地球科学进展 ›› 2025, Vol. 40 ›› Issue (8): 831 -846. doi: 10.11867/j.issn.1001-8166.2025.064

研究论文 上一篇    下一篇

北极陆地环境新型有机污染物的传输及其影响
陈心怡1,3(), 崔腾飞2,3, 潘忆遥1,3, 陈一帆1,3, 李紫函2,3, 伏钱琛2,3, 杨瑞强1,3()   
  1. 1. 中国科学院生态环境研究中心 环境化学与环境毒理全国重点实验室,北京 100085
    2. 国科大杭州 高等研究院环境学院,浙江 杭州 310024
    3. 中国科学院大学 资源与环境学院,北京 100049
  • 收稿日期:2025-05-26 修回日期:2025-07-07 出版日期:2025-08-10
  • 通讯作者: 杨瑞强
  • 基金资助:
    国家重点研发计划项目(2020YFA0608503)

Emerging Organic Contaminants in the Arctic Terrestrial Environments: Occurrence, Sources and Associated Risks

Xinyi CHEN1,3(), Tengfei CUI2,3, Yiyao PAN1,3, Yifan CHEN1,3, Zihan LI2,3, Qianchen FU2,3, Ruiqiang YANG1,3()   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    2. School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
    3. College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-05-26 Revised:2025-07-07 Online:2025-08-10 Published:2025-10-20
  • Contact: Ruiqiang YANG
  • Supported by:
    the National Key Research and Development Program of China(2020YFA0608503)

新型有机污染物或被大量应用于各种消费品中并持续释放,或在工业生产过程中作为副产物被无意排放,因其具有持久性和长距离传输的特性,已在北极环境中被广泛检出。目前已有综述总结了北极环境中新型有机污染物的赋存特征、环境行为和生态风险,但其主要针对海洋环境,而对陆地环境中新型有机污染物的总结与讨论有限。与海洋环境相比,陆地环境中的新型有机污染物主要来源于大气长距离传输,二次释放的来源贡献大,污染物在其中的赋存特征、传输和来源及环境影响方面存在差异。首先综述了当前高度关注的新型有机污染物(如OPEs、PFASs、NBFRs和PCNs)在北极陆地环境的赋存特征、变化趋势及其来源解析。研究表明,北极陆地环境中新型有机污染物总体浓度水平较低,其时间变化趋势与物质生产使用直接相关;人类活动排放与气候变化影响下的污染物二次释放,共同加剧了北极陆地环境新型有机污染物来源的复杂性。在此基础上,通过分析新型有机污染物在陆地植被、淡水鱼类和陆地动物中的富集情况,并结合人体暴露评估结果,综合评估其对生态环境和人体健康的潜在风险。最后,针对北极陆地环境新型有机污染物研究现存的问题与挑战展望了未来的研究重点:目前研究仍局限于单一介质的浓度赋存,报道的有机污染物种类仍然有限,缺乏对气候驱动再释放过程及环境效应的系统认识;未来需要加强多介质迁移归趋,结合非靶向筛查技术识别北极高风险污染物,重点关注气候变暖背景下污染物的再释放及其生态与健康风险。

Emerging Organic Contaminants (EOCs) are used extensively in a wide range of consumer products, and are continuously released into the environment or inadvertently emitted as by-products during industrial processes. Owing to their environmental persistence and long-range environmental transport characteristics, EOCs have become ubiquitous and have been widely detected, even in remote regions of the Arctic. Although previous reviews have addressed the occurrence, environmental behavior, and ecological risks of EOCs in the Arctic, they have largely concentrated on marine ecosystems, leaving terrestrial environments comparatively understudied. Compared with the marine environment, the predominant input pathway of EOCs is attributed to long-range atmospheric transport, with significant contributions from secondary emissions. These differences lead to distinct patterns in the occurrence, transport pathways, sources, and environmental impacts of EOCs in terrestrial systems. This review summarizes the occurrence characteristics, temporal trends, and sources of high-concern EOCs, including OPEs, PFASs, NBFRs, and PCNs, in the Arctic terrestrial environment. EOC concentrations in terrestrial compartments of the Arctic remain relatively low, and their temporal dynamics closely reflect historical and ongoing production and usage patterns, emphasizing the complex interplay between local anthropogenic emissions and secondary releases driven by climate change. Through comprehensive analysis across multiple trophic levels—including terrestrial vegetation, freshwater fish, and terrestrial wildlife, as well as human exposure pathways—this review evaluates the profound ecological and health implications of EOC bioaccumulation. Finally, this review outlines future research priorities in light of the current problems and challenges involved in studying EOCs in the Arctic terrestrial environment. Existing studies remain limited to concentration profiles in single media, with only a narrow range of contaminants reported, and lack a systematic understanding of climate-driven re-emission processes and their environmental effects. Future research should therefore strengthen multimedia investigations of contaminant transport and fate, apply non-target screening techniques to identify high-risk contaminants in the Arctic, and place particular emphasis on climate warming-induced re-emissions and their associated ecological and health risks.

