fluid mixing, which brings a substantial amount of deep ore-forming materials to further superimpose mineralization on the “syngenetic superimposed anomaly”, thus presenting considerable potential for deep mineral discovery. The results align closely with extensive engineering validation, indicating that the decomposition of complex geochemically superimposed fields based on the C-A multifractal model has achieved better application results, providing new research ideas and methods for evaluating the potential of deep mineral exploration in geochemistry.

中图分类号: 

图1 江南造山带及沃溪矿区地质构造简图 (a)江南造山带(据参考文献[19]修改);(b)沃溪矿区地质构造简图(据参考文献[20]修改)
Fig. 1 The Jiangnan orogenic belt and geological structure schematic of the Woxi mining area (a) The Jiangnan Orogenic Belt (modified after reference [19]); (b) Geological structure schematic of the Woxi mine area (modified after reference [20])
图2 烃汞测量工程布置图
Fig. 2 Diagram of the hydrocarbon mercury measurement engineering layout
表1 湖南沃溪金矿鱼儿山矿段不同地质体烃类组分含量特征
Table 1 Content characteristics of hydrocarbon component in different geobodies of mine district in the Yuershan section of Woxi Gold MineHunan Province
表2 湖南沃溪金矿鱼儿山矿段各指标相关系数统计表
Table 2 Statistical table of correlation coefficients of various indicators in the Yuershan section of Woxi Gold MineHunan Province
表3 湖南沃溪金矿外围矿化体各指标相关系数统计表
Table 3 Statistical table of correlation coefficients of various indicators in the peripheral mineralization body of Woxi Gold MineHunan Province
图3 不同元素(组分)地球化学二段多重分形及模型
Fig. 3 Geochemical multi-elementcomponenttwo-stage analysis and model I diagram
图4 不同元素(组分)地球化学三段多重分形及模型
Fig. 4 Geochemical multi-elementcomponentthird-stage multifractal analysis and model II diagram
图5 元素(组分)地球化学及工程验证图
Fig. 5 Elementcomponentgeochemical and engineering validation diagram
表4 不同异常带C-A多重分形模型对应关系
Table 4 The correspondence relationship of different abnormal bands C-A multi-fractal model
表5 号异常带土壤各指标相关系数统计表
Table 5 Statistical table of correlation coefficients for various indicators of soil in area Ⅰ
表6 号异常带土壤各指标相关系数统计表
Table 6 Statistical table of correlation coefficients for various indicators of soil in area Ⅱ
表7 号异常带土壤各指标相关系数统计表
Table 7 Statistical table of correlation coefficients for various indicators of soil in area Ⅲ
表8 号异常带土壤各指标相关系数统计表
Table 8 Statistical table of correlation coefficients for various indicators of soil in area Ⅳ
图6 R型聚类分析谱系图
Fig. 6 R-type clustering analysis spectrum diagram
表9 因子分析—正交旋转载荷矩阵结果
Table 9 The results of factor analysis-orthogonal rotation load matrix
图7 号异常带-T8线深源叠加异常工程验证24
Fig. 7 Anomaly band No. II-T8 line deep source stacking anomaly engineering verification24
图8 号异常带-T4线同生叠加异常工程验证24
Fig. 8 Anomaly band No. III-T4 Line coexistent overlay anomaly engineering verification24
表10 工程验证及金矿(化)体地球化学特征
Table 10 Engineering validation and geochemical characteristics of gold deposits
[1]
BAO Zhengyu LI Fanglin JIA Xianqiao. Methodology of temporal-spatial structure of geochemical fields[J]. Earth Sciences—Journal of China University of Geosciences199924(3): 282-286.
鲍征宇, 李方林, 贾先巧.地球化学场时—空结构分析的方法体系[J]. 地球科学——中国地质大学学报199924(3): 282-286.
[2]
CHEN Hailong YANG Xiaohong HE Yongmiao, et al. Metallogenic geological characteristics and multi-information prospecting model of Woxi gold antimony tungsten deposit, Hunan Province[M]. Changsha: Central South University Press, 2022.
