地球科学进展 ›› 2025, Vol. 40 ›› Issue (8): 821 -830. doi: 10.11867/j.issn.1001-8166.2025.054

研究论文 上一篇    下一篇

内蒙古荒漠区土地砾化监测采样方案优化研究
裴浩1(), 叶虎2(), 姜艳丰3, 贾成朕3, 范磊4, 张昆4, 徐丽娜2, 苗白岭3   
  1. 1. 内蒙古自治区气象局,内蒙古 呼和浩特 010051
    2. 内蒙古气象服务中心,内蒙古 呼和浩特 010051
    3. 内蒙古气象科学研究所,内蒙古 呼和浩特 010051
    4. 内蒙古大学 生态与环境学院,内蒙古 呼和浩特 010030
  • 收稿日期:2025-07-17 修回日期:2025-07-31 出版日期:2025-08-10
  • 通讯作者: 叶虎
  • 基金资助:
    国家自然科学基金项目(32271656); 中央引导地方科技发展资金项目(2024ZY0165); 内蒙古自治区气象局科技创新项目(nmqxkjcx202458); 内蒙古自治区气象局科技创新项目(nmqxkp202402)

Optimization Sampling Schemes for Monitoring Land Gravelization in Desert Areas of Inner Mongolia

Hao PEI1(), Hu YE2(), Yanfeng JIANG3, Chengzhen JIA3, Lei FAN4, Kun ZHANG4, Lina XU2, Bailing MIAO3   

  1. 1. Inner Mongolia Meteorological Service, Hohhot 010051, China
    2. Inner Mongolia Meteorological Service Center, Hohhot 010051, China
    3. Institute of Meteorological Science of Inner Mongolia, Hohhot 010051, China
    4. College of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
  • Received:2025-07-17 Revised:2025-07-31 Online:2025-08-10 Published:2025-10-20
  • Contact: Hu YE
  • Supported by:
    the National Natural Science Foundation of China(32271656); The Central Guidance for Local Scientific and Technological Development Funding Projects(2024ZY0165); The Science and Technology Innovation Project of Inner Mongolia Meteorological Bureau(nmqxkjcx202458)

为提升土地砾石化监测精度及野外工作效率,推进土地砾石化监测方法创新,以内蒙古荒漠区为研究区域,分别采用熵值TOPSIS和威尔科克森秩和检验方法,开展样方的适宜大小和数量研究,确定内蒙古荒漠区土地砾石化监测最优采样方案。在以100 cm×100 cm样方测量结果作为样地真实值的基础上,进一步选取全新调查区域布设样地,将最大样方扩大至200 cm×200 cm,以增加采样面积和样方数量,优化土地砾石化监测采样方案。两组实验的对比结果表明:①Q25(25 cm×25 cm)规格样方表现出较好的监测适宜性优势,在提高野外工作效率的同时,可以保证测量精度;②不同规格样方适宜数量会随样地最大样方设置尺寸的变化发生明显变化,仅Q25的适宜数量无明显变化,由9个增至10个,表现出较好的稳定性;③利用Q25开展土地砾石化监测工作,得到的砾石覆盖度与单位面积砾石质量监测样方适宜数量结果一致,不仅可以简化土地砾石化监测流程,而且确保了监测数据的可靠性和可比性。

To improve the accuracy of monitoring land gravelization and the efficiency of fieldwork, and further promote the innovation of monitoring methods, a study on the appropriate size and quantity of quadrats was conducted. This study examines the desert region of Inner Mongolia and uses the entropy TOPSIS and Wilcoxon rank sum test methods to determine the optimum sampling scheme for land gravelization monitoring. Based on results using 100 cm×100 cm quadrats as the true values of gravel coverage and surface gravel mass per unit area, new survey areas in the desert regions of Inner Mongolia were selected, and the maximum quadrat was expanded to 200 cm×200 cm to increase the sampling areas and number of quadrats, and optimize the sampling scheme for monitoring land gravelization. The comparative results of the two experiments show that: Q25 exhibits good advantages for monitoring suitability, which can improve field work efficiency while ensuring measurement accuracy; the appropriate quantity and sizing of quadrats vary significantly with changes in the maximum quadrat size; however, for Q25, the change in appropriate quantity (from 9 to 10) is non-significant, indicating good stability; using Q25, the appropriate coverage for monitoring gravelization is consistent with the results from monitoring surface gravel mass per unit area; this not only simplifies the monitoring process, but also ensures the reliability and comparability of monitoring data.