中图分类号: 

表1 北极陆地环境与其他典型区域各环境介质中OPEs的浓度比较
Table 1 Concentration comparison of OPEs in various environmental media in Arctic terrestrial environments compared with other typical regions
表2 北极陆地环境与其他典型区域各环境介质中PFASs的浓度比较
Table 2 Concentrations comparison of PFASs in various environmental media in Arctic terrestrial environments compared with other typical regions
图1 新型有机污染物在北极陆地环境中的浓度水平 朗伊尔城1:指该地区大气样品的气相;朗伊尔城2:指该地区大气样品的颗粒相。
Fig. 1 Concentration levels of emerging organic contaminants in Arctic terrestrial environments Longyearbyen 1 refers to the gas phase of atmospheric samples in this region; Longyearbyen 2 refers to the particle phase of atmospheric samples in this region.
图2 北极陆地环境新型有机污染物的传输和来源示意图
Fig. 2 Schematic diagram of emerging organic pollutant transport and sources in Arctic terrestrial environments
[40]
PRATS R M van DROOGE B L FERNÁNDEZ P, et al. Passive water sampling and air-water diffusive exchange of long-range transported semi-volatile organic pollutants in high-mountain lakes[J]. The Science of the Total Environment2023, 860. DOI:10.1016/j.scitotenv.2022.160509 .
[41]
WANG Y S ZHAO Y J HAN X, et al. A review of organophosphate esters in aquatic environments: levels, distribution, and human exposure[J]. Water202315(9). DOI:10.3390/w15091790 .
[42]
GAO X Z XU Y P MA M, et al. Distribution, sources and transport of organophosphorus flame retardants in the water and sediment of Ny-Ålesund, Svalbard, the Arctic[J]. Environmental Pollution2020, 264. DOI:10.1016/j.envpol.2020.114792 .
[43]
MA Y X LUO Y C ZHU J C, et al. Seasonal variation and deposition of atmospheric organophosphate esters in the coastal region of Shanghai, China[J]. Environmental Pollution2022, 300. DOI:10.1016/j.envpol.2022.118930 .
[44]
HAO Y F XIONG S Y WANG P, et al. Novel brominated and organophosphate flame retardants in the atmosphere of Fildes Peninsula, West Antarctica: continuous observations from 2011 to 2020[J]. Journal of Hazardous Materials2022, 440. DOI:10.1016/j.jhazmat.2022.129776 .
[45]
FU J FU K H HU B Y, et al. Source identification of organophosphate esters through the profiles in proglacial and ocean sediments from Ny-Ålesund, the Arctic[J]. Environmental Science & Technology202357(5): 1 919-1 929.
[46]
HE J H LI J F MA L Y, et al. Large-scale distribution of organophosphate esters (flame retardants and plasticizers) in soil from residential area across China: implications for current level[J]. Science of the Total Environment2019, 697. DOI:10.1016/j.scitotenv.2019.133997 .
[47]
SALAMOVA A HERMANSON M H HITES R A. Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site[J]. Environmental Science & Technology201448(11): 6 133-6 140.
[48]
OKEME J O RODGERS T F M JANTUNEN L M, et al. Examining the gas-particle partitioning of organophosphate esters: how reliable are air measurements?[J]. Environmental Science & Technology201852(23): 13 834-13 844.
[49]
SALAMOVA A MA Y N VENIER M, et al. High levels of organophosphate flame retardants in the great lakes atmosphere[J]. Environmental Science & Technology Letters20141(1): 8-14.
[50]
WANG C WANG P ZHAO J P, et al. Atmospheric organophosphate esters in the western Antarctic Peninsula over 2014-2018: occurrence, temporal trend and source implication[J]. Environmental Pollution2020, 267. DOI:10.1016/j.envpol.2020.115428 .
[51]
DAI S Y ZHANG G X DONG C, et al. Occurrence, bioaccumulation and trophodynamics of per- and Polyfluoroalkyl Substances (PFAS) in terrestrial and marine ecosystems of Svalbard, Arctic[J]. Water Research2025, 271. DOI:10.1016/j.watres.2024.122979 .
[52]
RANKIN K MABURY S A JENKINS T M, et al. A North American and global survey of perfluoroalkyl substances in surface soils: distribution patterns and mode of occurrence[J]. Chemosphere2016161: 333-341.
[53]
HUANG K LI Y L BU D, et al. Trophic magnification of short-chain per- and polyfluoroalkyl substances in a terrestrial food chain from the Tibetan Plateau[J]. Environmental Science & Technology Letters20229(2): 147-152.
[54]
XU C Y XU C M ZHOU Q, et al. Spatial distribution, isomer signature and air-soil exchange of legacy and emerging poly- and perfluoroalkyl substances[J]. Environmental Pollution2024, 343. DOI:10.1016/j.envpol.2023.123222 .
[55]
CABRERIZO A MUIR D C G de SILVA A O, et al. Legacy and emerging Persistent Organic Pollutants (POPs) in terrestrial compartments in the high Arctic: sorption and secondary sources[J]. Environmental Science & Technology201852(24): 14 187-14 197.