陈海龙, 杨晓弘, 何永淼, 等. 湖南沃溪金锑钨矿床成矿地质特征及多元信息找矿模式[M]. 长沙: 中南大学出版社, 2022.
[3]
RUAN Tianjian ZHU Youguang. Geochemical prospecting[M]. Beijing: Geology Press,1985: 169-185.
阮天健, 朱有光. 地球化学找矿[M]. 北京: 地质出版社, 1985: 169-185.
[4]
WU Chuanbi LI Hongxiang. A new approach to geochemical field and mineralization prediction research (part I) [J]. Foreign Geoexploration Technology1994(4): 18-24.
吴传璧, 李洪祥. 地球化学场与成矿预测研究的新思路(上)[J]. 国外地质勘探技术1994(4): 18-24.
[5]
WU Chuanbi LI Hongxiang. A new approach to geochemical field and mineralization prediction research (part Ⅱ) [J]. Foreign Geoexploration Technology1994 (5): 14-18.
吴传璧, 李洪祥. 地球化学场与成矿预测研究的新思路(下)[J]. 国外地质勘探技术1994(5): 14-18.
[6]
CHEN Guoneng. Ceochemical field of the elements and its geo-implications[J]. Geochimica199827(6): 566-574.
陈国能. 元素地球化学场及其地学意义[J]. 地球化学199827(6): 566-574.
[7]
FANG Weixuan. A discussion on research methods of geochemical fields [J]. Northwestern Geology199932(1): 28-35.
方维萱. 试论地球化学场的研究方法[J]. 西北地质199932(1): 28-35.
[8]
REN Tianxiang WANG Mingqi. Basic characteristics of surficial geochemical fields in China [J]. Mineral Deposits200423(): 41-53.
任天祥, 汪明启. 中国浅表地球化学场基本特征[J]. 矿床地质200423(): 41-53.
[9]
YU Chongwen. The system and methodology of the discipline of geochemistry [J]. Earth Science Journal of Wuhan College of Geology198611(4): 331-339.
於崇文. 地球化学的理论体系与方法论[J]. 地球科学——武汉地质学院学报198611(4): 331-339.
[10]
CHENG Q M AGTERBERG F P BALLANTYNE S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration199451(2): 109-130.
[11]
CHENG Q M XU Y G GRUNSKY E. Integrated spatial and spectrum method for geochemical anomaly separation[J]. Natural Resources Research20009(1): 43-52.
[12]
CHEN G X CHENG Q M. Fractal-based wavelet filter for separating geophysical or geochemical anomalies from background[J]. Mathematical Geosciences201850(3): 249-272.
[13]
LI Qingmou CHENG Qiuming. Fractal singular-value(egin-value)decomposition method for geophysical and geochemical anomaly reconstruction[J]. Earth Science—Journal of China University of Geosciences200429(1): 109-118.
李庆谋, 成秋明. 分形奇异(特征)值分解方法与地球物理和地球化学异常重建[J]. 地球科学——中国地质大学学报200429(1): 109-118.
[14]
WEN Zhanjiu GAO Xing YAO Zhenxing. Multifractal mode study of geochemical fields based on “element area-concentration” method[J]. Advances in Earth Science200722(6): 598-604.
文战久, 高星, 姚振兴. 基于“元素含量—面积”模型方法的地球化学场的多重分形模式分析[J]. 地球科学进展200722(6): 598-604.
[15]
LIU Yongsheng LUO Xianrong GAO Wen, et al. Identification of geochemical anomalies in the Hongyahuo area, Qinghai Province based on the component data analysis and multifractal filtering technique[J]. Bulletin of Mineralogy, Petrology and Geochemistry202342(3): 602-614, 674.
刘永胜, 罗先熔, 高文, 等. 基于成分数据分析和多重分形滤波技术识别青海红垭豁地区地球化学异常[J]. 矿物岩石地球化学通报202342(3): 602-614, 674.