中图分类号: 

图1 200 cm×200 cm样方布设方法
Fig. 1 Design method of 200 cm × 200 cm quadrat
表1 不同规格样方监测砾石覆盖度和单位面积砾石质量统计特征值
Table 1 Statistical characteristics of coverage and gravel mass per unit area monitoring with different quadrant sizes
表2 不同规格样方砾石覆盖度和单位面积砾石质量监测适宜性评分
Table 2 Suitability scores for coverage and gravel mass per unit area monitoring with different quadrant sizes
图2 不同规格样方砾石覆盖度监测威尔科克森秩和检验结果
Fig. 2 The result of Wilcoxon rank-sum test for coverage monitoring with different quadrant sizes
图3 不同规格样方单位面积砾石质量监测威尔科克森秩和检验结果
Fig. 3 The result of Wilcoxon rank-sum test for gravel mass per unit area monitoring with different quadrant sizes
[1]
PEI Hao WU Hao GUAN Yanru, et al. Definition of land sandification and its relationship with desertification, grassland degradation and desertification[J]. Meteorology Journal of Inner Mongolia2022(1): 16-23.
裴浩, 吴昊, 关彦如, 等. 土地沙化定义及其沙被、草原退化、荒漠化关系的探讨[J]. 内蒙古气象2022(1): 16-23.
[2]
MIAO Bailing PEI Hao JIA Chengzhen, et al. Classification, monitoring indicators and ecologically-based management of gravelization land[J]. Meteorology Journal of Inner Mongolia2021(6): 37-43.
苗百岭, 裴浩, 贾成朕, 等. 砾化土地类型、监测指标及生态治理对策[J]. 内蒙古气象2021(6): 37-43.
[3]
MENG Zhongju WANG Meng GAO Yong, et al. Soil coarse graining process based on surface grain size distribution in Xilamuren desert steppe[J]. Research of Soil and Water Conservation201724(6): 22-28.
蒙仲举, 王猛, 高永, 等. 基于土壤粒度参数的荒漠草原地表粗粒化过程[J]. 水土保持研究201724(6): 22-28.
[4]
LIU X N FAN D X YU X X, et al. Effects of simulated gravel on hydraulic characteristics of overland flow under varying flow discharges, slope gradients and gravel coverage degrees[J]. Scientific Reports20199(1). DOI: 10.1038/s41598-019-56223-2 .
[5]
YE Hu PEI Hao MIAO Bailing, et al. Monitoring and evaluation of land gravel coverage based on secondary average state[J]. Arid Land Geography202548(1): 85-93.
叶虎, 裴浩, 苗百岭, 等. 基于二次平均状态的土地砾化程度监测评估研究[J]. 干旱区地理202548(1): 85-93.
[6]
LIU Shujuan WEI Xinghu ZHENG Qianqian, et al. Soil organic carbon contents characteristics in the alpine desert area of Ali, Tibet, China[J]. Journal of Desert Research202040(4): 234-240.
刘淑娟, 魏兴琥, 郑倩倩, 等. 西藏阿里高寒荒漠区土壤有机碳含量特征[J]. 中国沙漠202040(4): 234-240.
[7]
YE Hu PEI Hao WANG Ying, et al. Research on the appropriate size and quantity of land gravelization monitoring quadrats in desert areas[J]. Chinese Journal of Applied Ecology2025 (in press).
叶虎, 裴浩, 王盈, 等. 荒漠区土地砾化监测样方适宜大小及数量研究[J]. 应用生态学报,2025(待刊).
[8]
ZHANG Lanbiao PEI Hao HAN Xuri, et al. Comparative analysis of two measurements of land gravel cover in Xilingol grassland[J]. Meteorology Journal of Inner Mongolia2023(4): 14-19.
张岚彪, 裴浩, 韩旭日, 等. 锡林郭勒草原土地砾石覆盖度两种测量方法的对比分析[J]. 内蒙古气象2023(4): 14-19.
[9]
WANG X Y LI Z X CAI C F, et al. Effects of rock fragment cover on hydrological response and soil loss from Regosols in a semi-humid environment in south-west China[J]. Geomorphology2012151: 234-242.
[10]
PEI Hao ZHU Zongyuan LIANG Cunzhu, et al. Ecological environment characteristics and environmental protection in Alashan desert area[M]. Beijing: China Meteorological Press, 2011.
裴浩, 朱宗元, 梁存柱, 等. 阿拉善荒漠区生态环境特征与环境保护[M]. 北京: 气象出版社, 2011.