[56]
STOCK N L FURDUI V I MUIR D C G, et al. Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination[J]. Environmental Science & Technology200741(10): 3 529-3 536.
[57]
CAI M H XIE Z Y MÖLLER A, et al. Polyfluorinated compounds in the atmosphere along a cruise pathway from the Japan Sea to the Arctic Ocean[J]. Chemosphere201287(9): 989-997.
[58]
del VENTO S HALSALL C GIOIA R, et al. Volatile per- and polyfluoroalkyl compounds in the remote atmosphere of the western Antarctic Peninsula: an indirect source of perfluoroalkyl acids to Antarctic waters?[J]. Atmospheric Pollution Research20123(4): 450-455.
[59]
XU Z L LI L X Y HENKELMANN B, et al. Occurrence of fluorotelomer alcohols at two Alpine summits: sources, transport and temporal trends[J]. Environmental Chemistry201714(4): 215-223.
[60]
LI J del VENTO S SCHUSTER J, et al. Perfluorinated compounds in the Asian atmosphere[J]. Environmental Science & Technology201145(17): 7 241-7 248.
[61]
BOSSI R VORKAMP K SKOV H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland[J]. Environmental Pollution2016217: 4-10.
[62]
CAI M H YANG H Z XIE Z Y, et al. Per- and polyfluoroalkyl substances in snow, lake, surface runoff water and coastal seawater in Fildes Peninsula, King George Island, Antarctica[J]. Journal of Hazardous Materials2012209: 335-342.
[63]
CHEN M K WANG C F WANG X P, et al. Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: insights into the impact of global warming on the cycling of emerging pollutants[J]. Journal of Geophysical Research: Atmospheres2019124(13): 7 442-7 456.
[64]
LI J LI X L ZHU Y, et al. The first survey of legacy and emerging per- and Polyfluoroalkyl Substances (PFAS) in Hulun Lake, China: Occurrence, sources, and environmental impacts[J]. Emerging Contaminants202511(1). DOI:10.1016/j.emcon.2024.100431 .
[65]
LESCORD G L KIDD K A de SILVA A O, et al. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic[J]. Environmental Science & Technology201549(5): 2 694-2 702.
[66]
KWOK K Y YAMAZAKI E YAMASHITA N, et al. Transport of Perfluoroalkyl Substances (PFAS) from an Arctic glacier to downstream locations: implications for sources[J]. Science of the Total Environment2013447: 46-55.
[67]
SARITHA V K KRISHNAN K P MOHAN M. Perfluorooctanoic acid in the sediment matrices of Arctic fjords, Svalbard[J]. Marine Pollution Bulletin2023, 192. DOI:10.1016/j.marpolbul.2023.115061 .
[68]
AWAD E ZHANG X M BHAVSAR S P, et al. Long-term environmental fate of perfluorinated compounds after accidental release at Toronto airport[J]. Environmental Science & Technology201145(19): 8 081-8 089.
[69]
LI T Y CHEN Y L WANG Y L, et al. Occurrence, source apportionment and risk assessment of perfluorinated compounds in sediments from the longest river in Asia[J]. Journal of Hazardous Materials2024, 467. DOI:10.1016/j.jhazmat.2024.133608 .
[70]
WONG F SHOEIB M KATSOYIANNIS A, et al. Assessing temporal trends and source regions of per- and Polyfluoroalkyl Substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP)[J]. Atmospheric Environment2018172: 65-73.
[71]
PERSAUD D CRISCITIELLO A S SPENCER C, et al. A 50 year record for perfluoroalkyl acids in the high Arctic: implications for global and local transport[J]. Environmental Science Processes & Impacts202426(9): 1 543-1 555.
[72]
HARTZ W F BJÖRNSDOTTER M K YEUNG L W Y, et al. Levels and distribution profiles of per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core[J]. Science of the Total Environment2023, 871. DOI:10.1016/j.scitotenv.2023.161830 .
[73]
MACINNIS J J FRENCH K MUIR D C G, et al. Emerging investigator series: a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic[J]. Environmental Science Processes & Impacts201719(1): 22-30.
[74]
PICKARD H M CRISCITIELLO A S SPENCER C, et al. Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record[J]. Atmospheric Chemistry and Physics201818(7): 5 045-5 058.
[75]
KIRCHGEORG T DREYER A GABRIELLI P, et al. Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the Eastern Alps[J]. Environmental Pollution2016218: 804-812.
[76]
XIE Z Y WANG Z MAGAND O, et al. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic[J]. Science of the Total Environment2020, 741. DOI:10.1016/j.scitotenv.2020.140200 .
[77]
YOUNG C J FURDUI V I FRANKLIN J, et al. Perfluorinated acids in Arctic snow: new evidence for atmospheric formation[J]. Environmental Science & Technology200741(10): 3 455-3 461.