[16]
BI Rui LI Wenjun HE Junjiang, et al. Identification of Au geochemical anomalies in the Wulonggou area of Qinghai Province based on the W-N multifractal model[J]. Bulletin of Mineralogy, Petrology and Geochemistry202443(5): 998-1 008.
毕锐, 李文君, 何俊江, 等. 青海省五龙沟地区基于W-N多重分形模型的Au地球化学异常识别[J]. 矿物岩石地球化学通报202443(5): 998-1 008.
[17]
MAO Xiancheng ZHANG Xianyang LIU Zhankun, et al. Application of multifractal model in the identification of geochemical anomalies in the northwestern Jiaodong Peninsula[J]. Computing Techniques for Geophysical and Geochemical Exploration202244(2): 213-223.
毛先成, 张显洋, 刘占坤, 等. 胶西北金矿集区地球化学多重分形模型与异常识别[J]. 物探化探计算技术202244(2): 213-223.
[18]
NIU Xugang ZHOU Hong ZHANG Wengang, et al. Comparative application of S-A multifractal method to geochemical anomaly delineation: a case study of the Wenkang area, Gansu Province[J]. Geology and Exploration202359(4): 817-827.
牛旭刚, 周宏, 张文纲, 等. S-A多重分形法在地球化学异常圈定中的对比应用: 以甘肃文康地区为例[J]. 地质与勘探202359(4): 817-827.
[19]
LI Bin XU Deru BAI Daoyuan, et al. Structural deformation, metallogenic epoch and genetic mechanism of the Woxi Au-Sb-W deposit, western Hunan Province, South China[J]. Science China: Earth Sciences202265(12): 2 358-2 384.
李彬,许德如,柏道远, 等. 湘西沃溪金—锑—钨矿床构造变形、成矿时代及成因机制[J].中国科学:地球科学202252(12): 2 479-2 505.
[20]
PENG Qiaoliang SU Te LI Tianhu, et al. Geological characteristics and metallogenic geological conditions of the Woxi gold-antimony-tungsten deposit in Yuanling, Hunan Province[J]. Northwestern Geology202356(6): 262-273.
彭桥梁, 苏特, 李天虎, 等. 湖南沅陵沃溪金锑钨矿床地质特征与成矿地质条件探讨[J]. 西北地质202356(6): 262-273.
[21]
MAO Jingwen LI Xiaofeng ZHANG Ronghua, et al. Mantle-derived fluid-related ore-forming system [M]. Beijing: China Land Press, 2004.
毛景文, 李晓峰, 张荣华, 等. 深部流体成矿系统[M]. 北京: 中国大地出版社, 2004.
[22]
PENG Nanhai. Geological and geochemical characteristics and genesis study of the Woxi gold-antimony-tungsten deposit in Yuanling, Hunan [D]. Changsha: Central South University, 2017.
彭南海. 湖南沅陵沃溪金—锑—钨矿床地质地球化学特征及成因研究[D]. 长沙: 中南大学, 2017.
[23]
CHEN Hailong XIAO Qipeng LIANG Juhong. The application of hydrocarbon and superimposed halo method to the Woxi gold deposit, Hunan Province[J]. Geophysical and Geochemical Exploration202145(2): 266-280.
陈海龙, 肖其鹏, 梁巨宏. 湖南沃溪金矿区及其外围烃汞叠加晕找矿方法的应用效果[J]. 物探与化探202145(2): 266-280.
[24]
CHEN Hailong XIAO Qipeng XU Zhibin, et al. Application of hydrocarbon-mercury superimposed halo method in red beds: a case study of the Woxi gold deposit, Hunan Province[J]. Geophysical and Geochemical Exploration202246(2): 323-336.
陈海龙, 肖其鹏, 徐质彬, 等. 烃汞叠加晕找矿法在湖南沃溪金矿红岩溪矿段勘查中的应用及工程验证[J]. 物探与化探202246(2): 323-336.