[11]
Inner Mongolia Autonomous Region Meteorological Standardization Technical Committee. Technical guidelines for gravel-mulched land monitoring ( DB15/T 3926-2025)[S]. Hohhot: Market Supervision Administration of Inner Mongolia Autonomous Region, 2025.
内蒙古自治区气象标准化技术委员会. 砾化土地监测技术指南( DB15/T 3926—2025)[S]. 呼和浩特:内蒙古自治区市场监督管理局, 2025.
[12]
XIE Yingge LI Xia. Methodology on rock fragments content evaluation: a review[J]. Soils201244(1): 17-22.
解迎革, 李霞. 土壤中砾石含量的测定方法研究进展[J]. 土壤201244(1): 17-22.
[13]
GAO Yang FU Suhua LUO Laijun, et al. Study on the relationship between rock fragments cover and weight percentage in Beijing Mountain[J]. Research of Soil and Water Conservation201118(4): 145-149.
高杨, 符素华, 罗来军, 等. 北京山区砾石覆盖度和砾石含量的关系研究[J]. 水土保持研究201118(4): 145-149.
[14]
WEN Wenjie PEI Hao BA Gen, et al. Land graveling characteristics and monitoring indicators of the Alxa Plateau[J]. Arid Zone Research202340(6): 926-936.
温文杰, 裴浩, 巴根, 等. 阿拉善高原土地砾化特征及监测指标[J]. 干旱区研究202340(6): 926-936.
[15]
GAO Junliang GAO Yong WU Bo, et al. Spatial heterogeneity of topsoil particles in Jartai Gobi, Inner Mongolia[J]. Soils201951(1): 135-141.
高军亮, 高永, 吴波, 等. 戈壁地表土壤颗粒的空间变异特征研究[J]. 土壤201951(1): 135-141.
[16]
MU Yue FENG Yiming GAO Xiang, et al. Spatial distribution of gravel characteristics on Gobi Desert surface based on image acquired by unmanned aerial vehicle[J]. Forest Research201831(2): 55-62.
穆悦, 冯益明, 高翔, 等. 基于无人机图像的戈壁表面砾石特征变化研究[J]. 林业科学研究201831(2): 55-62.
[17]
MU Yue. Estimation of multi-scale gravel characteristic parameters and study on spatial distribution patterns on the surface of the Gobi Desert[D]. Beijing: Chinese Academy of Forestry, 2017: 109-111.
穆悦. 戈壁表面多尺度砾石特征参数估算及其空间分布规律研究[D]. 北京: 中国林业科学研究院, 2017: 109-111.
[18]
BAN Y Y LEI T W GAO Y, et al. Effect of stone content on water flow velocity over Loess slope: non-frozen soil[J]. Journal of Hydrology2017549: 525-533.
[19]
BAN Y Y LEI T W FENG R, et al. Effect of stone content on water flow velocity over Loess slope: frozen soil[J]. Journal of Hydrology2017554: 792-799.
[20]
ZHANG Lanbiao PEI Hao JIA Chengzhen, et al. Analysis of the distribution characteristics and influencing factors of gravelized land in the Xilingol grassland [J]. Meteorology Journal of Inner Mongolia2025(4): 28-34.
张岚彪, 裴浩, 贾成朕, 等. 锡林郭勒草原砾化土地分布特征及其影响因子分析[J]. 内蒙古气象2025(4): 28-34.
[21]
SHI Jingjing LEI Yuancai ZHAO Tianzhong. Progress in sampling technology and methodology in forest inventory[J]. Forest Research200922(1): 101-108.
史京京, 雷渊才, 赵天忠. 森林资源抽样调查技术方法研究进展[J]. 林业科学研究200922(1): 101-108.
[22]
BORMANN F H. The statistical efficiency of sample plot size and shape in forest ecology[J]. Ecology195334(3): 474-487.
[23]
WIEGERT R G. The selection of an optimum quadrat size for sampling the standing crop of grasses and forbs[J]. Ecology196243(1): 125-129.
[24]
ZHOU Hongmin HUI Gangying ZHAO Zhonghua, et al. Studies on the area and the number of the sample for forest structure[J]. Forest Research200922(4): 482-485.
周红敏, 惠刚盈, 赵中华, 等. 森林结构调查中最适样方面积和数量的研究[J]. 林业科学研究200922(4): 482-485.
[25]