[1]
LIANG C ZENG M X YUAN X Z, et al. An overview of current knowledge on organophosphate di-esters in environment: analytical methods, sources, occurrence, and behavior[J]. Science of the Total Environment2024, 906. DOI:10.1016/j.scitotenv.2023.167656 .
[2]
XIE Z Y ZHANG P WU Z L, et al. Legacy and emerging organic contaminants in the polar regions[J]. Science of the Total Environment2022, 835. DOI:10.1016/j.scitotenv.2022.155376 .
[3]
FU J FU K H CHEN Y, et al. Long-range transport, trophic transfer, and ecological risks of organophosphate esters in remote areas[J]. Environmental Science & Technology202155(15): 10 192-10 209.
[4]
XIONG P YAN X T ZHU Q Q, et al. A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants[J]. Environmental Science & Technology201953(23): 13 551-13 569.
[5]
MACDONALD R W HARNER T FYFE J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data[J]. Science of the Total Environment2005342(1/2/3): 5-86.
[6]
EWALD G LARSSON P LINGE H, et al. Biotransport of organic pollutants to an inland Alaska Lake by migrating sockeye salmon (Oncorhynchus nerka)[J]. Arctic199851(1): 40-47.
[7]
JOERSS H XIE Z Y WAGNER C C, et al. Transport of legacy perfluoroalkyl substances and the replacement compound HFPO-DA through the Atlantic gateway to the Arctic Ocean—Is the Arctic a sink or a source?[J]. Environmental Science & Technology202054(16): 9 958-9 967.
[8]
MA Y X XIE Z Y HALSALL C, et al. The spatial distribution of organochlorine pesticides and halogenated flame retardants in the surface sediments of an Arctic fjord: the influence of ocean currents vs. glacial runoff[J]. Chemosphere2015119: 953-960.
[9]
CASAL P CASAS G VILA-COSTA M, et al. Snow amplification of persistent organic pollutants at coastal Antarctica[J]. Environmental Science & Technology201953(15): 8 872-8 882.
[10]
WANIA F MACKAY D. Peer reviewed: tracking the distribution of persistent organic pollutants[J]. Environmental Science & Technology199630(9): 390A-396A.
[11]
GALBÁN-MALAGÓN C BERROJALBIZ N OJEDA M J, et al. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic[J]. Nature Communications2012, 3. DOI: 10.1038/ncomms1858 .
[12]
BOSSI R, DAM M, RIGÉT F F. Perfluorinated Alkyl Substances (PFAS) in terrestrial environments in Greenland and Faroe Islands[J]. Chemosphere2015129: 164-169.
[13]
LÉANDRI-BRETON D J JOUANNEAU W LEGAGNEUX P, et al. Winter tracking data suggest that migratory seabirds transport per- and polyfluoroalkyl substances to their Arctic nesting site[J]. Environmental Science & Technology202458(29): 12 909-12 920.
[14]
JOUANNEAU W LÉANDRI-BRETON D J CORBEAU A, et al. A bad start in life?Maternal transfer of legacy and emerging poly- and perfluoroalkyl substances to eggs in an Arctic seabird[J]. Environmental Science & Technology202256(10): 6 091-6 102.
[15]
VERREAULT J LETCHER R J GENTES M L, et al. Unusually high Deca-BDE concentrations and new flame retardants in a Canadian Arctic top predator, the glaucous gull[J]. Science of the Total Environment2018639: 977-987.
[16]
VORKAMP K BOSSI R RIGÉT F F, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota[J]. Environmental Pollution2015196: 284-291.
[17]
BRAUNE B M MUIR D C G. Declining trends of polychlorinated naphthalenes in seabird eggs from the Canadian Arctic, 1975-2014[J]. Environmental Science & Technology201751(7): 3 802-3 808.
[18]
MÜLLER C E de SILVA A O SMALL J, et al. Biomagnification of perfluorinated compounds in a remote terrestrial food chain: lichen-caribou-wolf[J]. Environmental Science & Technology201145(20): 8 665-8 673.
[19]
MORRIS A D MUIR D C G SOLOMON K R, et al. Bioaccumulation of polybrominated diphenyl ethers and alternative halogenated flame retardants in a vegetation-caribou-wolf food chain of the Canadian Arctic[J]. Environmental Science & Technology201852(5): 3 136-3 145.
[78]
BENSKIN J P PHILLIPS V st LOUIS V L, et al. Source elucidation of perfluorinated carboxylic acids in remote alpine lake sediment cores[J]. Environmental Science & Technology201145(17): 7 188-7 194.
[79]
WANG Z Y COUSINS I T SCHERINGER M, et al. Global emission inventories for C4-C14 Perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part I: production and emissions from quantifiable sources[J]. Environment International201470: 62-75.
[80]
LI L ZHAI Z H LIU J G, et al. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012[J]. Chemosphere2015129: 100-109.
[81]
MACINNIS J J LEHNHERR I MUIR D C G, et al. Characterization of perfluoroalkyl substances in sediment cores from High and Low Arctic lakes in Canada[J]. Science of the Total Environment2019666: 414-422.