[25]
CHEN Hailong XU Zhibin YANG Xiaohong, et al. Application of hydrocarbon-mercury superimposed halo method in deep prospecting of Wangu gold deposit and its periphery in Hunan Province[J]. Gold Science and Technology202230(3): 366-381.
陈海龙, 徐质彬, 杨晓弘, 等. 烃汞叠加晕法在湖南万古金矿区及其外围深部找矿中的应用[J]. 黄金科学技术202230(3): 366-381.
[26]
CHEN Hailong QUAN Yongbin CHEN Pingbo, et al. Organic geochemical characteristics and their metallogenic indication of gold deposits in Xuefeng uplift zone: a case study of Woxi and Wangu gold deposits[J]. Bulletin of Geological Science and Technology202544(4): 233-255.
陈海龙, 权永彬, 陈平波, 等. 雪峰隆起带金矿床有机地球化学特征及其成矿指示意义: 以沃溪和万古金矿为例[J]. 地质科技通报202544(4): 233-255.
[27]
ZHAO Yuxiang. Decomposition of geochemical field and its effect of application[J]. Computing Techniques for Geophysical and Geochemical Exploration198810(3): 185-194.
赵玉祥. 地球化学场的分解及应用效果[J]. 物探化探计算技术198810(3): 185-194.
[28]
MENG Xianwei DOU Mingxiao YU Xianchuan. Theories and methods on the dispersion of geochemical field[J]. Advances in Earth Science19949(6): 59-64.
孟宪伟, 窦明晓, 余先川. 地球化学场分解的理论与方法[J]. 地球科学进展19949(6): 59-64.
[29]
YIN Hongfu ZHANG Wenhuai ZHANG Zhijian, et al. Organic mineralization system[M]. Wuhan: China University of Geosciences Press, 1999.
殷鸿福, 张文淮, 张志坚, 等. 生物成矿系统论[M]. 武汉: 中国地质大学出版社, 1999.
[1] 邓腾, 丁正鹏, 许德如. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用[J]. 地球科学进展, 2021, 36(10): 1077-1091.
[2] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[3] 崔月菊, 李静, 王燕艳, 刘永梅, 陈志, 杜建国. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展, 2015, 30(2): 284-294.
[4] 王翠芝. 紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8): 897-912.
[5] 胡庆成,吕新彪,高奇,刘洪,朱江,杨恩林. 热液金矿金的溶解和迁移研究进展[J]. 地球科学进展, 2012, 27(8): 847-856.
[6] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[7] 张国见,张成江,代万贵,张兴华,宋 昊. 川西北马脑壳金矿床控矿因素及其成因意义[J]. 地球科学进展, 2012, 27(10): 1068-1073.
[8] 刘世翔,薛林福,孙丰月,丁清峰,孙晶. 专家证据权重法在矿产评价中的应用——以黑龙江省西北部金矿为例[J]. 地球科学进展, 2008, 23(8): 848-855.
[9] 文战久,高 星,姚振兴. 基于“元素含量—面积”模型方法的地球化学场的多重分形模式分析[J]. 地球科学进展, 2007, 22(6): 598-604.
[10] 杨茂森;黎清华;杨海巍. 分形方法在地球化学异常分析中的运用研究——以胶东矿集区为例[J]. 地球科学进展, 2005, 20(7): 809-814.
[11] 翟伟;李兆麟;黄栋林. 与剪切带有关金矿床成矿流体研究进展[J]. 地球科学进展, 2004, 19(2): 260-267.
[12] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
[13] 马跃良. 遥感生物地球化学找金矿方法研究进展[J]. 地球科学进展, 2002, 17(4): 521-527.
[14] 赵文金,万晓樵. 藏南定日地区白垩纪中期地球化学异常对海平面上升的响应[J]. 地球科学进展, 2002, 17(3): 331-338.
[15] 陈衍景 富士谷 卢冰 季海章 胡受奚 胡志宏 于昕. 金矿成因类型和系列的划分[J]. 地球科学进展, 1992, 7(3): 73-.
阅读次数
全文


摘要