ZHAO Zehai ZU Yuangang YANG Fengjian, et al. Study on the sampling technique of interspecific association of ligneous plant in Quercus liaotungensis forest in Dongling Mountain[J]. Acta Phytoecologica Sinica200327(3): 396-403.
赵则海, 祖元刚, 杨逢建, 等. 东灵山辽东栎林木本植物种间联结取样技术的研究[J]. 植物生态学报200327(3): 396-403.
[26]
YOU Li WANG Geli WU Xuehong, et al. Analyses on duststorm climatic characteristics in Alashan, Inner Mongolia[J]. Plateau Meteorology200423(3): 382-386.
尤莉, 王革丽, 吴学宏, 等. 内蒙古阿拉善地区沙尘暴的气候特征分析[J]. 高原气象200423(3): 382-386.
[27]
WANG T QU J J TAN L H, et al. Aeolian sediment transport over the Gobi with high gravel coverage under extremely strong winds in the Hundred Miles windy area along the Lanzhou-Xinjiang High-Speed Railway[J]. Journal of Wind Engineering and Industrial Aerodynamics2022, 220. DOI:10.1016/j.jweia.2021.104857 .
[28]
MA Wenyong. Dynamic characteristics and influencing factors of desertification in Inner Mongolia Autonomous Region in recent ten years[D]. Yangling: Northwest A & F University, 2013.
马文勇. 内蒙古自治区近十年沙化动态特征及影响因素分析[D]. 杨凌: 西北农林科技大学, 2013.
[29]
ZHANG Zhengcai PAN Kaijia ZHANG Yan, et al. Sand transport characteristics above gobi surface during a dust storm in northern China[J]. Journal of Desert Research202343(2): 130-138.
张正偲, 潘凯佳, 张焱, 等. 中国西北戈壁区沙尘暴过程中近地层风沙运动特征[J]. 中国沙漠202343(2): 130-138.
[30]
LI Yingqiang LI Zhifeng YIN Hongchen, et al. Evaluation of regional agricultural economic development level in Gansu Province based on entropy TOPSIS method[J]. Territory & Natural Resources Study2021(4): 58-61.
李映强, 李之凤, 殷鸿琛, 等. 基于熵值TOPSIS法对甘肃省区域农业经济发展水平评价[J]. 国土与自然资源研究2021(4): 58-61.
[31]
ZHAO Jing WANG Ting NIU Dongxiao. Improved entropy TOPSIS of knight service evaluation in electric power marketing[J]. Journal of North China Electric Power University200431(3): 68-70.
赵静, 王婷, 牛东晓. 用于评价的改进熵权TOPSIS法[J]. 华北电力大学学报200431(3): 68-70.
[32]
ZHANG L Y DONG X F. Wilcoxon signed rank test using median ranked set sampling[J]. Chinese Journal of Applied Probability and Statistics201329(2): 113-120.
[1] 殷悦, 王德, 罗富彬, 徐丛亮, 田信鹏, 毕晓丽. 顾及空间各向异性的海岸带水下地形构建方法——以黄河三角洲为例[J]. 地球科学进展, 2023, 38(9): 978-985.
[2] 韩瑞玲. 基于空域资源时空优化配置的航空碳减排研究[J]. 地球科学进展, 2023, 38(3): 309-319.
[3] 陈愿愿, 杨晓, 邓小江, 王小兰, 何奇, 程莉莉, 陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[4] 邢德钊,全海燕. 基于ICA的引潮力互相关谱分析[J]. 地球科学进展, 2019, 34(1): 103-112.
[5] 万修全, 刘泽栋, 沈飙, 林霄沛, 吴德星. 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4): 482-491.
[6] 贾坤, 姚云军, 魏香琴, 高 帅,江 波, 赵 祥. 植被覆盖度遥感估算研究进展[J]. 地球科学进展, 2013, 28(7): 774-782.
[7] 葛 咏,王江浩,王劲峰,晋 锐,胡茂桂. 基于回归克里格的生态水文无线传感器网络布局优化[J]. 地球科学进展, 2012, 27(9): 1006-1013.
[8] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[9] 蒋德明,董超华. 大气廓线物理反演的最优化方法进展[J]. 地球科学进展, 2010, 25(2): 133-139.
[10] 黎夏,李丹,刘小平,何晋强. 地理模拟优化系统GeoSOS及前沿研究[J]. 地球科学进展, 2009, 24(8): 899-907.
[11] 岳耀杰,周洪建,王静爱,史培军,吕红峰,何春阳,严平. 生态安全条件下亚洲沙区土地利用结构研究[J]. 地球科学进展, 2006, 21(2): 131-137.
[12] 黄健熙;吴炳方;曾源;田亦陈. 水平和垂直尺度乔、灌、草覆盖度遥感提取研究进展[J]. 地球科学进展, 2005, 20(8): 871-881.
[13] 吴剑锋;郑春苗. 地下水污染监测网的设计研究进展[J]. 地球科学进展, 2004, 19(3): 429-436.
[14] 杨林章,孙波,刘健. 农田生态系统养分迁移转化与优化管理研究[J]. 地球科学进展, 2002, 17(3): 441-445.
[15] 范一大,史培军,王秀山,潘耀忠. 中国北方典型沙尘暴的遥感分析[J]. 地球科学进展, 2002, 17(2): 289-294.
阅读次数
全文


摘要