[82]
PICKARD H M CRISCITIELLO A S PERSAUD D, et al. Ice core record of persistent short-chain fluorinated alkyl acids: evidence of the impact from global environmental regulations[J]. Geophysical Research Letters202047(10). DOI:10.1029/2020GL087535 .
[83]
BEZEAU P SHARP M BURGESS D, et al. Firn profile changes in response to extreme 21st-century melting at Devon Ice Cap, Nunavut, Canada[J]. Journal of Glaciology201359(217): 981-991.
[84]
WANG R CHENG H G BIAN Z Y. Global occurrence and environmental behavior of novel brominated flame retardants in soils: current knowledge and future perspectives[J]. Journal of Hazardous Materials2024, 480. DOI:10.1016/j.jhazmat.2024.136298 .
[85]
HAO Y F MENG W Y LI Y M, et al. Concentrations and distribution of novel brominated flame retardants in the atmosphere and soil of Ny-Ålesund and London Island, Svalbard, Arctic[J]. Journal of Environmental Sciences202097: 180-185.
[86]
WANG Z NA G S MA X D, et al. Characterizing the distribution of selected PBDEs in soil, moss and reindeer dung at Ny-Ålesund of the Arctic[J]. Chemosphere2015137: 9-13.
[87]
XIONG S Y HAO Y F LI Y M, et al. Accumulation and influencing factors of novel brominated flame retardants in soil and vegetation from Fildes Peninsula, Antarctica[J]. Science of the Total Environment2021, 756. DOI:10.1016/j.scitotenv.2020.144088 .
[88]
LIU X BING H J CHEN Y Z, et al. Brominated flame retardants and dechlorane plus on a remote high mountain of the eastern Tibetan Plateau: implications for regional sources and environmental behaviors[J]. Environmental Geochemistry and Health201840(5): 1 887-1 897.
[89]
XIAN H HAO Y F LV J Y, et al. Novel Brominated Flame Retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: occurrence, distribution and influencing factors[J]. Environmental Pollution2021, 291. DOI: 10.1016/j.envpol.2021.118252 .
[90]
IQBAL M SYED J H BREIVIK K, et al. E-waste driven pollution in Pakistan: the first evidence of environmental and human exposure to Flame Retardants (FRs) in Karachi City[J]. Environmental Science & Technology201751(23): 13 895-13 905.
[91]
MCGRATH T J BALL A S CLARKE B O. Critical review of soil contamination by Polybrominated Diphenyl Ethers (PBDEs) and Novel Brominated Flame Retardants (NBFRs): concentrations, sources and congener profiles[J]. Environmental Pollution2017230: 741-757.
[92]
MEYER T MUIR D C G TEIXEIRA C, et al. Deposition of brominated flame retardants to the devon ice cap, Nunavut, Canada[J]. Environmental Science & Technology201246(2): 826-833.
[93]
MÖLLER A XIE Z Y CABA A, et al. Organophosphorus flame retardants and plasticizers in the atmosphere of the North Sea[J]. Environmental Pollution2011159(12): 3 660-3 665.
[94]
XIAO H SHEN L SU Y S, et al. Atmospheric concentrations of halogenated flame retardants at two remote locations: the Canadian high Arctic and the Tibetan Plateau[J]. Environmental Pollution2012161: 154-161.
[95]
DAVIE-MARTIN C L HAGEMAN K J CHIN Y P, et al. Concentrations, gas-particle distributions, and source indicator analysis of brominated flame retardants in air at Toolik Lake, Arctic Alaska[J]. Environmental Science Processes & Impacts201618(10): 1 274-1 284.
[96]
GEBRU T B LI Y M DONG C, et al. Spatial and temporal trends of polychlorinated naphthalenes in the Arctic atmosphere at Ny-Ålesund and London Island, Svalbard[J]. Science of the Total Environment2023, 878. DOI:10.1016/j.scitotenv.2023.163023 .
[20]
MUIR D GUNNARSDÓTTIR M J KOZIOL K, et al. Local sources versus long-range transport of organic contaminants in the Arctic: future developments related to climate change[J]. Environmental Science: Advances20254(3): 355-408.
[21]
HARTZ W F BJÖRNSDOTTER M K YEUNG L W Y, et al. Sources and seasonal variations of per- and Polyfluoroalkyl Substances (PFAS) in surface snow in the Arctic[J]. Environmental Science & Technology202458(49): 21 817-21 828.
[22]
BJÖRNSDOTTER M K HARTZ W F KALLENBORN R, et al. Levels and seasonal trends of C1-C4 perfluoroalkyl acids and the discovery of trifluoromethane sulfonic acid in surface snow in the Arctic[J]. Environmental Science & Technology202155(23): 15 853-15 861.
[23]
SUN Y X de SILVA A O PIERRE K A ST, et al. Glacial melt inputs of organophosphate ester flame retardants to the largest high Arctic Lake[J]. Environmental Science & Technology202054(5): 2 734-2 743.
[24]
MACINNIS J de SILVA A O LEHNHERR I, et al. Investigation of perfluoroalkyl substances in proglacial rivers and permafrost seep in a high Arctic watershed[J]. Environmental Science Processes & Impacts202224(1): 42-51.
[25]
MCDONOUGH C A de SILVA A O SUN C X, et al. Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: Arctic surface water distributions and net transport through fram strait[J]. Environmental Science & Technology201852(11): 6 208-6 216.
[26]
XIE J Q ZHANG G X CHEN C C, et al. Tracing organophosphate ester pollutants in hadal Trenches—distribution, possible origins, and transport mechanisms[J]. Environmental Science & Technology202458(9): 4 392-4 403.
[27]
HAN X LI W H ZHAO Y J, et al. Organophosphate esters in building materials from China: levels, sources, emissions, and preliminary assessment of human exposure[J]. Environmental Science & Technology202458(5): 2 434-2 445.
[28]
DONG C DAI S Y WU Y T, et al. Bioaccumulation and trophic transfer of Organophosphate Esters (OPEs) in Arctic terrestrial and benthic marine ecosystems[J]. Environmental Science & Technology202559(17): 8 703-8 713.
[29]
DONG C ZHANG G X PEI Z G, et al. Organophosphate esters in terrestrial environments of fildes peninsula, Antarctica: occurrence, potential sources, and bioaccumulation[J]. Journal of Hazardous Materials2024, 478. DOI:10.1016/j.jhazmat.2024.135519 .
[30]
CHEN Y XIAN H ZHU C C, et al. The transport and distribution of Novel Brominated Flame Retardants (NBFRs) and Organophosphate Esters (OPEs) in soils and moss along mountain valleys in the Himalayas[J]. Journal of Hazardous Materials2024, 465. DOI:10.1016/j.jhazmat.2023.133044 .
[31]
ZHANG Q Y WANG Y ZHANG C, et al. A review of organophosphate esters in soil: implications for the potential source, transfer, and transformation mechanism[J]. Environmental Research2022, 204. DOI:10.1016/j.envres.2021.112122 .
[32]
LI Y M XIONG S Y HAO Y F, et al. Organophosphate esters in Arctic air from 2011 to 2019: concentrations, temporal trends, and potential sources[J]. Journal of Hazardous Materials2022, 434. DOI:10.1016/j.jhazmat.2022.128872 .
[33]
HAN X HAO Y F LI Y M, et al. Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic[J]. Environmental Pollution2020, 263. DOI:10.1016/j.envpol.2020.114495 .
[34]
LI J XIE Z Y MI W Y, et al. Organophosphate esters in air, snow, and seawater in the north Atlantic and the Arctic[J]. Environmental Science & Technology201751(12): 6 887-6 896.
[35]
FAN Q Y HUANG S E GUO J X, et al. Spatiotemporal distribution and transport flux of organophosphate esters in the sediment of the Yangtze River[J]. Journal of Hazardous Materials2024, 477. DOI:10.1016/j.jhazmat.2024.135312 .
[36]
PRATS R M van DROOGE B L FERNÁNDEZ P, et al. Occurrence and temperature dependence of atmospheric gas-phase organophosphate esters in high-mountain areas (Pyrenees)[J]. Chemosphere2022, 292. DOI:10.1016/j.chemosphere.2021.133467 .
[37]
MA Y X XIE Z Y LOHMANN R, et al. Organophosphate ester flame retardants and plasticizers in ocean sediments from the north Pacific to the Arctic Ocean[J]. Environmental Science & Technology201751(7): 3 809-3 815.
[38]
SÜHRING R DIAMOND M L SCHERINGER M, et al. Organophosphate esters in Canadian Arctic air: occurrence, levels and trends[J]. Environmental Science & Technology201650(14): 7 409-7 415.
[97]
HERBERT B M J HALSALL C J VILLA S, et al. Polychlorinated naphthalenes in air and snow in the Norwegian Arctic: a local source or an eastern Arctic phenomenon?[J]. Science of the Total Environment2005342(1/2/3): 145-160.
[98]
HELM P A BIDLEMAN T F. Gas-particle partitioning of polychlorinated naphthalenes and non- and mono-ortho-substituted polychlorinated biphenyls in Arctic air[J]. Science of the Total Environment2005342(1/2/3): 161-173.
[99]
HELM P A BIDLEMAN T F LI H H, et al. Seasonal and spatial variation of polychlorinated naphthalenes and non-/ mono-ortho-substituted polychlorinated biphenyls in Arctic air[J]. Environmental Science & Technology200438(21): 5 514-5 521.
[100]
DONG C XIONG S Y YANG R Q, et al. Polychlorinated Naphthalenes (PCNs) in soils and plants from svalbard, Arctic: levels, distribution, and potential sources[J]. The Science of the Total Environment2022, 849. DOI:10.1016/j.scitotenv.2022.157883 .
[101]
JIN R FU J J ZHENG M H, et al. Polychlorinated naphthalene congener profiles in common vegetation on the Tibetan Plateau as biomonitors of their sources and transportation[J]. Environmental Science & Technology202054(4): 2 314-2 322.
[102]
WYRZYKOWSKA B HANARI N ORLIKOWSKA A, et al. Polychlorinated biphenyls and-naphthalenes in pine needles and soil from Poland: concentrations and patterns in view of long-term environmental monitoring[J]. Chemosphere200767(9): 1 877-1 886.
[103]
LEI R R LIU W B JIA T Q, et al. Partitioning and potential sources of polychlorinated naphthalenes in water-sediment system from the Yangtze River Delta, China[J]. Chemosphere2022, 287(Pt. 3). DOI: 10.1016/j.chemosphere.2021.132265 .
[104]
BIDLEMAN T F HELM P A BRAUNE B M, et al. Polychlorinated naphthalenes in polar environments: a review[J]. Science of the Total Environment2010408(15): 2 919-2 935.
[105]
RAYNE S FOREST K FRIESEN K J. Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 200944(10): 936-954.
[106]
van de VIJVER K I HOFF P T, DAS K, et al. Perfluorinated chemicals infiltrate ocean waters: link between exposure levels and stable isotope ratios in marine mammals[J]. Environmental Science & Technology200337(24): 5 545-5 550.
[107]
LIU Y C LIGGIO J HARNER T, et al. Heterogeneous OH initiated oxidation: a possible explanation for the persistence of organophosphate flame retardants in air[J]. Environmental Science & Technology201448(2): 1 041-1 048.
[108]
NA G S HOU C LI R J, et al. Occurrence, distribution, air-seawater exchange and atmospheric deposition of OrganophosPhate Esters (OPEs) from the Northwestern Pacific to the Arctic Ocean[J]. Marine Pollution Bulletin2020, 157. DOI:10.1016/j.marpolbul.2020.111243 .
[109]
LI C CHEN J W XIE H B, et al. Effects of atmospheric water on ·OH-initiated oxidation of organophosphate flame retardants: a DFT investigation on TCPP[J]. Environmental Science & Technology201751(9): 5 043-5 051.
[110]
MARTIN J W ELLIS D A MABURY S A, et al. Atmospheric chemistry of perfluoroalkanesulfonamides: kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide[J]. Environmental Science & Technology200640(3): 864-872.
[111]
ELLIS D A MARTIN J W de SILVA A O, et al. Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids[J]. Environmental Science & Technology200438(12): 3 316-3 321.
[112]
RAYNE S FOREST K. Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods[J]. Journal of Environmental Science and Health Part A, Toxic/ Hazardous Substances & Environmental Engineering, 200944(12): 1 145-1 199.
[113]
YOUNG C J HURLEY M D WALLINGTON T J, et al. Atmospheric chemistry of CF3CF2H and CF3CF2CF2CF2H: kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids[J]. Chemical Physics Letters2009473(4/5/6): 251-256.
[114]
RANTANEN M KARPECHKO A Y LIPPONEN A, et al. The Arctic has warmed nearly four times faster than the globe since 1979[J]. Communications Earth & Environment2022, 3. DOI:10.1038/s43247-022-00498-3 .
[115]
ZOU Q ZHANG Q H YANG R Q, et al. Non-negligible polyhalogenated carbazoles in Arctic soils and sediments: occurrence, target and suspect screening, and potential sources[J]. Environmental Science & Technology202458(52): 23 169-23 179.
[116]
CABRERIZO A MUIR D C G TEIXEIRA C, et al. Snow deposition and melting as drivers of polychlorinated biphenyls and organochlorine pesticides in Arctic rivers, lakes, and ocean[J]. Environmental Science & Technology201953(24): 14 377-14 386.
[117]
SÜHRING R DIAMOND M L BERNSTEIN S, et al. Organophosphate esters in the Canadian Arctic Ocean[J]. Environmental Science & Technology202155(1): 304-312.
[118]
ZHENG G M MILLER P von HIPPEL F A, et al. Legacy and emerging semi-volatile organic compounds in sentinel fish from an Arctic formerly used defense site in Alaska[J]. Environmental Pollution2020, 259. DOI:10.1016/j.envpol.2019.113872 .
[119]
GAO X Z HUANG P HUANG Q H, et al. Organophosphorus flame retardants and persistent, bioaccumulative, and toxic contaminants in Arctic seawaters: on-board passive sampling coupled with target and non-target analysis[J]. Environmental Pollution2019253: 1-10.
[120]
ROOS A M GAMBERG M MUIR D, et al. Perfluoroalkyl substances in circum-Arctic Rangifer: caribou and reindeer[J]. Environmental Science and Pollution Research International202229(16): 23 721-23 735.
[121]
HALLANGER I G SAGERUP K EVENSET A, et al. Organophosphorous flame retardants in biota from svalbard, Norway[J]. Marine Pollution Bulletin2015101(1): 442-447.
[122]
POND C M MATTACKS C A GILMOUR I, et al. Chemical and carbon isotopic composition of fatty acids in adipose tissue as indicators of dietary history in wild Arctic foxes (A lopex lagopus) on Svalbard[J]. Journal of Zoology1995236(4): 611-623.
[123]
SHA B JOHANSSON J H TUNVED P, et al. Sea Spray Aerosol (SSA) as a source of perfluoroalkyl acids (PFAAs) to the atmosphere: field evidence from long-term air monitoring[J]. Environmental Science & Technology202256(1): 228-238.
[124]
FEO M L ELJARRAT E BARCELÓ D, et al. Occurrence, fate and analysis of polychlorinated n-alkanes in the environment[J]. TrAC Trends in Analytical Chemistry200928(6): 778-791.
[125]
VERREAULT J GEBBINK W A GAUTHIER L T, et al. Brominated flame retardants in glaucous gulls from the Norwegian Arctic: more than just an issue of polybrominated diphenyl ethers[J]. Environmental Science & Technology200741(14): 4 925-4 931.
[126]
EZECHIÁŠ M COVINO S CAJTHAML T. Ecotoxicity and biodegradability of new brominated flame retardants: a review[J]. Ecotoxicology and Environmental Safety2014110: 153-167.
[127]
YAMAGUCHI Y KAWANO M TATSUKAWA R. Tissue distribution and excretion of hexabromobenzene and its debrominated metabolites in the rat[J]. Archives of Environmental Contamination and Toxicology198817(6): 807-812.
[128]
ASK A V JENSSEN B M TARTU S, et al. Per- and polyfluoroalkyl substances are positively associated with thyroid hormones in an Arctic seabird[J]. Environmental Toxicology and Chemistry202140(3): 820-831.
[129]
GEBBINK W A LETCHER R J. Comparative tissue and body compartment accumulation and maternal transfer to eggs of perfluoroalkyl sulfonates and carboxylates in Great Lakes herring gulls[J]. Environmental Pollution2012162: 40-47.
[130]
HOLMSTRÖM K E BERGER U. Tissue distribution of perfluorinated surfactants in common guillemot (Uria aalge) from the Baltic Sea[J]. Environmental Science & Technology200842(16): 5 879-5 884.
[131]
AKER A AYOTTE P CARON-BEAUDOIN É, et al. Associations between dietary profiles and perfluoroalkyl acids in Inuit youth and adults[J]. Science of the Total Environment2023, 857. DOI:10.1016/j.scitotenv.2022.159557 .
[132]
DALLAIRE R AYOTTE P PEREG D, et al. Determinants of plasma concentrations of perfluorooctanesulfonate and brominated organic compounds in Nunavik Inuit adults (Canada)[J]. Environmental Science & Technology200943(13): 5 130-5 136.
[133]
JIA X JIN Q FANG J L, et al. Emerging and legacy per- and polyfluoroalkyl substances in an elderly population in Jinan, China: the exposure level, short-term variation, and intake assessment[J]. Environmental Science & Technology202256(12): 7 905-7 916.
[134]
NERO E CARON-BEAUDOIN É AKER A, et al. Exposure to organophosphate esters among Inuit adults of nunavik, Canada[J]. Science of the Total Environment2024, 939. DOI:10.1016/j.scitotenv.2024.173563 .
[39]
LI R J GAO H HOU C, et al. Occurrence, source, and transfer fluxes of organophosphate esters in the South Pacific and Fildes Peninsula, Antarctic[J]. Science of the Total Environment2023, 894. DOI:10.1016/j.scitotenv.2023.164263 .
[1] 罗栋梁, 刘佳, 李晓英, 杜柯飞, 金会军, 陈方方, OLGA Makarieva, 王青志. 气候变化下冰椎演化及其水文生态与灾害效应[J]. 地球科学进展, 2025, 40(8): 767-777.
[2] 何春阳, 刘小平, 王伟, 黄庆旭, 刘志锋, 廖威林, 朱国梁. 全球城镇化趋势及其对气候变化的影响[J]. 地球科学进展, 2025, 40(6): 577-591.
[3] 张井勇, 杨占梅, 吴凌云. 夏季极端高温预测模型系统及实际应用[J]. 地球科学进展, 2025, 40(5): 516-524.
[4] 谢思敏, 杜志恒, 王磊, 严芳萍, 崔浩, 陶长廉, 杨佼, 吴通华, 效存德. 北极海底冻土变化特征与温室气体研究进展[J]. 地球科学进展, 2025, 40(4): 360-373.
[5] 向书旗, 陈静, 游超. 中国植被火燃烧格局与展望[J]. 地球科学进展, 2025, 40(2): 207-220.
[6] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[7] 陈梦佳, 白炜, 张成铭, 刘文艳, 高泽永. 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025, 40(1): 82-98.
[8] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[9] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[10] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[11] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[12] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[13] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[14] 李耀辉, 于敬磊, 谷娟, 桑文军, 靳晓琳, 黄玉. 民航飞行CO2 排放及其对气候变化影响研究综述[J]. 地球科学进展, 2023, 38(1): 9-16.
[15] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
阅读次数
全文


摘要